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Abstract:
This article motivates and discusses José Bernardo’s attempt to reconcile the subjective
Bayesian framework with a need for objective scientific inference, leading to a special
kind of objective Bayesianism, namely reference Bayesianism. We elucidate principal
ideas and foundational implications of Bernardo’s approach, with particular attention to
the classical problem of testing a precise null hypothesis against an unspecified alterna-
tive.

1. Introduction: A Stalemate Situation

The label ‘objective Bayesianism’ sounds almost self-contradictory. Bayesianism
is a paradigm of inductive inference based on subjective degrees of beliefs, and
seems to be anything but an objective form of inference. Therefore, objective
Bayesianism cannot mean to deny any subjective element in inductive inference:
rather, it aims at reconciling the subjective nature of Bayesianism with the aim
of scientific objectivity.

Among the many approaches that are devoted to this end (for discussion,
see Berger 2003; Mayo 2011), we focus on the reference Bayesian approach,
mainly developed by José Bernardo over the last 30 years. The goal of the ar-
ticle consists in identifying, in a non-technical manner, the main elements and
philosophical motivations of Bernardo’s approach, as well as potential points of
disagreement with subjective Bayesians and frequentists. We illustrate the im-
plications of the reference Bayesian approach in the classical problem of testing
a precise null hypothesis against an unspecified alternative.

In Bayesian inference, an agent’s degrees of belief in hypotheses and theories
conform to the axioms of probability. Beliefs are changed by Conditionalization,
according to Bayes’s theorem. In other words, Bayesianism is a theory of the
revision of degrees of belief: it represents learning from experience and making
inductive inferences as a rational belief updating process. The main require-
ments on that process are (1) that the function representing degrees of belief
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satisfy the axiom of probability functions and (2) that incoming evidence change
the agent’s degrees of belief in a hypothesis H according to Conditionalization
on the evidence E:

Pnew(H) := P(H|E)= P(H)
P(E|H)

P(E)
. (1)

Thus, the end product of Bayesian inference is a posterior distribution, which
represents our actual uncertainty after learning the evidence. The inferences
that we make, and the decisions that we take, qualify as rational because they
emerge as the result of a rational belief updating process.

However, it has been argued that scientific inference is very different from
idealized scenarios for reasoning under uncertainty, such as drawing balls from
an urn, or a game of chance, where Bayesian inference is obviously powerful.
Practical problems such as computational costs put aside, scepticism vis-à-vis
Bayesian methods in statistical inference can usually be traced to the following
roots:

1. Scientific hypotheses are either false or true. Presumably, it is the task
of science to state the evidence for a certain hypothesis, not to probabilify
those hypotheses and to report degrees of belief in their truth. This way
of thinking is typical of the frequentist approach in statistics, subsuming
those ways of inference where probabilities are not interpreted as degrees
of belief, but as relative frequencies of the occurrence of an event.1 The
intuition behind this objection is that science and statistics should inves-
tigate objective relations between phenomena and theories, between hy-
pothesis and evidence.

2. Following up on the previous point, scientists often ask whether a cer-
tain hypothesis (e.g., X is independent of Y ) is compatible with a given
set of data, or whether a certain effect between quantities of interest
is present. This is the basic question of statistical hypothesis tests. A
Bayesian expresses this question by assuming a prior probability distri-
bution and computing a posterior, but that seems to answer a different
question. Moreover, it seems hard to convince a fellow scientist, a funding
agency or the Food and Drug Administration that strong evidence can be
counterbalanced by equally strong a priori ‘prejudices’.

3. According to standard Bayesian theory, any system of degrees of belief that
does not violate the axioms of probability and known empirical constraints
counts as rational. In practice, this leaves ample space for the assignment
of prior probabilities, and equally ample space for the resulting posteri-
ors on which we base our decisions. If the result of a Bayesian experiment
consists in a particular distribution of personal degrees of belief, what nor-
mative force do these results carry?

