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1. Introduction 

 

Plants are confronted with a plethora of pathogenic viruses, bacteria or fungi. But surprisingly, 

plants are resistant against the majority of them and disease is the exception. In order to 

ensure proper development and reproduction, plants have evolved defense strategies to stop 

pathogenic colonization. In addition, plants form mutualistic associations with 

microorganisms (Harrison, 2005; Hause and Fester, 2005; Kogel et al., 2006). Both partners 

benefit from such symbioses as examplified by the improved nutrient state in plant 

root-arbuscular mycorrhiza interactions. Piriformospora indica, a representative fungus in the 

recently defined order Sebacinales, also forms mutualistic symbioses thereby transferring 

various benefits to its hosts such as abiotic and biotic stress tolerance, improved plant growth, 

and an increased seed production (Varma et al., 1999; Waller et al., 2005; Schäfer et al., 2007). 

Plant-P. indica interactions have been characterized at a molecular and cell biological level 

(Weiss et al., 2004; Deshmukh et al., 2006). Studies in barley roots indicated that P. indica 

colonization gradually increased with tissue maturation. Additional genetic studies revealed 

that barley and Arabidopsis root colonization coincided with root cell death (Deshmukh et al., 

2006; Jacobs, Zechmann, Kogel, Schäfer, unpublished). However, the mechanisms behind 

cell death initiation and execution during the mutualistic association and the significance of 

cell death for root colonization are currently unknown. 

 

1.1. Plant-microbe interactions and plant innate immunity 

 

Based on fossil records, early land plants were found to be colonized by fungal symbionts 

(Gehrig et al., 1996). The evolution of land plants is hypothesized to be a result of microbial 

interactions with epiphytic, symbiotic or pathogenic microbes (Chisholm et al., 2006). The 

outcome of these plant-microbe interactions might be considered as neutral, beneficial 

(mutualistic) or detrimental (pathogenic). In order to avoid pathogenic infection, plants have 

evolved two levels of innate immune responses against pathogens. The first level recognizes 

and responds to molecules common to many classes of microbes so called 
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microbial-associated molecular patterns (MAMPs), which is termed as MAMP-triggered 

immunity (MTI). The second level responds to pathogen virulent effectors either directly or 

through their effects on host targets, which is termed as effector-triggered immunity (ETI). 

(Chisholm et al., 2006; Jones and Dangl, 2006). 

 

1.1.1. Microbial-associated molecular patterns (MAMPs)-triggered immunity 

 

MAMP-triggered immunity (MTI, syn. basal defense) is very effective in stopping pathogens 

and is thought to be ancient. MTI is activated by conserved microbe-derived molecules so 

called MAMPs (microbe-associated molecular patterns), which include multiple cell-surface 

components of bacteria such as lipopolysaccharides, flagellins, peptidoglycans and cell wall 

components of higher fungi such as chitin or ergosterol (Jones and Takemoto, 2004; Zipfel 

and Felix, 2005, Boller and Felix, 2009). MAMPs fulfill an essential function in microbial 

lifestyle and represent highly conserved structures that are found across a range of microbes, 

but do not exist in hosts (Nürnberger et al., 2004). During pathogen attacks, these MAMPs are 

recognized by plant plasma membrane-localized pattern recognition receptors (PRRs). The 

best characterized MAMP and the respective PRRs of Arabidopsis are summarized below 

(Table 1-1). 

Table 1-1. MAMPs and PRRs of Arabidopsis. 

MAMP PRR References 

Bacterial flagellin/flg22 FLS2 
Felix et al.,1999; 
Gomez-Gomez and Boller,2000; 
Chinchilla et al., 2006 

Bacterial EF-Tu/elf18 EFR 
Kunze et al., 2004; 
Zipfel et al., 2006; 
Shiu and Bleecker, 2003 

Fungal chitin CERK1 Miya et al., 2007 

 

The perception of MAMPs by PRRs occurs at the sites of microbial invasion and results in the 

activation of MTI signaling. Immediately downstream of MAMP recognition, 

mitogen-activated protein kinase (MAPK) signaling pathways are activated, which, in turn, 
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initiate defense gene expression via transcription factors (e.g. WRKYs) (Nicaise et al., 2009). 

MTI in Arabidopsis also relies on the accumulation of antimicrobial glucosinolates and 

camalexin (Bednarek et al., 2009; Clay et al., 2009). In addition, Ca2+ contributes to MTI as 

MAMP-induced Ca2+ influx activates MAPK- and Ca2+-dependent protein kinase (CDPK) 

signaling (Boudsocq et al., 2010). CDPKs also regulate the production of reactive oxygen 

species (ROS), detectable as the oxidative burst (Boudsocq et al., 2010). This ROS burst is 

generated by the plasma membrane localized NADPH oxidase RBOHD (Zhang et al., 2007). 

The resulting MTI responses end in callose deposition, (Boller and Felix, 2009) as well as 

phytohormone synthesis and signaling (e.g. salicylic acid (SA), ethylene (ET), and jasmonate 

(JA)). Phytohormones regulate the expression of certain pathogenesis-related (PR) proteins, 

which contribute to plant innate immunity (Tsuda et al., 2009). MTI responses vary in 

dependence of the life style of attacking microbes. Microbes can follow a biotrophic, 

necrotrophic or hemibiotrophis life style. The latter means a lifestyle with an initial biotrophic 

phase followed by a necrotrophic colonization phase. In a simplified model SA-dependent 

defense pathway restrict colonization by biotrophic microbes while necrotrophic microbes are 

stopped by JA/ET-dependent signaling. In general, the two signaling pathways seem to act 

antagonistically (Glazebrook, 2005). 

