
Iterative arrays with finite inter-cell communication

Martin Kutrib1 • Andreas Malcher1

Accepted: 21 September 2020 / Published online: 24 October 2020
� The Author(s) 2020

Abstract
Iterative arrays whose internal inter-cell communication is quantitatively restricted are investigated. The quantity of

communication is measured by counting the number of uses of the links between cells. In particular, iterative arrays are

studied where the maximum number of communications per cell occurring in accepting computations is drastically

bounded by a constant number. Additionally, the iterative arrays have to work in realtime. We study the computational

capacity of such devices. For example, a result is that a strict and dense hierarchy with respect to the constant number of

communications exists. Due to their very restricted communication, the question arises whether the usually studied

decidability problems such as, for example, emptiness, finiteness, inclusion, or equivalence become decidable for such

devices. However, it can be shown that all such decidability questions remain undecidable even if only four communi-

cations per cell are allowed. Finally, the undecidability results are shown to hold as well for one-way and two-way cellular

automata having at most four communications per cell.

Keywords Cellular automata � Iterative arrays � Communication bounds � Computational capacity � Decidability questions

1 Introduction

Devices of homogeneous, interconnected, parallel acting

automata have widely been investigated from a computa-

tional capacity point of view. Multi-dimensional devices

with nearest neighbor connections whose cells are finite

automata are commonly called cellular automata (CA).

The cells work synchronously at discrete time steps. If the

input mode is sequential to a distinguished communication

cell, such devices are called iterative arrays (IA).

In connection with formal language recognition one-

dimensional iterative arrays have been introduced in Cole

(1969), where it was shown that the language family

accepted by realtime IAs forms a Boolean algebra not

closed under concatenation and reversal. In Chang et al.

(1987) it is shown that for every context-free grammar a

two-dimensional lineartime iterative array parser exists. A

realtime IA acceptor for prime numbers has been con-

structed in Fischer (1965). A characterization of various

types of IAs in terms of restricted Turing machines and

several results, especially speed-up theorems, are given in

Ibarra and Palis (1985), (1988). Several more results con-

cerning formal languages can be found, for example, in the

survey (Kutrib 2009).

It is obvious that inter-cell communication is an essen-

tial resource for iterative arrays that can be measured

qualitatively as well as quantitatively. In the first case, the

number of different messages to be communicated by the

cells is bounded by some fixed constant. IAs with this

restricted inter-cell communication have been investigated

in Umeo and Kamikawa (2002, 2003) with respect to the

algorithmic design of sequence generation. In particular, it

is shown that several infinite, non-regular sequences such

as exponential or polynomial, Fibonacci, and prime

sequences can be generated in realtime. In connection with

language recognition and decidability questions multi-di-

mensional IAs and one-dimensional (one-way) CAs with

restricted communication have intensively been studied

in Kutrib and Malcher (2009a, 2011), Worsch (2000).

For a quantitative measure of communication in itera-

tive arrays the number of uses of the links between cells is

counted. Additionally, it is distinguished between bounds
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on the sum of all communications of an accepting com-

putation and bounds on the maximum number of commu-

nications per cell occurring in accepting computations.

There are quite a few results in the literature with respect to

these measures. Results for (one-way) cellular automata

may be found in Kutrib and Malcher (2010a, 2010b).

In Kutrib and Malcher (2009b, 2010b) also cellular auto-

mata are investigated that are restricted with respect to the

qualitative and the quantitative measure. The main results

are in both cases hierarchy results and the undecidability of

almost all commonly studied decidability questions such as

emptiness, finiteness, equivalence, inclusion, regularity,

and context-freeness. It should be noted that already a finite

amount of communication per cell is sufficient to obtain

undecidability results for cellular automata. First results on

iterative arrays with restricted communication are pre-

sented in Malcher (2018) and comprise again hierarchy

results as well as undecidability results for the above

questions. Concerning the measure on the maximum

communication per cell it has been shown that the unde-

cidability results hold as long as at least a logarithmic

number of communications per cells is allowed. Moreover,

it is stated as an open question whether the undecidable

questions become decidable when the allowed communi-

cation is even more restricted, namely, bounded by a

constant number.

In this paper, we can answer the latter question nega-

tively even if only four communications per cell are

allowed. In addition, we establish a strict and dense hier-

archy with respect to the constant number of communica-

tions. The paper is organized as follows. In the next

section, we present some basic notions and definitions,

introduce the classes of max communication bounded

iterative arrays, and give an illustrative example. Then, in

Sect. 3 we show that for every k� 2, IAs with at most

k þ 1 communications per cell are more powerful than

devices with at most k communications per cell. For k 2
f0; 1; 2g it turns out that devices with at most k communi-

cations per cell can accept regular languages only. Sec-

tion 4 is devoted to showing the undecidability of the

usually studied decidability questions for IAs working in

realtime and having at most four communications per cell.

This is done by a reduction of the halting problem for

counter machines (Minsky 1961). The ideas and con-

structions of Sect. 4 are applied in Sect. 5 where the known

undecidability results for realtime one-way and two-way

cellular automata with max bounded communication can

essentially be improved to hold for machines with at most

four communications per cell as well.

We would like to note that a preliminary version of this

paper has been presented in Kutrib and Malcher (2019).

Here, we have provided the full proofs of the results in

Sect. 3. Moreover, the undecidability results in Kutrib and

Malcher (2019) have been obtained by a reduction of

Hilbert’s tenth problem. Here, a different reduction is

chosen which leads to more precise results in Sect. 4.

Moreover, the results presented in Sect. 5 are new.

2 Definitions and preliminaries

We denote the non-negative integers by N. Let R denote a

finite set of letters. Then we write R� for the set of all finite
words (strings) consisting of letters from R. The empty

word is denoted by k, and we set Rþ ¼ R� n fkg. A subset

of R� is called a language over R. A language L over some

alphabet fa1; a2; . . .; akg is said to be letter-bounded, if

L � a�1a
�
2 � � � a�k . For the reversal of a word w we write wR

and for its length we write |w|. In general, we use � for

inclusions and � for strict inclusions.

A one-dimensional iterative array is a linear, semi-in-

finite array of identical deterministic finite state machines,

sometimes called cells. Except for the leftmost cell each

one is connected to its both nearest neighbors (see Fig. 1).

For convenience we identify the cells by their coordinates,

that is, by non-negative integers. The distinguished left-

most cell at the origin is connected to its right neighbor

and, additionally, equipped with a one-way read-only input

tape. At the outset of a computation the input is written on

the input tape with an infinite number of end-of-input

symbols to the right, and all cells are in the so-called

quiescent state. The finite state machines work syn-

chronously at discrete time steps. The state transition of all

cells but the communication cell depends on the current

state of the cell itself and on the information which is

currently sent by its neighbors. The information sent by a

cell depends on its current state and is determined by so-

called communication functions. The state transition of the

communication cell additionally depends on the input

symbol to be read next. The head of the one-way input tape

is moved to the right in each step. With an eye towards

recognition problems the machines have no extra output

tape but the states are partitioned into accepting and

rejecting states.