1 This includes the works of Fisher, Neyman and Pearson as well as the more recent error-statistical
approach of Mayo and Spanos 2006.
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The justifications for being a subjectivist usually pertain to the decision-theoretic
coherence of Bayesianism. Subjective Utility Theory, the dominant paradigm in
decision theory, bases one’s decisions on rational degrees of belief in various
states of the world. By construction, the Bayesian approach nicely hooks up
with decision theory. From the perspective of Expected Utility Theory, it can
then be argued that several frequentist procedures, such the impact of stop-
ping rules on inference, are decision-theoretically incoherent (e.g., Edwards et
al. 1963; Kadane et al. 1996; Sprenger 2009).

Moreover, frequentist measures of evidence, such as p-values/significance
levels, have been found to be poor measures of evidence in a variety of respects
(Berger and Sellke 1987): evidence often serves as a justification to disbelieve
or to give up a point hypothesis, but strong frequentist evidence such as a low
p-value is actually a very poor guide to disbelief and rejection. Typically, the
frequentist will overstate the evidence against the tested hypothesis compared
to a subjective Bayesian analysis.

On the other hand, these advantages of Bayesianism carry less weight in
circumstances where we cannot directly determine the material value of a right
or wrong decision, e.g., in theoretical branches of science (Fisher 1956). Bayesian
inference is basically a theory of what we should believe, and does not directly
address certain inferential questions, such as ‘what is the best estimate?’, or
‘how strong is the evidence?’. But these are the questions that many scientists
are interested in.

So there seems to be a stalemate between the Bayesians, who are supported
by decision theory, and the frequentists, who are supported by accepted scientific
practice. Bernardo, who feels the pull of the arguments of either side, opts for
de-subjectivizing the Bayesian account while at the same time maintaining its
decision-theoretic foundation, which is arguably the greatest asset of Bayesian-
ism. Moreover, he aims at a unification of estimation and hypothesis testing
through a Bayesian lens. The next three sections expose the conceptual founda-
tions of Bernardo’s approach.

2. Intrinsic Loss Functions

One of the main problems of statistical inference is to estimate a quantity of in-
terest on the basis of data x. A Bayesian will (if she is an expected utility maxi-
mizer) typically choose the Bayes estimator θ̃(x) for the loss function L(·, ·)—the
estimator that minimizes the expected loss on the basis of the posterior distri-
bution:

θ̃(x)= argminθ̂∈Θ

∫
Θ

L(θ̂,θ) p(θ|x)dθ (2)

For instance, if the loss function L is the familiar quadratic loss L(θ̂,θ)= (θ̂−θ)2,
then the Bayes estimator amounts to the mean of the posterior distribution, that
is: θ̃(x)= ∫

Θθ p(θ|x)dθ.
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However, Bayes estimators are not invariant under one to one transforma-
tions of the parameter space. That is, if we want to estimate ψ= g(θ), it will not
hold in general that �g(θ)(x)= g(θ̃(x)). (3)

This has some counterintuitive consequences: when we want, as good Bayesians,
to estimate the standard deviation of a random variable, then we cannot use a
Bayes estimate of the variance and take the square root. This number will typ-
ically differ from a direct Bayes estimate of standard deviation, and vice versa.
In other words, using a Bayes estimate of a certain quantity (such as variance) to
infer to best estimates of other, canonically related quantities (such as standard
deviation) is, from a Bayesian perspective, incoherent. This may be logical when
we are dealing with monetary losses, but it is, according to Bernardo, “rather
difficult to explain when, as it is the case in theoretical inference, we merely
wish to report an estimate of some quantity of interest” (Bernardo 2011, 3), or
in other words, when we are interested in the true value of θ.

The famous statistician R. A. Fisher made a similar point:

“In the field of pure research, [. . . ] no assessment of the cost of wrong
conclusions [. . . ] can conceivably be more than a pretence, and in
any case such an assessment would be inadmissible and irrelevant
in judging the state of the scientific evidence.” (Fisher 1935, 25–26)

In other words, the occurrence of loss functions in the Bayes estimator under-
mines the answer to a pure inferential problem, such as estimating the true
value of θ. Decision-theoretically motivated approaches, such as going for the
Bayes estimator, may be adequate for purposes of industrial quality control and
the like, but not always for quantifying scientific evidence.