MAMP-triggered immune signaling also results in the generation of damage-associated 

molecular patterns (DAMPs), which function as endogenous elicitors. For instance, AtPep1 is 

a peptide, which was isolated in Arabidopsis and exhibited characteristics of an endogenous 

elicitor of the innate immune responses. Pep1 is recognized by plasma membrane localized 

receptors PEPR1 and PEPR2 and activate defense related genes such as PDF1.2 and induce 

the production of H2O2 (Huffaker et al. 2006; Yamaguchi et al., 2010). Other known DAMPs 

include cell wall fragments such as oligogalacturonides (OGAs) and cutin monomers (Boller 

and Felix, 2009). DAMP signaling is thought to sustain MTI (Ryan et al., 2007). 
 

1.1.2 Pathogen effectors-triggered immunity (ETI) 
  

In order to successfully colonize host plants, pathogenic and mutualistic microbes need to 

suppress MTI. Microbes have therefore evolved effectors, which are released in order to 
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promote pathogen virulence. The mode of action of these effectors is quite diverse, but in 

general, they interfere with the plant surveillance system or disrupt defense signaling. 

Bacterial pathogens have developed a type III secretion system (TTSS) to inject effectors 

proteins into plant cells, and, eventually, suppress MTI (Bent and Mackey, 2007; Jones and 

Dangl, 2006). The transfer of effectors into plant cells by fungi and oomycetes is less clear. 

Since pathogens obtained the capacity to suppress host defense, plants have evolved more 

specialized mechanism to detect microbial effectors or effector activites summarized as 

effector-triggered immunity (ETI, syn. R gene-mediated resistance) (Bent and Mackey, 2007; 

Chisholm et al., 2006; Dangl and Jones 2006). R protein activates immune responses after 

direct binding to effectors or indirectly by monitoring effector action. Direct protein 

interactions were detected between flax resistance genes and flax rust avirulence genes 

(Dodds et al., 2006). While there are other cases showing that plant R proteins indirectly 

recognize pathogen effectors by monitoring the integrity of host cellular targets of these 

effectors (van der Biezen and Jones, 1998; Jones and Dangl, 2001). This latter principle of 

effector recognition was defined as “guard hypothesis” (Dangl and Jones, 2006; Bent and 

Mackey, 2007). Eventually, R-gene mediated resistance is regarded to result in a faster and 

more efficient initiation of defense signaling than MTI. A hallmark of R-gene mediated 

defense is the hypersensitive response (HR), a localized programmed cell death, which occurs 

at the site of infection and inhibits fungal penetration. During evolution of host-microbe 

interactions, microbes have found ways to circumvent R gene-mediated defense responses by 

modifying or eliminating effectors/effector actions resulting in successful plant colonization 

and microbial propagation. In turn, plants continuously adapt their R protein repertoire. 

Nowadays, the evolutionary processes in immune signaling are summarized in the zigzag 

model (Fig. 1-1) (Jones and Dangl, 2006). 

  



 

 or DAMPs 

Fig. 1-1: The zigzag model for illustrating the plant innate immune system (Modified 
from Jones and Dangl, 2006). 
In this model, the evolution of disease resistance and susceptibility is divided into 4 phases. In 
phase 1, plant membrane-localized pattern recognition receptors (PRRs) detect microbial 
MAMPs and stimulate MAMP-triggered immunity (MTI) in plants. In phase 2, microbes have 
evolved effectors to promote pathogen virulence and MTI is suppressed, which results in 
effector-triggered susceptibility (ETS). In phase 3, specific effectors (formerly called Avr 
proteins) are recognized by host R proteins, resulting in effector-triggered immunity (ETI) 
and disease resistance. In phase 4, natural selection drives microbes to evolve new effectors 
that could suppress ETI again. Nevertheless, plants evolve new R protein to counteract 
effector action and to trigger ETI. In terms of defense intensity, MTI is usually lower than ETI, 
which is indicated by the amplitude of defense on the y-axis. Therefore, hypersensitive 
response (HR) is usually not associated with MTI but frequently observed during ETI at the 
infection site. 
 

1.1.3 Induced resistance 

 

An additional protective strategy of plants to avoid systemic spread of invading microbes is 

systemically induced resistance and it can be mainly divided into two forms. One is termed as 

systemic acquired resistance (SAR), which is activated in various plant species by pathogens 

that cause either HR or disease symptoms (Ryals et al., 1996). This resistance is long-lasting 

and effective against a broad spectrum of pathogens including viruses, bacteria, fungi and 

oomycetes. Molecularly, SAR is associated with induction of a large number of 

pathogenesis-related proteins (PR proteins) in both local and systemic tissues. Salicylic acid 

(SA) is a crucial component in the SAR signal transduction pathway. Plants, which express 

the bacterial SA hydroxylase gene NahG, cannot longer accumulate SA and are impaired in 

SAR (Durrant and Dong, 2004; Maleck et al., 2000). The second form of induced resistance is 
5 
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termed induced systemic resistance (ISR), which is activated by non-pathogenic rhizobacteria. 

Like SAR, it protects plants against a range of pathogens, but it is independent of SA and PR 

gene induction. The blocking of ISR in jar1 (jasmonic acid resistant 1) and etr1 (ethylene 

resistant 1) mutants indicated that ISR requires JA/ET signaling components. As a result, 

defense compounds (e.g. PDF1.2) are induced (Van Loon 1997; Pieterse et al., 1998). The 

protein of Nonexpressor of pathogenesis-related gene 1 (NPR1), also termed as NIM1, is an 

essential downstream regulator for successful activation of both SAR and ISR. However, 

NPR1 plays a central role in SAR but a supporting role in ISR. Intriguingly, NPR1 expression 

is not increased in plants expressing both SAR and ISR, which indicates that the cellular level 

of NPR1 is sufficient to activate SAR and ISR (Dong, 2004; Pieterse and Van Loon, 2004). 
 