Formally, an iterative array ðIAÞ denotes a system

hS;F;A;B;O; s0; bl; br; d; d0i, where S is the finite, none-

mpty set of cell states, F � S is the set of accepting

states, A is the finite set of input symbols, B is the finite set

of communication symbols, O 62 A is the end-of-input

symbol, s0 2 S is the quiescent state, bl; br : S ! B [ f?g

s0 s0 s0 s0 s0

a1a2a3 · · · an�
Fig. 1 Initial configuration of an iterative array
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are communication functions which determine the infor-

mation to be sent to the left and right neighbors, where ?
means nothing to send and blðs0Þ ¼ brðs0Þ ¼ ?, d : ðB [
f?gÞ � S� ðB [ f?gÞ ! S is the local transition function

for all but the communication cell satisfying

dð?; s0;?Þ ¼ s0, and d0 : ðA [ fOgÞ � S� ðB [ f?gÞ !
S is the local transition function for the communication

cell.

Let M be an IA. A configuration of M at some time t� 0

is a description of its global state which is a pair ðwt; ctÞ,
where wt 2 A� is the remaining input sequence and ct :

N ! S is a mapping that maps the single cells to their

current states. The configuration ðw0; c0Þ at time 0 is

defined by the input word w0 and the mapping c0 that

assigns the quiescent state to all cells, while subsequent

configurations are chosen according to the global transition

function D that is induced by d and d0 as follows: Let

ðwt; ctÞ, t� 0, be a configuration. Then its successor con-

figuration ðwtþ1; ctþ1Þ ¼ Dðwt; ctÞ is as follows.
ctþ1ðiÞ ¼ dðbrðctði� 1ÞÞ; ctðiÞ; blðctðiþ 1ÞÞÞ

for all i� 1, and ctþ1ð0Þ ¼ d0ða; ctð0Þ; blðctð1ÞÞÞ, where

a ¼ O and wtþ1 ¼ k if wt ¼ k, as well as a ¼ a1 and

wtþ1 ¼ a2a3 � � � an if wt ¼ a1a2 � � � an.
We remark that we obtain the classical definition of IA,

if we set B ¼ S and blðsÞ ¼ brðsÞ ¼ s for all s 2 S.

An input w is accepted by an IA M if at some time

i during the course of its computation the communication

cell enters an accepting state. The language accepted by

M is denoted by L(M). Let t : N ! N, tðnÞ� nþ 1 be a

mapping. If all w 2 LðMÞ are accepted with at most t(|w|)

time steps, then M and L(M) are said to be of time com-

plexity t.

The family of all languages which are accepted by some

type of device X with time complexity t is denoted by

LtðXÞ. If t is the function nþ 1, acceptance is said to be in

realtime and we write LrtðXÞ. Since for nontrivial com-

putations an IA has to read at least one end-of-input

symbol, realtime has to be defined as ðnþ 1Þ-time.

In the following we study the impact of communication

in iterative arrays. The communication is measured by the

number of uses of the links between cells. It is understood

that whenever a communication symbol not equal to ? is

sent, a communication takes place. Here we do not dis-

tinguish whether either or both neighboring cells use the

link. More precisely, the number of communications

between cell i and cell iþ 1 up to time step t is defined by

comði; tÞ ¼ f j j 0	 j\t and ðbrðcjðiÞÞ 6¼ ?
�
�

or blðcjðiþ 1ÞÞ 6¼ ?Þ gj:

For computations we now consider the maximal number of

communications between two cells. Let c0; c1; . . .; ctðjwjÞ be

the sequence of configurations computed on input w by

some iterative array with time complexity t(n), that is, the

computation on w. Then we define

mcomðwÞ ¼maxf comði; tðjwjÞÞ j 0	 i	 tðjwjÞ � 1 g:

Let f : N ! N be a mapping. If all w 2 LðMÞ are accepted
with computations where mcomðwÞ	 f ðjwjÞ, thenM is said

to be max communication bounded by f. We denote the

class of IA that are max communication bounded by some

function f by MCðf Þ-IA. In addition, we use the notation

const for functions from O(1).

To illustrate the definitions we start with an example. In

the next section it turns out that the non-regular language

f anbn j n� 1 g is accepted by some realtime iterative array

using at most three communications per inter-cell link. The

following example reveals that only five communications

per inter-cell link are sufficient to accept the non-semilin-

ear and, hence, non-context-free language L ¼
f a3nþ2b

ffiffi
n

p
cb2n j n� 1 g in realtime. Moreover, L is a subset

of a�b� and, hence, a letter-bounded language.

Example 1 The language L belongs to LrtðMCð5Þ-IAÞ.
The basic idea is to use the construction given in Ma-

zoyer and Terrier (1999) where a cellular automaton is

described such that the nth cell enters a designated

state s exactly at time step 2nþ b
ffiffiffi
n

p
c. We basically

implement this construction, but realize it with speed 1/2 in

contrast to the construction in Mazoyer and Terrier (1999).

Hence, the nth cell enters a designated state exactly at time

step 4nþ 2b
ffiffiffi
n

p
c. When the communication cell reads the

first b, it sends a signal with maximum speed to the right

which arrives in the nth cell exactly at the moment when

state s should be entered. In this case, another signal is sent

with maximum speed to the left and the input is accepted if

the latter signal reaches the communication cell when the

end-of-input symbol is read. Thus, L is accepted by a

realtime IA. Moreover, the construction given in Mazoyer

and Terrier (1999) needs three right-moving signals. Thus,

four right-moving signals and one left-moving signal are

sufficient to accept L. This shows that the IA constructed is

a realtime MCð5Þ-IA. h

3 k +1 communications are better than k

This section is devoted to studying the impact of the pre-

cise finite number k of communications between cells. It

turns out that this number in fact matters unless it is very

small. That is, we will obtain an infinite strict hierarchy for

k� 2, whereas the families of languages accepted with 0, 1,

and 2 communications per inter-cell link coincide with the

regular languages. We start at the bottom of the hierarchy.

Iterative arrays with finite inter-cell communication 5
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Proposition 1 The three language families

LrtðMCð0Þ-IAÞ, LrtðMCð1Þ-IAÞ, and LrtðMCð2Þ-IAÞ
coincide with the family of regular languages.

Proof The proof is trivial for MCð0Þ-IAs. In this case the

iterative array has the computational capacity of the com-

munication cell, that is, of a deterministic finite automaton.

Similarly, the proof is obvious for MCð1Þ-IAs. The sole

communication on the inter-cell link between the com-

munication cell and its neighbor sends some information to

the right, but this information can never come back to the

communication cell which, thus, is not affected by the

communication at all. We conclude that the computational

capacity also for MCð1Þ-IAs is that of deterministic finite

automata.