Fisher’s criticism primarily aims at Neyman and Pearson’s behavioral fre-
quentist approach, but it equally applies to Bayesians since Bayes estimators
depend, in general, on the assumed loss function. Bernardo is, on that point,
in sync with Fisher, but the conclusions are different: unlike Fisher, he believes
that Bayesian inference can be rescued: for good estimation in theoretical sci-
ence, we have to work with loss functions that do not vary under one-to-one
transformations.

Take the simple case of estimating the value of a parameter θ and measuring
the loss that we suffer by working with θ0 instead of the true parameter value.
Bernardo recommends to switch from the distance between parameters to the
distance between models:

“It may naïvely appear that was is required is just some measure
of discrepancy between θ0 and θ. However, since all parametriza-
tions are arbitrary, what is really required is some measure of the
discrepancy between the models labeled by θ0 and by θ. By construc-
tion, such a discrepancy measure will be invariant of the particular
parametrization used.” (Bernardo 2011, 6, original emphasis)
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Following a suggestion by Robert (1996), Bernardo names these loss functions
intrinsic since they measure the discrepancy between two probability models
instead of the discrepancy between parameter values. The former, but not the
latter, are invariant under one-to-one reparametrization. A natural choice for
such a discrepancy measure between two distributions Pθ and Pθ0 with densi-
ties p(·|θ) and p(·|θ0) is their mutual Kullback-Leibler divergence (Kullback and
Leibler 1951) or relative entropy:

δ(Pθ,Pθ0 )=min
(∫

X
p(x|θ) log

p(x|θ)
p(x|θ0)

dx;
∫
X

p(x|θ0) log
p(x|θ0)
p(x|θ)

dx
)
. (4)

This discrepancy is invariant under bijective transformations of the parameter
space since the parameters affect the discrepancy only via the probability densi-
ties that they induce, which are independent of the particular parametrization.2

Of course, there are also other divergence measures between probability distri-
butions, but the logarithmic divergence is distinguished by a variety of theoreti-
cal virtues, and it has a straightforward anchoring in coding theory (Good 1952;
Bernardo 1979b).

This particular loss function has, beside invariance, several other interesting
properties which have been explored by Bernardo in a series of papers over the
last 30 years. For example, it can also be calculated using a sufficient statistics
T(x) instead of the full data x. We skip the application-related developments,
and only mention that the loss function in (4) can be interpreted as the expected
minimal log-likelihood ratio in favor of the true model. Thus, the intrinsic loss
function does not only have the desired invariance property: also from a fre-
quentist point of view, it is related to relevant measures of evidence (e.g., in the
Neyman-Pearson Lemma).

3. Reference Priors

One of the biggest problem for the Bayesian consists in developing a sound and
practicable methodology for assigning prior distributions: “in many situations
however, either the available prior information on the quantity of interest is too
vague to warrant the effort required to formalize it, or it is too subjective to be
useful in scientific communication” (Bernardo 2011, 10).

The second pillar of Bernardo’s reference Bayesianism, next to the develop-
ment of invariant loss functions, consists in an appropriate choice of reference
prior distributions. While in classical, subjective Bayesianism, the prior dis-
tribution reflects one’s prior degrees of belief, a reference Bayesian recognizes
the difficulty of coming up with a meaningful subjective priors in a variety of
problems. Therefore she resorts to a conventional default choice.

Bernardo’s key idea for selecting such reference priors consists in maximiz-
ing the information of the data, that is, in maximizing the information that the

2 Taking the minimum is necessary since KL-divergence is not symmetric.
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data transmit about the parameter of interest. This idea is most easily illus-
trated in a one parameter model M = {p(x|θ),θ ∈Θ, x ∈X }, with parameter space
Θ and sample space X . The information in the data is explicated as the expected
Kullback-Leibler discrepancy between the prior probability density p(θ) and the
posterior probability density p(θ|x) (Bernardo 1979a, 114–115):

IΘ(M , p(θ))= Ex

[∫
Θ

p(θ|x) log
p(θ|x)
p(θ)

dθ
]

(5)

Now consider this quantity as the experiment is replicated an indefinite num-
ber of times. Instead of a single realization x, we then deal with data x1, . . . , xk.
As k →∞, the functional IΘ(xk, p(θ)) will approach the amount of information
about θ which is missing in the prior p(θ). The reference prior or ‘noninforma-
tive’ prior distribution is the probability distribution that maximizes IΘ(xk, p(θ))
as k →∞, that is, that makes the data maximally informative.