1.2 Mutualistic symbiotic interactions between plants and microbes  
 
The establishment of plants on land is believed to be supported by the interaction with fungal 

symbionts (Gehrig et al., 1996). Among all endosymbioses in natural ecosystems, the most 

widespread endosymbiotic interactions are formed between plants and fungi. Among the best 

studied symbioses between plant roots and fungi are mycorrhizas, which refers to Greek 

“mycos” meaning fungus and “rhiza” meaning root. These symbioses occur in several 

different forms: the first form is called ectomycorrhiza, which is known to be predominant on 

trees in temperate forests (Parniske 2008). During the interaction with plants, this kind of 

fungal partner remains outside of plant cells. The second form is called endomycorrhiza, 

including orchid, ericoid and arbuscular mycorrhiza (AM) (Parniske 2008). Fungi following 

these symbiotic interaction strategies intracellularly colonize plant cells (Parniske 2008). The 

symbiosis with AM is formed by 70-90% of land plant species, which is thought to be the 

most widespread terrestrial symbiosis (Fitter 2005; Smith and Read, 2008). During symbiotic 

development, tree-shaped subcellular structures, so called arbuscules, are formed within plant 

cells and they are thought to be the main part for nutrient exchange between the fungus and 

plant partners. This established symbiotic interaction between plant roots and arbuscular 

mycorrhizal fungi (AMF) may improve the nutrient state of both partners. The fungi obtain 

fixed carbon compounds from host plants, while plants benefit from increased nutrient supply 
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(e.g. phosphorus), or water supply, or enhanced stress tolerance and resistance (Finlay 2008; 

Solaiman and Saito 1997; Bago et al., 2003). It is estimated that up to 20% of the 

photosynthesis products of terrestrial plants are consumed by AMF (Bago et al., 2000). 

Therefore, AM symbiosis is thought to significantly contribute to global phosphate and 

carbon cycling and to affect productivity in land ecosystems (Fitter, 2005).  

The question arises how mycorrhiza fungi can successfully invade plants and how they 

overcome host innate immunity? Previous studies revealed that AM development is 

accompanied by an exchange of signaling molecules between both symbionts. On one side, 

plant hormones so called strigolactones are exudated by plant roots and recognized by AM 

fungi thereby stimulating fungal metabolism and hyphal branching. On the other side, AM 

fungi release yet to be isolated signaling molecules, which initiate root symbioses (Akiyama 

et al., 2005; Gomez-Roldan et al., 2008; Parniske 2008). Furthermore, similar to interactions 

between plants and parasitic mircrorganisms, AM fungi are confronted with the plant innate 

immune system. At early interaction stages, molecules secreted by the microbes or derived 

from physical or chemical cleavage of the plant cell walls can initiate an effective defense 

response in plants. Similar molecules are released by ectomycorrhizal and AM fungi (e.g. 

chitin) (Salzer and Boller, 2000). However, previous studies have shown that the defense 

response in AMF-colonized plants is transient and does not impair initial AMF colonization 

(Blilou et al., 2000; Garcia-Garrido and Ocampo, 2002; Lambais, 2000). Hence, symbiotic 

fungi might have developed strategies to achieve compatibility, for example by avoiding to 

trigger host immunity, by stimulating defense suppressors, by activating counter defense 

against antimicrobial compounds, by inducing susceptibility factors or by releasing effectors 

to suppress defense signaling (Lambais, 2000; Salzer et al., 2000; Garcia-Garrido and 

Ocampo, 2002, Bent and Mackey, 2007). Interestingly, AM fungi cannot only successfully 

achieve compatibility with plants, but recent studies also demonstrated that the colonization 

of plant roots with AM fungi resulted in an inhibition of leaf colonization by bacterial 

pathogens (Liu et al., 2007). It is still an open question whether the increased resistance to 

pathogens is due to improved plant fitness or due to specific defense responses induced by 

AM fungi.   
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1.3 The mutualistic fungus Piriformospora indica 

 

1.3.1 P. indica - classification and root colonization pattern 

 

The root-colonizing mutualistic fungus Piriformospora indica was discovered in association 

with a spore of the AM fungus Glomus mosseae in the rhizospheres of woody shrubs in sandy 

desert soils of the Thar region of northwest India (Verma et al., 1998). Through ultrastructural 

analyses of fungal hyphae and sequences analyses of the fungal 18S RNA or nuclear rRNA of 

the 5´-terminal domain of the ribosomal large subunit (nucLSU), P. indica was classified as 

member of class B of the order Sebacinales, which belongs to the class of Agaricomycetes 

(Basidiomycota) (Verma et al., 1998; Hibbett, 2006). This recently defined order Sebacinales 

within the Hymenomycetes encompasses a great multitude of ericoid-, orchid-, 

jungermannioid mycorrhiza and ectomycorrhizae (Weiss et al., 2004; Setaro et al., 2006). 

Within the Sebacinales, P. indica exhibits the closest relationships to S. vermifera and 

multinucleate Rhizoctonia, both of which show an obvious host specificity among orchids 

regarding their beneficial impacts such as supporting seed germination. Previous studies 

indicated that these fungi could form intracellular hyphal coils (Milligan and Williams 1988; 

Warcup, 1988) which represents characteristics of orchid mycorrhizas (Peterson and 

Massicotte, 2004). In addition, members of Sebacinales also develop other 

mycorrhiza-specific colonization types such as hyphal sheaths, Hartig nets, and intracellular 

coils (Brundrett 2004; Selosse et al., 2007).  