Let us now consider MCð2Þ-IAs. Let the first commu-

nication on the inter-cell link between the communication

cell and its neighbor take place at time step t� 0. Before,

all cells to the right of the communication cell are

quiescent. So, the information transmitted by the commu-

nication causes the quiescent array to perform some

computation and possibly to transmit some information

back to the communication cell. The computation per-

formed by the array to the right of the communication cell

only depends on the information transmitted during the first

communication. However, these finitely many cases can be

precomputed. Implementing the transition function of the

communication cell so that it simulates the computations of

the array in some state register allows to safely remove the

first communication. In this way we obtain an equivalent

MCð1Þ-IA that accepts regular languages only. Needless to

say that a second communication from left to right is

useless and can be omitted as well. h

The witnesses for the hierarchy are languages whose

words are repetitions of unary blocks of the same size but

with alternating symbols. For i� 2 define

Lhi ¼
f ðanbnÞ

i
2 j n� 1 g if i is even

f ðanbnÞb
i
2
can j n� 1 g if i is odd

(

:

Lemma 1 For i� 2, the language Lhi is accepted by some

MCðiþ 1Þ-IA.

Proof Any word from Lhi is the concatenation of i unary

blocks of the same size but with alternating symbols. The

correct format of an input, namely to be of the form

ðaþbþÞþa�, can be checked by the communication cell.

The basic idea to verify the correct lengths of the blocks is

as follows (see Fig. 2). Initially, the communication cell

sends a signal S0 with speed 1/3 to the right. That is, the

signal resides in the first three configurations in the com-

munication cell, is then sent to the next cell where it resides

in the following three configurations, and so on. When the

first symbol of the second block has been read, the com-

munication cell sets up another signal S1 that runs with

speed 1 to the right. When the latter signal catches up with

the former one, both are canceled and i� 1 signals Rj with

speeds 1=ð2j� 1Þ, for 1	 j	 i� 1, are sent to the left. If

these signals arrive in the communication cell at the time

steps in which new blocks (or the end-of-input symbol)

appear in the input, the lengths of all blocks are correct.

More precisely, for x� 0, signal S0 resides at times 3x,

3xþ 1, and 3xþ 2 in cell x. Signal S1 resides at time nþ 1

in cell 0 and at time nþ 1þ x in cell x. If n is even, signal

S1 arrives at time nþ 1þ n
2
¼ 3 n

2
þ 1 in cell n

2
where S0

resides at times 3 n
2
, 3 n

2
þ 1, and 3 n

2
þ 2. Therefore, signals

S0 and S1 meet in cell bn
2
c. If n is odd, signal S1 arrives at

time nþ 1þ bn
2
c ¼ 3bn

2
c þ 2 in cell bn

2
c where S0 resides at

times 3bn
2
c, 3bn

2
c þ 1, and 3bn

2
c þ 2. Therefore, signals S0

and S1 meet in cell bn
2
c also in this case.

Now, for the sending of the signals Rj the parity of n is

distinguished. (The parity of n is straightforwardly checked

by the communication cell and can be sent together with

signal S1). If n is even, the signals Rj are set up by cell n
2

immediately at time 3 n
2
þ 1. So, signal Rj arrives at the

communication cell at time

3
n

2
þ 1þ ð2j� 1Þ n

2
¼ 2ðjþ 1Þ n

2
þ 1 ¼ ðjþ 1Þnþ 1:

0 1 2 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

t

0 1 2 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

t

Fig. 2 Two example computations for the constructions in the proof

of Lemma 1. For input a4b4a4b4 the block size is even (left) and for

input a5b5a5b5 it is odd (right). The red lines on the right indicate the

delays of the signals Rj. (Color figure online)
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Since 1	 j	 i� 1, these are the times 2nþ 1; 3nþ
1; . . .; i � nþ 1 at which new blocks (or the end-of-input

symbol) appear in the input.

If n is odd, the signals Rj are set up by cell bn
2
c with a

delay of j time steps at time 3bn
2
c þ 2þ j, respectively. So,

each signal Rj arrives at the communication cell at time

3
n

2

j k

þ 2þ jþ ð2j� 1Þ n

2

j k

¼ 2ðjþ 1Þ n
2
� 2ðjþ 1Þ

2
þ 2þ j ¼ ðjþ 1Þnþ 1:

As in the first case, since 1	 j	 i� 1, these are the times

2nþ 1; 3nþ 1; . . .; i � nþ 1 at which new blocks (or the

end-of-input symbol) appear in the input.

So, the IA constructed accepts language Lhi in realtime.

Moreover, each of the altogether iþ 1 signals takes at most

one communication step per inter-cell link and, thus, the IA

is an MCðiþ 1Þ-IA. h

Theorem 1 For i� 2, the family LrtðMCðiÞ-IAÞ is strictly
included in the family LrtðMCðiþ 1Þ-IAÞ

Proof For i� 2, the witness language Lhi is used to show

the strict inclusion LrtðMCðiÞ-IAÞ � LrtðMCðiþ 1Þ-IAÞ.
By Lemma 1, language Lhi is accepted by some MCðiþ
1Þ-IA in realtime. So, it remains to be shown that Lhi is not

accepted by any MCðiÞ-IA in realtime.

Let M ¼ hS;F;A;B;O; s0; bl; br; d; d0i be an iterative

array accepting Lhi in realtime. We consider the commu-

nications on the inter-cell link between the communication

cell and its neighbor. For clearer writing, we represent a

configuration by a pair ðw; sĉÞ, where w 2 A� is the

remaining input sequence as usual, s 2 S is the state of the

communication cell, and ĉ is a mapping that maps cells

j� 1 to their current states.

A key observation is that on unary inputs long enough

the communication cell will run into state cycles unless a

communication takes place. So, let w 2 Lhi be an accepted

word whose block length n is long enough.

Assume that no communication takes place while

processing the first |S| symbols a from the first block.

Recall that by definition we have blðs0Þ ¼ brðs0Þ ¼ ?. Let

w ¼ anv with the first letter in v being b. Then on

processing the input prefix ajSj the communication cell

necessarily enters some state at least twice. That is, there

are 0	 p1, 1	 p2 with p1 þ p2 	 jSj such that

Dp1ðanv; s0ĉ0Þ ¼ ðan�p1v; s1ĉ0Þ and

Dp2ðan�p1v; s1ĉ0Þ ¼ ðan�p1�p2v; s1ĉ0Þ. That is, there is a

state cycle of length p2 leading from state s1 to state s1. So,

the input anþp2v 62 Lhi is accepted as well. From the

contradiction it follows that there is at least one commu-

nication during the first |S| time steps.