In this construction, the reference prior depends on the particular model that
has been specified. For example, the reference prior over a finite sample space
is the uniform distribution, and the reference prior over a parameter θ ∈ [0,1] in
a binomial model of the data will be Be(1/2,1/2)-distributed (p(θ)∝ 1/

p
θ(1−θ)),

whereas for the closely related Negative Binomial model, whose only difference
to the Binomial model concerns the sampling rule, the reference prior will look
differently.

It follows that inference (e.g., estimation) with reference priors leads to dif-
ferent answers, depending on which probability model we use. In particular,
inference depends on the sampling rule that has been used for obtaining a data
set, violating the Likelihood Principle (Berger and Wolpert 1984), one of the core
principles of subjective Bayesian inference. According to that principle,

“all the information about θ obtainable from an experiment is con-
tained in the likelihood function Lx(θ) = P(x|θ) for θ given x. Two
likelihood functions for θ (from the same or different experiments)
contain the same information about θ if they are proportional to one
another.” (Berger and Wolpert 1984, 19)

This principle is violated in Bernardo’s objective Bayesianism since, as he frank-
ly admits, the inference depends via the reference priors on the specified prob-
ability model. Indeed, violation of the Likelihood Principle leads to counter-
intuitive consequences, similar to those that frequentists experience. Assume,
for instance, that we are repeating Bernoulli experiments until either a certain
number of successes (s = 10), or a certain number of trials (N = 100), has been
occurred. What should be our reference prior if we observe the 10th success on
the 100th repetition? The one for the Binomial distribution? The one for the
negative Binomial distribution? A mixture of both (Geisser 1984)?

Such observations highlight (i) that with respect to foundations, reference
Bayesians deviate substantially from orthodox subjective Bayesian inference,
and (ii) that they need a defence against the arguments that have been made in
favor of the Likelihood Principle. This is still an open topic of debate—see the
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replies and rejoinder to Bernardo (2011). One answer could be that reference
priors are motivated by the desire to make the data as informative as possible,
compared to the information in the priors. ‘Information’ is, in the above defini-
tion, once again explicated by means of Kullback-Leibler divergence. Reference
priors are then referential, or so one could argue, because for an unbiased judg-
ment in the absence of meaningful prior information, it is certainly useful to
start with as little information as possible, or to give as much weight to the data
as possible, and to minimize the impact of prior opinion. That is the sense of
default priors that reference priors explicate. One may disagree about the ade-
quacy of Bernardo’s specific proposal, but it remains a coherent way of defining
‘noninformative priors’ that does not appeal to philosophically dubious symme-
try and indifference principles.

Moreover, reference priors need not be understood as the solution to an in-
ference problem, but rather, as the name suggests, as a reference point against
which we can gauge the results of a subjective Bayesian analysis (cf. Bernardo
1997). Reporting a reference analysis alongside a subjective analysis enables
us to assess the strength of our subjective presumptions. So reference priors
can also be understood as a form of sensitivity analysis. When we are working
with subjective priors, we would like to know to what extent our conclusions are
sensitive to our choice of the prior. Understanding reference priors as a gauging
instrument for our subjective beliefs, as a possible common ground for debat-
ing between statisticians with different opinions strips them off the ambition to
figure as uniquely rational degrees of belief.

Keeping this in mind, we can now proceed to the objective Bayesian’s ap-
proach to the problem of testing a point null hypothesis. After going through
that treatment, we will be in a better position to assess the overall merits and
drawbacks of the reference Bayesian approach.