Compared to the above mentioned mycorrhizas, P. indica follows a divergent colonization 

type in barley and Arabidopsis roots as shown by epifluorescence microscopy (Deshmukh et 

al., 2006; Jacobs, Zechmann, Kogel, Schäfer, unpublished data). Previous studies revealed 

that the fungus intercellularly colonizes the barley roots and frequently penetrates and 

intracellularly colonizes rhizodermal and cortical cells. As colonization proceeds, parts of the 

root are densely covered with extracellular hyphae and harbor thorough inter- and 

intracellular networks. Nevertheless, the fungus is never observed to enter vascular tissue and 

predominantly colonizes the root maturation zone. By contrast, the root elongation and 

meristmatic zone is rarely colonized. Finally, fungal colonization results in extracellular and 
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intracellular sporulation, which is indicated by the formation of chlamydospores (Deshmukh 

et al., 2006).  

 

1.3.2 Beneficial activities of P. indica symbioses with host plants 

 

So far, all studied members of the order Sebacinales, like P. indica and the closely related 

Sebacina vermifera species (Sebacinales group B), have been shown to form mutualistic 

symbioses with a wide spectrum of plants thereby exhibiting an unique biological activity of 

high ecological and agronomical relevance (Weiss et al., 2004; Waller et al., 2005; Deshmukh 

et al., 2006). The propagation of P. indica and related sebacinoid fungi can be done in axenic 

cultures (Fig 1-2A, B). P. indica has been shown to confer growth promotion to roots and 

shoots of a broad variety of host plants, including barley and Arabidopsis (Varma et al., 1999; 

Peskan-Berghoefer et al., 2004; Waller et al., 2005). Similar to AM, P. indica was recently 

found to play an important role in improving host plant nutrition. A phosphate transporter of P. 

indica (PiPT) is actively involved in phosphate transportation to host plant. Moreover, the 

growth promoting effects of P. indica were shown to depend on this phosphate transport 

(Yadav et al., 2010). Further studies showed that P. indica was also able to enhance tolerance 

against abiotic stresses in several plants (Sahay and Varma, 1999; Waller et al., 2005). In 

addition, recent studies showed that P. indica is able to mediate resistance against the 

necrotrophic root pathogens Fusarium culmorum and Cochliobolus sativus (Waller et al., 

2005; Deshmukh and Kogel, 2007) and induce systemic resistance in leaves of barley and 

Arabidopsis against the powdery mildew fungi Blumeria graminis f.sp. hordei and 

Golovinomyces orontii, respectively (Waller et al., 2005; Stein et al., 2008). This leaf 

resistance is thought to base on induced systemic resistance (ISR) (Stein et al., 2008). 

Interestingly, the α-proteobacterium Rhizobium radiobacter was found to be associated with P. 

indica. Subsequent studies indicated that R. radiobacter is capable of conferring growth 

promotion and systemic resistance against powdery mildew fungi Blumeria graminis f.sp. 

hordei on barley plants, which are similar to those conferred by P. indica (Sharma et al., 2008). 

Since all attempts failed to generate bacteria-free P. indica, the contribution of both microbes 

in symbiotic interactions remains to be answered.  



 

 

 

 
Figure 1-2. Piriformospora indica. 
(A and B) Cultivation of P. indica in axenic culture. (C) Arabidopsis root cells colonized by P. 

indica at 7 dai. The fungus was stained with chitin-specific wheat germ agglutinin-Alexa 

Fluor 488 (WGA-AF 488) and coiled-like hyphae reminiscent of pelotons of orchid 

mycorrhizas were observed by epifluorescence microscopy. Bar = 20 µm (Schäfer and Kogel, 

2009). (D) Barley root colonized by P. indica. Fungal hyphae were stained with WGA-AF 

488 and plant cell walls were stained by congo red. The root was observed by epifluorescence 

microscopy.  

 

1.3.3 Cellular colonization strategy of P. indica 

 

In the interaction of Piriformospora indica with roots from barley and Arabidopsis, similar 

growth promotion and defensive activity have been found as have been orginally reported for 
10 
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plant-AMF interactions. Recent research demonstrated that after a transient and weak 

induction at early interaction stages, defense genes were general suppressed (Jacobs, 

Zechmann, Kogel, Schäfer, unpublished data). Furthermore, at early colonization stages of 

Arabidopsis roots, P. indica suppressed MTI to achieve root compatibility (Jacobs, Zechmann, 

Kogel, Schäfer, unpublished data). Additionally, P. indica-colonized barley was shown to 

exhibit enhanced antioxidative capacities provided by the ascorbate-glutathione cycle, which 

might enhance ROS (reactive oxygen species) detoxification (Waller et al., 2005). ROS 

accumulation contributes to plant innate immunity and is considered to coincide with the 

hypersensitive response (HR) (Apel and Hirt, 2004, Bent and Mackey, 2007). 

A main qualitative difference between P. indica and other mycorrhizas is that P. indica 

requires cell death for root colonization (Desmukh et al., 2006). Barley plants overexpressing 

the negative cell death regulator BAX Inhibitor-1 (HvBI-1) displayed a dramatically reduced 

susceptibility compared to wild-type roots as determined by quantitative PCR (Deshmukh et 

al., 2006). Accordingly, it was indicated that from 5 dai onwards HvBI-1 transcript 

accumulation was significantly suppressed in barley roots in response to P. indica 

colonization. This genetic and molecular analyses in combination with the cytological studies 

unambiguously document that cell death emergence is associated with and is apparently 

required for P. indica proliferation. Recent transmission electron microscopical studies of the 

Arabidopsis root-P. indica interaction indicated that the fungus penetrated and colonized 

living cells. This biotrophic colonization phase is followed by a cell death-associated 

colonization phase (Jacobs, Zechmann, Kogel, Schäfer, unpublished data). Hence, the 

mutualistic Arabidopsis-P. inidca interaction provided a model system to dissect the 

mechanisms of cell death-associated colonization and to elucidate its significance for the 

reported beneficial effects.   