Next, we consider the sub-computations that process the

last |S| symbols of a block and the first jSj2 þ jSj symbols of

the following block. Without loss of generality, let this

factor be ajSjbjSj
2þjSj, and so w ¼ uajSjbjSj

2þjSjv. Assume that

no communication takes place (on the inter-cell link

between the communication cell and its neighbor) while

processing this factor. Let

DjujðuajSjbjSj
2þjSjv; s0ĉ0Þ ¼ ðajSjbjSj

2þjSjv; sĉÞ:

Then there are 0	 p1, 1	 p2 with p1 þ p2 	 jSj such that

Dp1ðajSjbjSj
2þjSjv; sĉÞ ¼ ðajSj�p1bjSj

2þjSjv; s1ĉ1Þ and

Dp2ðajSj�p1bjSj
2þjSjv; s1ĉ1Þ ¼ ðajSj�p1�p2bjSj

2þjSjv; s1ĉ2Þ:

That is, there is a state cycle of length p2 leading from state

s1 to state s1. Continuing the computation without com-

munication yields the existence of 0	 p3, 1	 p4 	 jSj with
jSj 	 p1 þ p2 þ p3 and p1 þ p2 þ p3 þ p4 	 2jSj such that

Dp3ðajSj�p1�p2bjSj
2þjSjv; s1ĉ2Þ ¼ ðbjSj

2þ2jSj�p1�p2�p3v; s2ĉ3Þ;

Dp4ðbjSj
2þ2jSj�p1�p2�p3v; s2ĉ3Þ

¼ ðbjSj
2þ2jSj�p1�p2�p3�p4v; s2ĉ4Þ; and

Dp2p4ðbjSj
2þ2jSj�p1�p2�p3�p4v; s2ĉ4Þ

¼ ðbjSj
2þ2jSj�p1�p2�p3�p4�p2p4v; s2ĉ5Þ:

That is, there is a state cycle of length p4 leading from state

s2 to state s2. Since there are no communications on the

factor ajSjbjSj
2þjSj, we can replace this factor by the factor

ajSjþp2p4bjSj
2þjSj�p2p4 of the same length, and the configura-

tions to the right of the communication cell develop exactly

as before. We obtain the sub-computations

Dp1ðajSjþp2p4bjSj
2þjSj�p2p4v; sĉÞ

¼ ðajSjþp2p4�p1bjSj
2þjSj�p2p4v; s1ĉ1Þ and

Dp2ðajSjþp2p4�p1bjSj
2þjSj�p2p4v; s1ĉ1Þ

¼ ðajSjþp2p4�p1�p2bjSj
2þjSj�p2p4v; s1ĉ2Þ:

Since the communication cell runs through the state cycle

of length p2 leading from state s1 to state s1 and there is no

communication, the sub-computation continues as

Dp2p4ðajSjþp2p4�p1�p2bjSj
2þjSj�p2p4v; s1ĉ2Þ

¼ ðajSj�p1�p2bjSj
2þjSj�p2p4v; s1ĉ6Þ;

Dp3ðajSj�p1�p2bjSj
2þjSj�p2p4v; s1ĉ6Þ

¼ ðbjSj
2þ2jSj�p2p4�p1�p2�p3v; s2ĉ7Þ;

Dp4ðbjSj
2þ2jSj�p2p4�p1�p2�p3v; s2ĉ7Þ

¼ ðbjSj
2þ2jSj�p2p4�p1�p2�p3�p4v; s2ĉ5Þ:
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For the last equation, note that the length of the replaced

factor is the same as of the original factor. That, is the

number of steps is the same on both factors. Moreover,

since there is no communication of the communication

cell, during these steps the right part of the configuration

develops as before. So, the configuration of the right part is

finally ĉ5.

Since the configurations after processing the original

factor and its replacement are identical, the input word with

replaced factor not belonging to Lhi is accepted as well.

From the contradiction it follows that there is at least one

communication while processing the factor ajSjbjSj
2þjSj.

Now we turn to the end of the computation. Assume that

no communication takes place while processing the last 2|S|

symbols from the last block, say these are symbols b. Let

w ¼ ubn with the last letter in u being an a. Then on

processing the input suffix b2jSj the communication cell

necessarily enters some state at least twice. Let

Djujþn�2jSjðubn; s0ĉ0Þ ¼ ðb2jSj; sĉÞ: Then there are 0	 p1,

1	 p2 with p1 þ p2 	 jSj such that Dp1ðb2jSj; sĉÞ ¼
ðb2jSj�p1 ; s1ĉ1Þ and Dp2ðb2jSj�p1 ; s1ĉ1Þ ¼ ðb2jSj�p1�p2 ; s1ĉ2Þ.
Since the input is accepted, the communication cell enters

an accepting state in this state cycle of length p2 (which

cannot be left until the end of the computation) or before.

This implies that input ubn�p2 is accepted as well. From the

contradiction it follows that there is at least one commu-

nication during the last 2|S| time steps.

Altogether we have seen that the communication cell of

M necessarily communicates with its neighbor, or vice

versa, during the first |S| steps, during the last 2|S| steps,

and on the factors ajSjbjSj
2þjSj and bjSjajSj

2þjSj that include
the block borders. Since there are i� 1 such block borders,

in total, there are at least iþ 1 communications for n long

enough. h

4 Undecidability results for realtime
MC(constÞ- IAs

It is shown in Kutrib and Malcher (2019) by a reduction of

Hilbert’s tenth problem that emptiness is undecidable for

realtime MCðconstÞ-IAs. However, this proof does not

provide a precise constant, since the number of commu-

nications per cell in the construction depends on the

polynomial given in Hilbert’s tenth problem. In this sec-

tion, we will improve this undecidability result in two

directions. Namely, we show that emptiness is already

undecidable for realtime IAs with at most four communi-

cations per cell which, in addition, work on a unary input.

The basic idea is to construct a realtime MCð4Þ-IA that

simulates a two-counter machine C on empty input and

accepts some input if and only if C halts on empty input.

Since it is a well-known fact that it is undecidable whether

or not a deterministic counter machine having two counters

that are initially zero and starting with empty input will

eventually halt (Minsky 1961), the simulation implies the

undecidability of the emptiness problem for realtime

MCð4Þ-IAs. In a first step, we will construct a realtime IA

in the following lemma which simulates a given two-

counter machine and accepts some input if and only if the

given counter machine halts on empty input. In a second

step, we will refine the construction so that the realtime IA

will be a realtime MCð4Þ-IA which gives the desired

undecidability result.

Lemma 2 Let C be a two-counter machine. Then, a unary

realtime IA M can be constructed such that L(M) is not

empty if and only if C halts on empty input.

Proof For the simulation of the two-counter machine by

an IA we basically follow the construction given in Carton

et al. (2018), where a general construction of a lineartime

quasi-acyclic one-way cellular automaton is given that

simulates a given k-counter machine on a given input.

However, here we have the additional restriction that a

two-counter machine on empty input has to be simulated

and that we have to ensure that the simulating machine is

indeed an MCð4Þ-IA working in realtime.

Let C ¼ hS; s0; di be a two-counter machine, where

S denotes the state set, s0 is the initial state, and d :

S� f0; 1g2 ! S� fþ1; 0;�1g2 is the transition function.

Here, 0 denotes an empty counter and 1 denotes a positive

counter. Without loss of generality we may assume

that C accepts by halting and makes at least one move.

Now, we construct in a first step a conventional IA on

unary input that simulates C and accepts if and only

if C halts (see the following Example 2 and its computa-

tion depicted in Fig. 3). In a second step, we will later

discuss how to refine the construction so that the IA

constructed is indeed a realtime MCð4Þ-IA. The basic idea
following (Carton et al. 2018) is to encode the current

value of each counter in the first two tracks of the IA in a

‘‘vertical way’’. This means that in cell i the sequence of

entries over time in one of those tracks encodes the value of

the corresponding counter of C at time iþ 1. In detail, the

sequence of states will be a substring of the form

>1�0?#þ, where the number of 1’s denotes the current

value of the counter. Furthermore, we will store the current

state of the counter machine as well as the update

information for both counters in additional tracks.