4. Hypothesis Testing

One of the core ambitions of Bernardo’s reference Bayesianism is a unified ap-
proach to hypothesis testing and estimation: where standard, subjective Bayes-
ian approaches to hypothesis testing make an accept/reject decision on the basis
of the consequences of a wrong decision, the reference Bayesian aims at answer-
ing the question whether or not the parameter value θ0 is compatible with the
data (Bernardo 1999). These questions are different, and it is not clear whether
it even makes sense to ask the latter in a subjective Bayesian framework—after
all, there is no evidence independent of subjective belief. In the rest of this
section, we will elaborate the differences between classical frequentist, subjec-
tive Bayesian and reference Bayesian methods regarding testing a point null
hypothesis for compatibility with the data.

We consider the standard problem of testing the mean of a normal distribu-
tion with known variance σ2, where the null has the form H0 : X ∼ N (θ0,σ2),
and the alternative has the unspecified form H1 : X ∼N (θ,σ2) with θ 6= θ0. For
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large samples, a frequentist tester will reject the null hypothesis if the absolute
value of conventional deviance statistic z(X1, . . . , XN ) := (

∑
k Xk − Nθ0)/(

p
Nσ)

exceeds a certain threshold. This practice is justified by the observation that
z converges, due to the Central Limit Theorem, in distribution to the standard
Normal distribution N (0,1). A frequentist significance tester rejects the null if
the results are ‘very unexpected’ under H0, that is, if they are in the far tails
of the distribution of z; otherwise, the null is judged to be compatible with the
data.3

A subjective Bayesian takes a different stance. This can be illustrated in the
asymptotic case N →∞. If we fix, for increasing sample size N, the significance
level of the data—and let the data be highly significant against the null—, then
the Bayes Factor in favor of the null (that is, the ratio of posterior and prior
odds) will exceed any bound, and the posterior probability of the null hypothesis
will converge to 1. This phenomenon, known as the the Jeffreys-Lindley paradox
(Lindley 1957) is remarkable because it shows a fundamental difference between
the type of results that a Bayesian and a frequentist obtain from their respective
data analysis.4 Formally:

Lindley’s Paradox: Take a Normal model N(θ,σ2) with known
variance σ2, H0 : θ = θ0, H1 : θ 6= θ0, assume p(H0)> 0 and any regu-
lar proper prior distribution on {θ 6= θ0}. Then, for any testing level
α ∈ [0,1], we can find a sample size N(α, p(·)) and independent, iden-
tically distributed (i.i.d.) data x = (x1, . . . , xN ) such that

1. the sample mean x̄ is significantly different from θ0 at level α;

2. p(H0|x), that is, the posterior probability that θ = θ0, is at least
as big as 1−α. (cf. Lindley 1957, 187)

Thus, Bayesians contend that the value of z(x) is no reliable indication of the
tenability of the null hypothesis. This is not surprising: If we are testing the null
hypothesis ‘for real’, then we also assign a proper prior probability to H0. That is,
we give H0 a non-zero probability of being true, e.g., P(H0) = ε> 0—the precise
value does not matter—with the remaining probability mass spread out over
the real line. In this case, it makes sense that ‘significant’ results nevertheless
favor H0 over H1: For a ‘significant difference’ between θ0 and the averaged,
variance-corrected sample mean z becomes the smaller, the more N increases.
In particular, this deviance will appear small compared to the deviance to most
of the hypotheses that are part of H1. In other words: as soon as we take our
priors seriously, as a honest expression of our subjective uncertainty, it is clear
that we will end up with results favoring θ0 over an unspecified alternative. On
that reading, the ‘paradox’ just demonstrates that statistical significance is a

3 Of course, there are also more sophisticated approaches such as Mayo and Spanos’ (2006) error-
statistical approach, but a comparison of reference Bayesianism to their framework would go
beyond the scope of this article.

4 True, the frequentist confidence interval around θ0 will become more and more narrow, but for
the moment, we would like to test the null hypothesis, not to find an interval estimate.
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poor indicator of rational belief. Indeed, it sounds absurd that minute deviations
of the sample mean from θ0 provide significant evidence against the null if the
sample is just large enough!