 

1.4 Endoplasmic reticulum quality control (ERQC) and unfolded protein response 

(UPR) 
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1.4.1 Protein folding and quality control in ER  

 

Protein folding is a crucial process for protein function in all organisms. During evolution, 

cells have gained sophisticated mechanisms to ensure the proper folding of proteins and the 

disposal of irreversibly misfolded proteins (Kaufman 2002). The endoplasmic reticulum (ER) 

is known to be the site of synthesis, folding and modification of secreted and cell surface 

proteins as well as resident proteins of the secretory pathway. It is also a convergent point in 

the processing of glycoproteins destined for secretion. ER quality control (ER-QC) is defined 

as a surveillance mechanism that permits only correctly folded proteins to exit the ER and to 

reach their functional sites, e.g. vacuoles, plasma membrane and extracellular matrix 

(apoplast). By contrast, misfolded proteins are either retaining in the ER lumen for further 

folding attempts or are directly targeted for ER-associated degradation (ERAD) (Malhotra and 

Kaufman, 2007). When secretory proteins pass the ER, they attempt to obtain their proper 

three dimensional structures, which is a prerequisite for their functionality. Protein folding 

processes are controlled by at least three ER quality control systems, which include the 

SDF2-ERdj3b-BIP complex, the calreticulin/calnexin cycle, and the protein disulfide 

isomerase (PDI) system (Anelli and Sitia 2008). After co-translational translocation into the 

ER, nascent proteins bind to the SDF2-ERdj3b-BIP complex and get N-glycosylated through 

the catalytic oligosaccharide transferase complex (OST). Thereafter, glycoproteins are 

continuously processed by ER-resident lectin-like chaperones, calreticulins (CRTs) and 

calnexins (CNXs). After passing this CNX/CRT cycle, natively folded proteins leave the ER 

and enter the Golgi compartment. In turn, as an essential function of protein folding quality 

control, the non-native proteins are tagged and re-associated to the CNX/CRT cycle by 

UDP-glucose:glycoprotein glucosyltransferase (UGGT), which functions to facilitate their ER 

retention. For certain glycoproteins, intramolecular disulfide isomerization is required for 

correct folding, which is executed by protein disulfide isomerases (PDIs). ER working load 

and, thus, ER-QC activities are thought to vary depending on the developmental stage, the 

type of tissue, or the occurrence of external stresses. ER-QC during early stages of the 

secretory pathway is summarized below (Fig. 1-3). 



 

 

Figure 1-3. Protein quality control in the early secretory pathway. (Modified from 
Malhotra and Kaufman, 2007)  
The scheme illustrates chaperones and folding assistants of the BiP-containing complex, the 
calnexin (CNX)/calreticulin (CRT) cycle, and the PDI-containing complex. The nascent 
polypeptides enter ER lumen through the translocon complex Sec61 and are modified by the 
oligosaccharyltransferase (OST), and then they are further modified with the help of the 
chaperone complex BiP2/SDF2/ERdj3b or PDI. The modifications of glycoproteins mediated 
by glucosidase I and II (Glc I and II) are recognized ER lectins CNX and CRT, which initiate 
protein folding. Release from CNX/CRT that is followed by Glc II cleavage of innermost 
glucose residue prevents further interaction with CNX and CRT. Here, natively folded 
polypeptides transit the ER to the Golgi compartment with the possible assistance of 
mannose-binding lectins such as ERGIC-53, VIPL, ERGL. The non-native polypeptides are 
tagged for reassociation with CNX/CRT by the UDP-glucose:glycoprotein glucosyltransferase 
(UGT1) to facilitate their ER retention and to prevent anterograde transport. Misfolded 
polypeptides are targeted for ER-associated degradation (ERAD) by retrotranslocation, 
probably mediated by ER degradation-enhancing mannosidase-like protein (EDEM) and 
Derlins, into the cytosol and delivery to the 26S proteosome. In this figure, triangles represent 
glucose residues, squares represent N-acetylglucosamine residues, and circles represent 
mannose residues. 
 

1.4.2 Function of ER-QC in plant innate immunity and plant development 
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After biotic stress sensing, one common reaction of eukaryotic cells is the activation of 

defined defense signaling pathways resulting in the pronounced transcription of genes 

encoding antimicrobial proteins such as pathogenesis-related (PR) proteins. A considerable 
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number of these glycoproteins have an apoplastic destination and traverse the ER and Golgi 

apparatus prior to their vesicle-mediated transport and release at the plasma membrane by 

exocytosis (Jelitto-van Dooren et al. 1999, Lipka et al. 2007). In plants, systemic acquired 

resistance (SAR) is thought to be established by NPR1-mediated expression of PR genes. 

Wang et al (2005) performed gene expression profiling in Arabidopsis and, intriguingly, they 

found that NPR1 not only controls the expression of PR genes, but also the protein secretory 

machinery including those genes encoding central ER-QC components such as BiP2, DAD1 

and Sec61 translocon complex. Their studies further indicated that a coordinated 

up-regulation of the protein secretory machinery is required for apoplastic transport of PR 

proteins.  