Formally, we define the IA M ¼
hS0; ff 0g; fag;O; s00; d0; d00i with state set

8 M. Kutrib, A. Malcher
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S0 ¼ fs00; s01; s02; f 0g [ f>;?; #; 0; 1g2 � S� fþ1; 0;�1g2:

For the definition of the transition functions d00 and d0 we
again follow the ideas given in Carton et al. (2018). To

initialize the computation in the communication cell, we

set

d00ða; s00; s00Þ ¼ s01 and d00ða; s01; s00Þ ¼ ð>;>; s1;m1;m2Þ;

if dðs0; 0; 0Þ ¼ ðs1;m1;m2Þ with s1 2 S and

m1;m2 2 fþ1; 0;�1g. To update the counters in the

communication cell, we add the following transitions

where s 2 S, q 2 S0, c1; c2 2 f0; 1g, and

m1;m2 2 fþ1; 0;�1g. For i 2 f1; 2g we define c0i as

follows.

d00ða; ð>;>; s;m1;m2Þ; qÞ ¼ ðc1; c2; s;m1;m2Þ

with ci ¼
1; if mi ¼ 1;

0; otherwise;

�

and

d00ða; ðc1; c2; s;m1;m2Þ; qÞ ¼ ðc01; c02; s;m1;m2Þ

with c0i ¼
0; if ci ¼ 1;

?; if ci ¼ 0;

#; if ci 2 f?; #g:

8

><

>:

The transitions for the other cells are as follows. To start

the computation, we first implement a delay using the

transitions

d0ðq; s00; s00Þ ¼ s00; for q 2 fs00; s01g [ f>g2 � S� fþ1; 0;�1g2;

and initialize the computation when the left neighbor ini-

tializes its counter values by changing from > to 1 or 0. Let

us first assume that the computation is initialized with a

non-halting configuration. For s; s0 2 S, c1; c2 2 f0; 1g, and
m1;m2;m

0
1;m

0
2 2 fþ1; 0;�1g we set

d0ððc1; c2; s;m1;m2Þ; s00; s00Þ ¼ ð>;>; s0;m0
1;m

0
2Þ;

if dðs; c1; c2Þ ¼ ðs0;m0
1;m

0
2Þ:

To update the counters we use the transitions

d0ððc1; c2; s;m1;m2Þ; ðc01; c02; s0;m0
1;m

0
2Þ; qÞ

¼ ðc001 ; c002 ; s0;m0
1;m

0
2Þ;

with c1; c2; c
0
1; c

0
2 2 f>; 0; 1;?; #g, m1;m2;m

0
1;m

0
2 2

fþ1; 0; �1g, s; s0 2 S, and q 2 S0 n ff 0g. For i 2 f1; 2g we

define c00i as follows.

If c0i 2 f>; 1g, then we set

c00i ¼

1; if ci ¼ 1;
1; if ci ¼ 0 and m0

i � 0;
1; if ci ¼ ? and m0

i ¼ 1;
0; otherwise:

8

>><

>>:

If c0i 2 f0;?; #g, we set

c00i ¼
?; if c0i ¼ 0;
#; if c0i 2 f?; #g:

�

t
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

s′
0 s′

0 s′
0 s′

0 s′
0 s′

0 s′
0

s′
1 s′

0 s′
0 s′

0 s′
0 s′

0 s′
0

� � s1 + + s′
0 s′

0 s′
0 s′

0 s′
0 s′

0

1 1 s1 + + s′
0 s′

0 s′
0 s′

0 s′
0 s′

0

0 0 s1 + + � � s2 + 0 s′
0 s′

0 s′
0 s′

0 s′
0

⊥ ⊥ s1 + + 1 1 s2 + 0 s′
0 s′

0 s′
0 s′

0 s′
0

# # s1 + + 1 0 s2 + 0 � � s3 + − s′
0 s′

0 s′
0 s′

0

# # s1 + + 0 ⊥ s2 + 0 1 0 s3 + − s′
0 s′

0 s′
0 s′

0

# # s1 + + ⊥ # s2 + 0 1 ⊥ s3 + − � � s3 − 0 s′
0 s′

0 s′
0

# # s1 + + # # s2 + 0 1 # s3 + − 1 0 s3 − 0 s′
0 s′

0 s′
0

# # s1 + + # # s2 + 0 0 # s3 + − 1 ⊥ s3 − 0 � � s3 − 0 s′
0 s′

0

# # s1 + + # # s2 + 0 ⊥ # s3 + − 0 # s3 − 0 1 0 s3 − 0 s′
0 s′

0

# # s1 + + # # s2 + 0 # # s3 + − ⊥ # s3 − 0 0 ⊥ s3 − 0 � � s3 − 0 s′
0

# # s1 + + # # s2 + 0 # # s3 + − # # s3 − 0 ⊥ # s3 − 0 0 0 s3 − 0 s′
0

# # s1 + + # # s2 + 0 # # s3 + − # # s3 − 0 # # s3 − 0 ⊥ ⊥ s3 − 0 f ′

# # s1 + + # # s2 + 0 # # s3 + − # # s3 − 0 # # s3 − 0 f ′ s′
2

# # s1 + + # # s2 + 0 # # s3 + − # # s3 − 0 f ′ s′
2 s′

2

# # s1 + + # # s2 + 0 # # s3 + − f ′ s′
2 s′

2 s′
2

# # s1 + + # # s2 + 0 f ′ s′
2 s′

2 s′
2 s′

2

# # s1 + + f ′ s′
2 s′

2 s′
2 s′

2 s′
2

f ′ s′
2 s′

2 s′
2 s′

2 s′
2 s′

2

Fig. 3 Example computation on

an iterative array simulating the

counter machine from

Example 2 according to the

construction given in Lemma 2
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As soon as the computation would be initialized with a

halting configuration of the counter machine, the accepting

state f 0 is entered and is sent with maximum speed to the

left. Hence, we set for s 2 S, c1; c2 2 f0; 1g, and

m1;m2 2 fþ1; 0;�1g
d0ððc1; c2; s;m1;m2Þ; s00; s00Þ ¼ f 0; if dðs; c1; c2Þ is undefined.