However, the Bayesian has made a substantial presumption: namely that
we can assign a meaningful singular prior ε > 0 to the null hypothesis. But in
practice, this need not be the case. Consider testing the efficacy of a medical
drug, the palate of a wine taster, or the bias of a measuring instrument: there
is nothing that distinguishes θ0 (in terms of degrees of belief) from other values
of θ that are in its immediate neighborhood. Therefore a singular prior seems
inadequate. It is questionable whether such a subjective Bayesian analysis re-
ally answers the questions ‘can I use the parameter value θ0 as a proxy for the
unknown true value of θ?’ or ‘are the data incompatible with θ = θ0’? Subjective
Bayesians presuppose that there is something special about the value of θ0, but
this will typically not be the case.5

Bernardo’s solution to this dilemma is arguably ingenious: he understands
a hypothesis testing problem as a proper decision problem where we decide on
whether or not to treat the data as generated by the null hypothesis θ = θ0. In
other words, the inferential problem becomes a decision problem where the dif-
ferent options (accept/reject H0) are judged according to their expected utilities.
The utility of accepting H0 when it is wrong is, however, not given externally,
but quantified by means of the expected predictive score of using θ0 instead of
the true value θ. This score is calculated by averaging the logarithmic score
(− log p(x|θ0)) over the sample space X .

Cutting short the technicalities here, Bernardo (1999) manages to show that
under these presumptions, the difference in expected utilities between accept-
ing and rejecting the null is (leaving nuisance parameters aside) essentially a
function of the term∫

δ0(Pθ0 ,Pθ)=
∫

p(θ|x)
(∫

p(y|θ) log
p(y|θ)
p(y|θ0)

d y
)

dθ. (6)

In other words, the decision in a hypothesis testing problem depends, accord-
ing to Bernardo, on the data via the expected intrinsic loss (6), cf. equation (4).
Anticipating our final evaluation, we can see from (6) that Bernardo has accom-
plished an unified account of estimation and hypothesis testing: both treatments
crucially depend on the intrinsic loss or the intrinsic distance between the esti-
mated/hypothesized parameter value and the true parameter value.

Coming back to hypothesis testing proper, this Bayesian Reference Criterion
(BRC, Bernardo 1999, 108) allows for some interesting results. Assume, for in-
stance, that we are testing a subject that claims to possess extrasensory capaci-
5 It does not help either to cite the results of Berger and Delampady 1987. Their Theorem 1 demon-

strates that the testing of a point null hypothesis with non-zero prior can be understood as a
convenient simplification of testing the null hypothesis |θ− θ0| ≤ ε for a small value of ε, with
a continuous, but rather sharply peaked prior. More precisely, the Bayes factors in both testing
problems can be related to each other. Unfortunately, this approximation breaks down as N in-
creases, making this justification unavailable to the subjective Bayesian hypothesis tester in the
situation of Lindley’s paradox.
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ties, namely to affect 0-1-outcomes generated by a randomly operating machine
by means of mysterious mental forces. Recording the number of zeros and ones,
we check whether there is a significant difference between them. For a large
sample, it turns out that there have been 52.263.471 zeros in 104.490.000 trials
(Jahn et al. 1987). A proper Bayesian (Jefferys 1990) assigns a non-zero proba-
bility to the null hypothesis and accepts this hypothesis for most choices of prior
probabilities over H1 (the Bayes factor is, for a typical choice, about 19 in favor of
H0). However, a reference Bayesian will conclude that the expected loss from us-
ing θ0 as a proxy for the true value θ (= the expected log-likelihood ratio against
H0) is substantial, namely log1400 ≈ 7.24. This is in sync with the observa-
tion that any non-dogmatic prior yields the posterior θ ∼ N(0.50018,0.000049),
where the low variance establishes that “under the accepted conditions, the pre-
cise value θ0 = 1/2 is rather incompatible with the data” (Bernardo 2011, 18).
This does, of course, not prove the extrasensory capacities of our subject; a much
more plausible explanation is a small bias in the random generator.

The crucial difference to a subjective, Bayes factor analysis is that the entire
space of alternatives is not integrated out. Recall that that analysis favored the
null over the alternative because it ‘defeated’ all parameter values that were
far from θ0, irrespective of whether θ0 or a different value close to it was the
actual truth. Whereas the objective Bayesian restricts herself to pointing out
that the evidence against θ0 with respect to some other value is very strong.
In that sense, while avoiding the integrating-out or catch-all treatment that
is characteristic of subjective Bayesianism, the reference Bayesian approach is
built on very Bayesian grounds: namely maximizing Subjective Expected Utility.
The last section proposes some subjective Bayesian rejoinders to that view, and
summarize our findings.