Moreover, recent studies also revealed the significance of ER-QC components for 

MAMP-triggered immunity (MTI) in that the disturbance of ER-localized processing of the 

MAMP receptor EFR1 results in impaired MTI responses and enhanced disease susceptibility 

against bacterial and fungal pathogens (Nekrasov et al. 2009, Saijo et al., 2009). Furthermore, 

proper function of ER-QC was also shown to be required for plant development as 

UDP-glucose:glycoprotein glucosyltransferase (UGGT) mediates processing of the 

brassinosteroid receptor BRI1. The brassinosteroid belongs to a unique class of plant 

polyhydroxylsteroids that are crucial for plant growth (Clouse and Sasse, 1998; Jin et al. 

2007). 

1.4.3 Unfolded protein response (UPR)  

 

Unproper function of the ER processing machinery results in the accumulation of unfolded 

proteins, which initiate activation of an adaptive signaling cascade known as unfolded protein 

response (UPR) (Malhotra and Kaufman 2007). Perception of ER stress and subsequent 

activation of UPR signaling pathways are required to maintain ER integrity. The UPR is 

defined by the induction of ER chaperones, by an increase in ER-associated degradation 

(ERAD), and by the attenuated translation of secreted proteins (Malhotra and Kaufman 2007). 

The molecular mechanisms underlying ER-QC and UPR signaling have been described 

mainly for yeast and mammals. Yeast inositol-requiring enzyme-1 (IRE1) was the first 

discovered ER stress sensor protein (Cox and Walter, 1996; Mori et al., 2000). IRE1 is an 



 

15 

ER-resident transmembrane receptor protein kinase / ribonuclease. It is activated via 

oligomerization and autophosphorylation processes elicited in response to ER stress. 

Thereafter, two more ER stress sensors, activating transcription factor 6 (ATF6) and 

interferon-induced double-stranded RNA-activated protein kinase-related protein (PERK), 

were found to activate UPR in mammals (Schröder and Kaufman, 2005). Mammalian ATF6 is 

a transmembrane protein at the ER membrane which senses ER stress by its C-terminal ER 

luminal domain. ER stress initiates the translocation of its N-terminal bZIP domain to Golgi 

bodies where it is cleaved by serine protease site-1 protease (S1P) and metalloprotease site-2 

protease (S2P) (Ye et al., 2000). This process is termed regulated intramembrane proteolysis 

(RIP). The cleaved N-terminal cytosolic bZIP domain is released and translocated to the 

nucleus in order to induce expression of UPR genes (Yoshida et al., 2000). Mammalian PERK 

is also an ER-localized transmembrane sensor which senses ER stress through its luminal 

domain. PERK1 mediates phosphorylation of translation initiation factor-2α (eIF2α) thereby 

attenuating translation (Harding et al., 2000).  

In contrast, prolonged ER stress or malfunctional UPR results in proapoptotic signaling and 

programmed cell death (PCD), which is mediated by the same set of ER stress sensors that are 

activating UPR (Schröder 2006, Szegezdi et al. 2006). In mammals, caspase cascades build a 

backbone of proapoptotic signaling (Szegezdi et al. 2006). The following scheme (Fig. 1-4) 

exhibits a summary of UPR and ER stress-induced proapoptotic signaling events in mammals. 

 



 

Severe ER stress 
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Figure 1-4. Mammalian UPR mediated by different ER stress sensors resident in ER. 
(Modified from Rutkowski and Kaufman, 2004) 
This scheme indicates a temporal dimension of signaling events initiated by ER stress sensing 
molecules PERK, ATF6 and IRE1. UPR is firstly activated after stress perception by sensors. 
Thereafter translation is attenuated followed by the transcriptional activation of chaperones, 
ER metabolism and redox systems as well as components of the ER-associated degradation 
machinery. ER stress signaling is an interactive response as examplified by the IRE1 pathway 
whose execution requires the increased production of XBP1 mRNA by ATF6. The broken 
arrows represent feedback loops, both positively (green) and negatively (red) act on the UPR. 
Finally, with the occurrence of severe ER stress, apoptotic signaling is induced and further 
leads to PCD. Notably, the function of PERK, ATF6 and IRE1 are probably not as mutually 
exclusive as described in this picture. The activation of some genes might require the action 
of more than one sensing pathway.  
 

1.5 Programmed cell death 

 

The controlled death of cells is an essential part of growth and development in many 

eukaryotic organisms, including animals and plants. In addition to its role in generative and 

vegetative reproduction, cell death also maintains a crucial role in the response to biotic and 

abiotic stresses. The initiation and execution of the cell death are strictly genetically 

determined and are therefore defined as programmed cell death (PCD). In eukaryotes, PCD 
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takes a major role in removing excessive, damaged or infected cells, which might have 

disadvantageous effects on tissue integrity (Kuriyama and Fukuda, 2002; Hoeberichts and 

Woltering, 2003; Hückelhoven, 2004).  

 

1.5.1 ER stress-induced apoptosis in animals 

 

The molecular and biochemical processes underlying PCD are far better understood in 

animals than in plants and one of the best characterized mammalian cell death types is 

apoptosis. Its specific biochemical and morphological features include activation of caspases 

cascade, condensation of the nucleus and cytoplasm, fragmentation of genomic DNA into 

large (50 to 300 kb) and subsequently small (200 bp) nucleosomal fragments (DNA laddering), 

and fragmentation of the cell into membrane-confined vesicles (apoptotic bodies) (Nooden, 

2004; Hoeberichts and Woltering, 2003). Among them, the central component of the apoptotic 

machinery is the caspases cascade. In animals, caspases activation is triggered by either 

extrinsic or intrinsic signaling pathways. Specific “death receptors” can, upon activation, 

directly recruit caspase-activating multimeric protein complexes through what is called 

extrinsic pathway. By contrast, a diverse range of cellular stresses such as cytotoxic drugs and 

DNA damage can trigger caspase activation via the intrinsic pathway, which is mediated by 

cytochrome c release from the mitochondria. Alternatively, ER stress can directly induce 

caspase activity. Once activated, caspases may process and activate downstream caspases that 

cleave numerous cellular proteins, eventually leading to cell death (Hengartner, 2000; 

Hoeberichts and Woltering, 2003; Shiozaki and Shi, 2004). 