Furthermore, d0ðq; q0; f 0Þ ¼ f 0 for all q; q0 2 S0 with q0 6¼ f 0,
and d0ðO; q; f 0Þ ¼ f 0, for all q 2 S0 n fs02g. Finally,

d0ðq; f 0; q0Þ ¼ s02, for all q; q
0 2 S0, and d0ðO; q; q0Þ ¼ s02, for

all q 2 S0 and q0 2 S0 n ff 0g. By this construction, M is a

unary realtime IA and accepts a non-empty language if and

only if C is halting on empty input. h

Example 2 As an example for the construction we con-

sider the following two-counter machine C ¼
hfs0; s1; s2; s3g; s0; di with the transitions

dðs0; 0; 0Þ ¼ðs1;þ1;þ1Þ;
dðs1; 1; 1Þ ¼ðs2;þ1; 0Þ;
dðs2; 1; 1Þ ¼ðs3;þ1;�1Þ; and

dðs3; 1; 0Þ ¼ðs3;�1; 0Þ:

The remaining transitions are undefined which means that

C halts and accepts if a configuration is entered where no

transition is defined. The accepting computation of C on

empty input is then as follows:

ðs0; 0; 0Þ ‘ ðs1; 1; 1Þ ‘ ðs2; 2; 1Þ ‘ ðs3; 3; 0Þ
‘ ðs3; 2; 0Þ ‘ ðs3; 1; 0Þ ‘ ðs3; 0; 0Þ:

The simulation of this computation by a realtime IA M is

depicted in Fig. 3. Since the computation of C on empty

input is halting, M accepts some input, in this case a19.

Apart from the quiescent state s00, the accepting state f
0, and

the auxiliary states s01 and s02, the states of M are quintuples,

where in the first (second) track the first (second) counter

of C is simulated. The third track contains the current state

of C and in track four (five) the next action on counter one

(two) is stored. It can be observed that the configuration at

time iþ 1 is stored in cell i. For example, the configuration

ðs2; 2; 1Þ at time two is stored in cell 1: track 3 contains

state s2, track 1 contains (vertically read) the substring

>110?# which is an encoding of two, and track 2 contains

the substring >10?# which is an encoding of one. h

Our next task is to refine the construction of Lemma 2 to

obtain a realtime MCð4Þ-IA. To this end, we consider again
the example computation in Fig. 3 and first analyze the

flow of information from left to right. It can be observed

that the simulation in cell i is started at time step 2ðiþ 1Þ
for i� 1. This starting point is defined by the first time

when tracks 1 and 2 of the left neighboring cell of

cell i change from > to 1 or 0. This leads to one com-

munication per cell. The corresponding cells sending this

information are depicted with solid gray background in

Fig. 3. Next, in tracks 1 and 2 the following holds:

whenever state 0 is entered at time t, the state at time t þ 1

is ?, and the state at time t0 [ t þ 1 is #. This means that

no communication from left to right is necessary to com-

pute the next states in some track as soon as the informa-

tion that track 1 or track 2 enters 0 is communicated. In

addition, it can be assumed without further communication

that, starting with the initialization, track 1 and track 2 of

the left neighbor are in state 1 up to the moment when

state 0 is communicated. Hence, the transition function can

suitably be modified such that the only communication

needed from the left neighbor for the state changes in

track 1 or track 2 is the information when track 1 or

track 2 enter state 0. This gives at most two more com-

munications per cell and the corresponding cells are

depicted with a crosshatched background. Finally, we have

one additional communication per cell from right to left for

communicating the accepting state f 0 to the communication

cell in case of a halting computation of the counter

machine. Such cells are depicted with a lined background.

Altogether, we have at most four communications per cell.

These considerations and the fact that the halting problem

is undecidable for two-counter machines on empty

input (Minsky 1961), immediately yield the following

undecidability result.

Theorem 2 Emptiness is undecidable for unary realtime

MCðiÞ-IAs, if i� 4.

The undecidability of the emptiness problem and its

proof can be used to show the undecidability of the fol-

lowing problems.

Theorem 3 Finiteness, infiniteness, inclusion, equivalence

are undecidable for unary realtime MCðiÞ-IAs, if i� 4.

Regularity is undecidable for realtime MCðiÞ-IAs, if i� 4.

Proof In the proof of Lemma 2 a unary realtime IA M is

constructed that accepts a non-empty language if and only

if the simulated counter machine is halting. In addition, if

M is non-empty, it accepts exactly one input an. The con-

struction can be modified in a straightforward way to a

unary realtime IA M0 so that M0 accepts all unary inputs am

with m� n, where an is accepted by M. Hence, M0 accepts
an infinite language if and only if the simulated counter

machine is halting. Similar to the considerations of Theo-

rem 2 we may assume that M0 is a realtime MCð4Þ-IA.
Since the halting problem on empty input is undecidable

for counter machines, we therefore obtain that finiteness

and infiniteness are undecidable for unary realtime

MCðiÞ-IAs, if i� 4.

10 M. Kutrib, A. Malcher
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The fact that the empty set is accepted by some realtime

MCð4Þ-IA and the result that emptiness is undecidable for

realtime MCð4Þ-IAs by Theorem 2 immediately imply the

undecidability of inclusion and equivalence for unary

realtime MCðiÞ-IAs, if i� 4.

To show the undecidability of the regularity problem we

will construct a realtime MCð4Þ-IA M0 that accepts the

language

LM ¼ bncnwa2 j w 2 LðMÞ and n� 2 is even
� �

;

where M is the realtime MCð4Þ-IA from Theorem 2 that

accepts a non-empty language if and only if the simulated

counter machine is halting. It is clear that LM ¼ LðM0Þ is a
regular language if and only if L(M) is empty. The latter

holds if and only if the simulated counter machine is not

halting. Hence, if we could decide the regularity problem

for M0, we could decide the halting problem for counter

machines which is a contradiction to (Minsky 1961). Thus,

it remains for us to construct the realtime MCð4Þ-IA M0.
First, we implement the construction given in Lemma 1 for

the language f bncn j n� 1 g for which we know that at

most three communications per cell are needed due to two

signals from left to right and one signal from right to left

(see Fig. 4). The signal from right to left is started when

both signals from left to right meet. This happens for even

n at time 3n=2þ 1 in cell n/2. In the next time step, we

start in the right neighboring cell n=2þ 1 the simulation

of M where cell n=2þ 1 is considered as the communi-

cation cell of M. Whenever cell n=2þ 1 enters an

accepting state of M a new signal g is sent with maximum

speed to the left which brings the communication cell

of M0 (cell 0) to accept an input x after reading the end-of-

input symbol O exactly when signal g arrives, if x has the

correct format bþcþaþ and a maximal prefix from bþcþ

that belongs to f bncn j n� 2 is even g. The property that

n is even can be checked in the communication cell. From

this construction we know that the simulation of M is

started at time 3n=2þ 2 in cell n=2þ 1. Hence, this cell

enters state f 0 at time 3n=2þ 2þ jwj, if w 2 LðMÞ. Thus,

the signal g reaches the communication cell at time

3n=2þ 2þ jwj þ n=2þ 1 ¼ 2nþ jwj þ 3. We can con-

clude that M0 accepts LM . To show that M0 performs at

most four communications per cell we observe that the

active cells in M0 either simulate M or check whether the

input prefix from bþcþ in fact belongs to

f bncn j n� 2 is even g. In the latter case, we know from

the construction given in Lemma 1 (see Fig. 4) that at most

three communications are performed per cell. In addition,

the rightmost active cell in Fig. 4 performs one commu-

nication only, namely, the signal to the left is started. Here,

this cell n/2 performs two more communications, namely,

it initiates that cell n=2þ 1 starts the simulation ofM and it

transports the signal g to the left. Hence, cell n/2 performs

three communications, whereas cells 0; 1; . . .; n=2� 1

perform at most four communications taking into account

signal g. For cell n=2þ 1 we obtain from Fig. 3 that two

communications are sent to the right. Here, we have three

communications in cell n=2þ 1 considering the additional

signal g. The remaining cells j[ n=2þ 1 perform at most

four communications by construction. Altogether, we

obtain that M0 is a realtime MCð4Þ-IA. h

Finally, we can show that it is neither possible to decide

whether an arbitrary realtime IA performs a constant

number of communications per cell at all nor whether an

arbitrary realtime IA performs a fixed number of commu-

nications per cell for a given number i� 4.