5. Conclusion: A Critical Appraisal

This short paper has presented the three main elements of Bernardo’s reference
Bayesian approach: intrinsic loss functions for estimation, reference priors, and
a decision-theoretic, prediction-oriented access to hypothesis testing. Strictly
speaking, these elements are independent, but they fit into a coherent philoso-
phy of inference because they are related in a number of ways. For instance, the
(expected) logarithmic score − log p(·) is used in all three elements: it quantifies
missing information about θ, expected divergence between prior and posterior,
and predictive success of a hypothesis. Similarly, the intrinsic loss function for
estimation problems also figures in the Bayesian Reference Criterion (BRC) for
hypothesis testing.

How should we place this framework on a scale between Bayesian and fre-
quentist approaches? When stressing the difference between objective and sub-
jective Bayesianism, it should be noted that the reference prior approach does
not only provide a unified approach to testing and estimation problems: it also
lays a decision-theoretic foundation for testing point null hypotheses. Although
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the test statistics are the same like in frequentist inference, making the method
attractive for a non-Bayesian as well, Bernardo’s method is distinguished by its
decision-theoretic foundation. This is a big asset vis-à-vis frequentist philoso-
phies of induction that are based on p-values or mathematical derivatives thereof
(Berger and Delampady 1987; Berger and Sellke 1987). Belief is now separated
from evidence. However, three fundamental challenges deserve mention. It
would go beyond the scope of the paper to try to answer them here; we direct
the interested reader to Bernardo (1999; 2011) and Lindley (1972).

1. Does it really make sense to consider hypothesis testing problems as styl-
ized prediction problems? Is this really adequate and sufficiently general
for modeling inferences in theoretical science? Aren’t we reducing the com-
plexity of real hypothesis tests to a scheme that does not necessarily fit
them?

2. Lindley (1999) objects, in his discussion of Bernardo’s (1999) paper, that
a crucial advantage of Bayesianism gets lost in the Bernardian synthesis
of frequentist and Bayesian techniques: context-sensitivity. Compare the
testing of the efficacy of a new medical drug to the testing the extrasensory
capacities of an arbitrary subject. Clearly, we will be much more willing to
reject the null hypothesis (no efficacy) in the first case than in the second
case: quite often, new drugs turn out to be effective whereas if extrasen-
sory capacities really existed, we would probably have observed them in
previous experiments. A proper Bayesian would therefore, in the second
case, use a prior that is much more spiked around θ0 than in the second
case. The disadvantage of Bernardo’s approach is, according to Lindley,
that by the automatic use of the reference prior machinery, we deprive
ourselves of the chance to distinguish between those cases. We are deal-
ing with ‘Greek letters’ and dismiss our foreknowledge and scientific judg-
ment. In his rejoinder, Bernardo (1999) proposes the use of appropriately
restricted reference priors to accommodate Lindley’s reservations.

3. The difference between statistical and scientific significance. Bernardo’s
conclusion that in the ESP example of the previous section, the null is in-
compatible with the data, might be true from a purely statistical point of
view. But scientifically, it seems that the data vindicate the null because
the observed effect is too small to be the product of interesting extrasen-
sory capacities. Probably it is just an artefact of the sampling device. The
question is then: what use does it have to say that the data are (statisti-
cally) incompatible with the null hypothesis when this does not help us to
decide whether or not we should see the null as (scientifically) confirmed?

Summing up, the gist of Bernardo’s reference Bayesianism is not to replace
subjective inference in science and statistics. Rather, it is an extension of the
Bayesian machinery to cases where a proper subjective analysis is not feasi-
ble for whatever reasons. Independent of one’s stance towards this project,
Bernardo deserves credit for coming up with an account of reference priors that
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unifies estimation and testing problems on information-theoretic and decision-
theoretic grounds, and that has been fruitfully applied to a variety of non-trivial
statistical problems.
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