In mammals, intensive studies have focused on the principles of ER stress-induced 

proapoptotic signaling, because ER stress-induced apoptosis is implicated in the 

patho-physiology of several neuro-degenerative and cardiovascular diseases. Szegezdi and 

colleagues (2006) described that continuous or severe ER stress will activate pro-apoptotic 

processes. UPR-mediated signals are thought to trigger apoptosis through three distinct phases, 

which are described as initiation phase, commitment phase and execution phase. PERK, ATF6, 

and IRE1 are not only mediating UPR but ER stress-induced cell death signaling is also 

depending on these receptors. In the initiation phase, PERK, ATF6, and IRE1 are fundamental 
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for the initiation of apoptotic signaling under severe ER stress. In this situation, PERK 

activates the bZIP transcription factor ATF4, which further induces the transcription factor 

C/EBP homologous protein CHOP, a well known apoptotic cell death elicitor (Ma et al., 2002; 

Ron and Habener 1992). The IRE1 and recruited tumor necrosis factor receptor-associated 

factor 2 (TRAF2) initiate cell death that might depend on the activation of apoptosis 

signal-regulating kinase 1 (ASK1)/c-Jun amino terminal kinase (JNK) pathway (Urano et al., 

2000; Nishitoh et al., 2002). The ATF6 translocates to Golgi apparatus and is activated after 

cleavage by site-1 and site-2 proteases. Active ATF6 then moves to nucleus and induces genes 

containing an ER stress response element (ESRE) in their promoter (Schröder and Kaufman, 

2005). The transcription factors CHOP and X-box binding protein 1 (XBP1) are identified to 

be targeted by ATF6. However, these pro-apoptotic signals triggered by PERK, ATF6, and 

IRE1 do not directly lead to cell death, but initiate the activation of downstream molecules 

such as CHOP and JNK to accelerate the occurrence of cell death in the subsequent 

commitment phase. Central to this proapoptotic state is the activation of proteins of the BCL2 

family. Among this family, Bcl-2 is an antiapoptotic protein, which is down-regulated by 

CHOP. By contrast, other members of the BCL2 protein family such as Bax (Bcl2-associated 

X protein) and Bak (Bcl-2 homologous antagonist/killer) function as regulators of apoptotic 

cell death (Schröder, 2008). BAX and BIM (BCL2-interacting mediator of cell death) are key 

components in the execution of apoptosis by enhancing Ca2+ release from ER and 

mitochondria. In addition, BAX and BIM also mediate cytochrome c release from 

mitochondria thereby activating the apoptosome. Besides, recent studies also showed that 

reactive oxygen species (ROS) can directly activate ASK1 by disrupting an ASK1 thioredoxin 

(TDX) through oxidation of TDX, and thereby lead to activation of JNK and cell death 

(Tobiume et al., 2002). It indicated a significant contribution of oxidative stress to ER 

stress-induced apoptosis (Malhotra and Kaufman 2007). In the final execution phase, the 

concerted activation of transcription factors, kinase pathways, and regulation of BCL2 family 

proteins may lead to the activation of caspase cascades and further result in the ordered and 

sequential occurrence of cell death (Szegezdi et al. 2006). The complicated process of ER 

stress-induced apoptosis is summarized in Fig. 1-5 (Malhotra and Kaufman, 2007). 

 



 

 

Mitochondria 

Figure 1-5. Pathways of ER stress-induced mammalian apoptosis. (Modified from 
Malhotra and Kaufman, 2007) 
In this figure, the various ER stress-induced cell death pathways are summarized. The first 
signaling pathway is the elicitation of JNK phosphorylation and activation by IRE1 and 
recruited TRAF2. The caspase 12, which is an ER-associated effector in the caspase cascade 
further activates procaspase 9 to cleave procaspase 3, the main executioner of cell death. A 
second signaling pathway is mediated by ER stress-triggered transcriptional induction of 
proapoptotic genes such as CHOP through the ER stress sensors PERK, ATF6 and possibly 
IRE1. The third signally pathway depends on mitochondrial ROS production resulting from 
ER stress-induced Ca2+ release and depolarization of the inner mitochondrial membrane. 
Consequently, the caspase cascade is triggered to execute apoptosis. Therefore, it is concluded 
that unresolved ER stress activates cell death via multiple pathways.  
 

1.5.2 ER stress signaling pathways in plants 

 

Since the ER is the side of the production of the majority of nutritional plant proteins such as 

seed storage proteins of crop plants and therapeutic products as antibodies and vaccines, 

protein quality control and UPR of plants have recently attracted considerable attention 

(Urade, 2009). In plants, IRE1-like proteins, Arabidopsis IRE1s (AtIRE1-1 and AtIRE1-2) 

(Koizumi et al., 2001; Noh et al., 2002) and rice IRE1 (OsIRE1) (Okushima et al., 2002) were 

identified based on the similarity to those in yeast and mammals. However, plant IREs were 
19 
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not proven to be associated with ER stress signaling. In addition, bZIP transcription factors 

bZIP28 and bZIP60 were isolated and shown to be ER stress responsive and even act as ER 

stress sensors or transducers (Liu et al., 2007; Iwata et al., 2005). Both proteins have functions 

in UPR similar to those reported for mammalian ATF6. Under non-stressed situations, bZIP28 

and bZIP60 are ER membrane resident proteins. The accumulation of misfolded proteins 

results in the release of the N-terminal cytoplasmic domains of bZIP28 and bZIP60 and 

subsequent translocation into the nucleus. Interestingly, these transcription factors induce 

UPR genes containing P-UPRE and ERSE regulatory elements in their promoters. 