Theorem 4 It is undecidable for an arbitrary realtime IA

M whether or not M is a realtime MCðconstÞ-IA. It is

undecidable for an arbitrary realtime IA M and some i� 4

whether or not M is a realtime MCðiÞ-IA.

Proof Let M0 be a realtime MCð4Þ-IA. We define the

language

LM0 ¼ wcjwj j w 2 LðM0Þ
n o

;

where c is some new alphabet symbol. A realtime

IA M can accept LM0 by using two tracks as follows. The

correct number of c- and non-c-symbols can be checked in

one track in the same way as in Lemma 1 for the language

f anbn j n� 1 g. This check needs three communications

per cell. Additionally, the IA M0 is simulated on the other

track. As soon as M reads the first c and the simulated

IA M0 would enter an accepting state, the communication

cell sends in every of the remaining |w| time steps two

alternating signals with maximum speed into the array.

Finally, the input is accepted if the check on track 1 has

been successful. So, the maximum communication per cell

is in O(|w|), if w 2 LM0 . Thus, M is a realtime

MCðconstÞ-IA if and only if LM0 is finite. Since finiteness is

undecidable for realtime MCð4Þ-IAs due to Theorem 3, we

0 1 2 3
0
1
2
3
4
5
6
7
8
9

10
11
12
13

t

Fig. 4 Example computation on

input b6c6 of a realtime

MCð3Þ-IA accepting f bncn j
n� 1 g according to the

construction given in Lemma 1
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obtain that the question of whether M is a realtime

MCðconstÞ-IA is undecidable.

Now, we consider language LM0;i ¼ f ciþ1w j w 2
LðM0Þ g for a fixed i� 4. A realtime IA M can accept

LM0;i as follows. First, we use the communication cell to

check that exactly iþ 1 c’s are read. For every c the

communication cell performs some communication. When

the first non-c is read, the simulation of the given realtime

MCð4Þ-IA M0 is started. Finally, the IA M accepts if the

simulated IA M0 would accept and the number of c’s has

been iþ 1. Thus, we can conclude that M is a realtime

MCðiÞ-IA if and only if LðM0Þ is empty. Since emptiness is

undecidable for realtime MCð4Þ-IAs due to Theorem 2, we

obtain that the question of whether M is a realtime

MCðiÞ-IA is undecidable. h

We would like to note that the results obtained in this

section are almost optimal. All decidability questions dis-

cussed are decidable for realtime MCðiÞ-IAs with i	 2,

since the languages accepted by such automata are regular

owing to Proposition 1. The only remaining question is the

decidability status of the problems for realtime MCð3Þ-IAs.

5 Undecidability results for realtime
MC(constÞ-OCAs and realtime
MC(constÞ-CAs

In this section, we will use the ideas and constructions

presented in the preceding section to obtain similar unde-

cidability results for max communication bounded realtime

one-way cellular automata (realtime MCðf Þ-OCA) and

realtime two-way cellular automata (realtime MCðf Þ-CA)
which process their input in contrast to IAs a parallel way.

For a precise definition of such automata we refer

to (Kutrib and Malcher 2010a). The best results known so

far are as follows. It is shown in Kutrib and Malcher

(2010a) that all usually studied decidability questions are

undecidable for realtime MCðconstÞ-OCAs and hence are

undecidable for realtime MCðconstÞ-CAs as well. The

proof is by a reduction of Hilbert’s tenth problem. Thus,

the precise number of communications per cell is not

known. The special case of letter-bounded languages has

been investigated in Kutrib and Malcher (2010b), where it

was possible to show undecidability results for realtime

MCðlogðnÞÞ-OCAs accepting letter-bounded languages,

again by a reduction of Hilbert’s tenth problem. However,

the number of different symbols in the letter-bounded

language depends on the given polynomial of the instance

of Hilbert’s tenth problem and is therefore not a fixed

number.

Here, we can improve these known results. First, we

show that the emptiness problem is undecidable for

realtime MCð4Þ-CAs working on a unary alphabet. Second,
we obtain the undecidability of emptiness for realtime

MCð4Þ-OCAs that accept letter-bounded languages that are

subsets of a�b�. Then the undecidability of finiteness,

infiniteness, inclusion, equivalence, and regularity can be

shown as well. These results are in a certain sense the best

possible results, since it is known that unary languages

accepted by realtime OCAs are regular (Seidel 1979).

Hence, all questions discussed become decidable. Let us

start with some undecidability results for unary realtime

MCðiÞ-CAs with i� 4.

Theorem 5 Emptiness, finiteness, infiniteness, inclusion,

and equivalence are undecidable for unary realtime

MCðiÞ-CAs, if i� 4.

Proof To show the undecidability of the emptiness prob-

lem we implement the construction of a unary realtime IA

M given in the proof of Lemma 2 in a realtime CA M0,
where the leftmost cell of M0 is simulating the communi-

cation cell of M and the remaining cells of M0 are used the

same way as the other cells in M. In addition, the rightmost

cell of M0 starts in the first time step a new signal g which

is sent with maximum speed to the left. M0 will only accept

if g arrives at the leftmost cell. This can only happen if

g arrives in some cell exactly at the moment when the

accepting signal f 0 is started. Then g is forwarded to the left

instead of f 0. If g arrives in the rightmost cell currently

representing a counter machine state at any other time, then

g is deleted and M0 will never accept. Hence, M0 accepts
one input if and only if the underlying counter machine is

halting. According to the considerations of Theorem 2 and

the fact that signal g either replaces signal f 0 or concerns
cells that are not involved in the simulation of M, we can

conclude that M0 is a realtime MCð4Þ-CA accepting

L(M) which gives the undecidability of emptiness.

If we slightly adapt the above construction by never

forwarding signal f 0 and only forwarding an accepting

signal g when it has met some cell carrying f 0 or s02, then

we obtain a realtime MCð4Þ-CA that accepts an infinite

language if and only if the underlying counter machine is

halting. Hence, the problems of finiteness and infiniteness

are undecidable as well. Finally, the undecidability of

inclusion as well as equivalence can be shown the same

way as it is done in the proof of Theorem 3. h

Now, we turn to one-way cellular automata and show

the undecidability of the emptiness problem if at most four

communications per cell are performed and the given OCA

accepts a letter-bounded language that is a subset of a�b�.

Theorem 6 Emptiness is undecidable for realtime

MCðiÞ-OCAs, if i� 4.

12 M. Kutrib, A. Malcher
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Proof We consider an input from aþbþ and we will

implement on the a-part of the input the construction given

in the proof of Lemma 2 in a reversed way. This means

that the communication cell is simulated in the rightmost a-

cell and the flow of information is from right to left. In

addition, the accepting signal f 0, which is initiated when-

ever a halting configuration of the simulated counter

machine is entered, is here not started, but the information

is kept in some cell. The b-part of the input is provided to

have enough time for the simulation of the counter machine

in the a-part. Hence, the rightmost cell of the b-part starts a

signal g with maximum speed to the left which checks

whether the input has the format aþbþ and which changes

to an accepting signal g0 if a state f 0 is met in the a-part

which means that the counter machine has entered a halting

configuration. If a wrong format is detected or the state f 0 is
never met, the input is rejected. As an example an

accepting computation may be found in Fig. 5.

So, the OCA constructed accepts a non-empty and

infinite language if and only if the counter machine halts.

Thus, the emptiness problem is undecidable due to the

undecidability of the halting problem for counter machi-

nes (Minsky 1961). According to the considerations of

Theorem 2 we know that the IA constructed there is an

MCð4Þ-IA. Hence, we can conclude that the OCA

constructed here is an MCð4Þ-OCA, since we have on the

one hand at most three communications per cell on the a-

part for the simulation of the counter machine. We note

that the signal f 0 is not started in our modified construction.

On the other hand, we have one additional communication

per cell for the signals g and g0. h

The undecidability of the emptiness problem can now be

used to show further undecidability results.

Theorem 7 Finiteness, infiniteness, inclusion, equiva-

lence, and regularity are undecidable for realtime

MCðiÞ-OCAs, if i� 4.

Proof In the proof of Theorem 6 a realtime MCð4Þ-OCA
is constructed that accepts an infinite language if and only

if the counter machine halts. Thus, the finiteness problem

as well as the infiniteness problem are undecidable for

realtime MCðiÞ-OCAs, if i� 4.

The fact that the empty set is accepted by some realtime

MCð4Þ-OCA and the result that emptiness is undecidable

for realtime MCð4Þ-OCAs by Theorem 6 immediately

imply the undecidability of inclusion and equivalence for

realtime MCðiÞ-OCAs, if i� 4.

To show the undecidability of the regularity problem we

use a similar approach as in the proof of Theorem 3 and

construct a realtime MCð4Þ-OCA M0 that accepts the

language LM ¼ cndnw j w 2 LðMÞ and n� 1f g, where

M is the realtime MCð4Þ-OCA from Theorem 6. Again,

LM ¼ LðM0Þ is a regular language if and only if L(M) is

empty which leads to the undecidability of regularity.

For the construction of the realtime MCð4Þ-OCA M0 we
implement the construction of a realtime MCð2Þ-OCA that,

on the input part from cþdþ, accepts f cndn j n� 1 g as

given in Example 2 of Kutrib and Malcher (2010a). On the

input part from aþbþ we implement the construction given

in the proof of Theorem 6 which implies that every cell

performs at most four communications. The signal g0 is

forwarded from the leftmost a-cell through the cþdþ part to

the leftmost cell of M0. The signal g0 checks additionally

that the remaining input has the format cþdþ, and stops and
changes to the sole accepting state g00 if an accepting state

of the construction given in Example 2 of Kutrib and

Malcher (2010a) is found. By this construction, every cell

in the cþdþ part performs at most three communications.

t
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

a a a a a a a a b b b b b b b b b #

a a a a a a a s′
1 b b b b b b b b g #

a a a a a a a � � b b b b b b b g #

a a a a a a a 1 1 b b b b b b g #

a a a a a a � � 0 0 b b b b b g #

a a a a a a 1 1 ⊥ ⊥ a a a a g #

a a a a a � � 1 0 # # b b b g #

a a a a a 1 0 0 ⊥ # # b b g #

a a a a � � 1 ⊥ ⊥ # # # b g #

a a a a 1 0 1 # # # # # g #

a a a � � 1 ⊥ 0 # # # g #

a a a 1 0 0 ⊥ ⊥ # g #

a a � � 0 ⊥ ⊥ # g #

a a 0 0 ⊥ # g #

a f ′ ⊥ ⊥ g #

a f ′ g #

a g′ #

g′ #

Fig. 5 Example computation of

a one-way cellular automaton

simulating the counter machine

from Example 2 according to

the construction given in

Theorem 6. In contrast to Fig. 3

only the first two tracks of the

cells are depicted. Cells that

perform some communication

are depicted with a non-empty

background
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Altogether, we obtain that M0 is a realtime MCð4Þ-OCA
accepting LM . h

Since OCAs are in particular CAs, we immediately

obtain the undecidability of regularity in the two-way case.

Corollary 1 Regularity is undecidable for realtime

MCðiÞ-CAs, if i� 4.

Finally, we show that it is again undecidable to check

whether or not a given realtime OCA performs a finite

number of communications per cell.

Theorem 8 It is undecidable for an arbitrary realtime

OCA M whether or not M is a realtime MCðconstÞ-OCA. It
is undecidable for an arbitrary realtime OCA M and some

i� 4 whether or not M is a realtime MCðiÞ-OCA.

Proof Let M0 be an arbitrary realtime MCð4Þ-OCA. From
M0 we construct an equivalent realtime OCA M that has

basically the same transitions as M0, but is additionally

modified such that every cell performs a communication in

every time step. Hence, M is a realtime MCðconstÞ-OCA if

and only if LðM0Þ is finite. Since finiteness is undecidable

for realtime MCð4Þ-OCAs by Theorem 7, we obtain the

first statement.

Next, let M0 be the realtime MCð4Þ-OCA constructed in

the proof of Theorem 6. We define the language

LM0;i ¼ cnw j w 2 LðM0Þ and n� iþ 1f g, where c is some

new alphabet symbol and i� 4 is fixed. A realtime

OCA M can accept LM0;i by simulating M0 on non-c cells.

Additionally, it is ensured that all c-cells perform a

communication in every time step. As soon as the

rightmost c-cell obtains the signal g0 from its right

neighbor, this signal is forwarded to the left whereby it is

checked that at least iþ 1 c’s are provided. If so, the input

is accepted and otherwise rejected. We claim that M is an

MCðiÞ-OCA if and only if LðM0Þ is empty. If LðM0Þ is

empty, then M accepts the empty set and hence is in

particular an MCðiÞ-OCA. If LðM0Þ is not empty, then

LðM0Þ contains a word w that is at least of length 2. Hence,

LM0;i contains a word ciþ1w. By construction, this already

implies more than i communications in the leftmost cell.

Hence, M is not an MCðiÞ-OCA. Since the emptiness

problem is undecidable forM0 by Theorem 6, we obtain the

claim of the theorem. h

Again, these results hold in case of two-way commu-

nication as well.

Corollary 2 It is undecidable for an arbitrary realtime CA

M whether or not M is a realtime MCðconstÞ-CA. It is
undecidable for an arbitrary realtime CA M and some i� 4

whether or not M is a realtime MCðiÞ-CA.
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