Transcription of bZIP28 and bZIP60 is activated by infection with heat stress and pathogens. 

Therefore, it is speculated that ER stress, heat stress and pathogens infection activate 

transcription of the same set of UPR genes (Urade, 2009). It still needs to be confirmed 

whether plant UPR pathways are interacting with other transcription factors in a complex 

network during various biological processes.  

 

1.5.3 ER stress-induced cell death in plants 

 

In plants, recent work suggested that programmed cell death (PCD) triggered by biotic or 

abiotic stresses such as pathogen attack, heat shock, ozone exposure, phytotoxin or oxidative 

stress-inducing agents also exhibits various morphological and biochemical traits of apoptosis, 

such as nuclear condensation, aggregation of chromatin at the nuclear margins, cell shrinkage, 

blebbing of the plasma membrane ,and DNA laddering, ROS accumulation, release of 

cytochrome c from mitochondria, and activation of hydrolytic enzymes such as serine and 

cysteine proteases and DNase (Lam, 2004; Greenberg and Yao, 2004; Lam, 2008). Despite of 

the observations of these classic morphological and biochemical features for animal apoptosis 

in plant PCD systems, sequenced plant genomes revealed the absence of plant homologues to 

several key regulators in animal PCD, including canonical caspases and Bcl-2 related proteins. 

Nevertheless, the transient activation of caspase-like protease (CLP) in plant PCD induced by 

biotic or abiotic stress (Lam and del Pozo, 2000; Woltering, 2004; Bonneau et al., 2008) and 

the functional Bax-inhibitor-1 protein (BI-1) in plants (Kawai et al., 1999) indicated that plant 

PCD might be controlled via a distinct set of regulators that performs similar functions to 
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animal PCD regulators (Watanabe and Lam, 2009).  

In plants, two groups of proteases have been proposed as candidates to regulate caspase-like 

activities: the vacuole processing enzymes (VPEs) and the metacaspases (MCs) (Woltering et 

al., 2002). VPEs are cysteine protease, which exhibit caspase activities as reported for 

mammlian PCD. In contrast to the cytosolic localization of mammalian caspases, VPEs 

mainly localize in vacuoles. Arabidopsis maintains four VPE genes (αVPE, βVPE, γVPE, 

δVPE), which are classified by their homology and expression patterns (Hatsugai et al., 2006). 

Recent studies gave direct evidence that VPEs have caspase-like activity in Nicotiana 

tabacum and Arabidopsis. Furthermore, VPEs are found to mediate virus-induced 

hypersensitive cell death and are essential for mycotoxin-induced cell death (Hatsugai et al., 

2004; Rojo et al., 2004; Kuroyanagi et al., 2005). In those studies, an ultrastructural analysis 

and a viability assay with protoplasts showed that disintegration of vacuolar membranes 

occurred in virus-infected leaves before the cells were dead (Hatsugai et al., 2004). The 

disintegration of vacuolar membranes continued, resulting in complete vacuolar collapse in 

association with plasmolysis and formation of cytoplasmic aggregations within the cells. By 

contrast, VPE-deficient plants prevented the vacuolar collapse followed by cell death after 

virus infection (Hatsugai et al., 2004). This observation suggests that VPE functions as a key 

molecule in cell death triggered by vacuolar collapse. So far, VPE is thought to be the first 

identified vacuolar component that regulates cell death and this vacuolar system-mediated cell 

death strategy in plants is not seen in animals (Hatsugai et al., 2006). 

Several metacaspases of plants and fungi contain caspase domains (Uren et al., 2000). 

However, plant metacaspases are unable to cleave caspase-specific substrates. Instead, those 

metacaspases of Arabidopsis that have been analyzed were found to cleave 

arginine/lysine-specific substrates (Vercammen et al., 2004; Watanabe and Lam, 2005; He et 

al., 2007). In addition, their enzymatic activities are not inhibited by caspase inhibitors (He et 

al., 2007). Although metacaspases do not have caspase-like activities, several reports indicate 

that metacaspases play a role in plant PCD. For examples, the down-regulation of a type II 

metacaspase suppresses PCD in suspensor cells of an embryogenic culture of Picea abies 

(Suarez et al., 2004). The knock out (KO) lines of metacaspase type II exhibited a reduced 

cell death phenotype after challenge with the plant pathogen Botrytis cinerea (Van Baarlen et 
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al., 2007). The metacaspase-8 KO lines were reduced in UVC or H2O2-triggered cell death 

and exhibited an increased tolerance to the PCD-inducing herbicide methyl viologen (He et 

al., 2007; Chen and Dickman, 2004). Taken together, certain metacaspases are obviously 

involved in the regulation/execution of PCD. It has to be analyzed whether all metacaspase 

have pro cell death activities and which of the different PCD pathways in plants depend on 

metacaspases (Bonneau et al., 2008). 

Compared to ER stress-induced apoptosis in mammals, the molecular basis of ER 

stress-induced PCD in plants is less well understood. However, several indications implicate a 

conservation of ER stress signaling between plants and mammals. Bax inhibitor-1 (BI-1) is an 

evolutionally conserved protein that predominantly localizes to the ER membrane and acts as 

a broad spectrum cell death suppressor in mammals, fungi and plants (Watanabe and Lam, 

2004; Hückelhoven 2004). Overexpression of BI-1 proteins from a variety of origins was 

shown to suppress Bax-induced and abiotic stress-induced cell death in numerous of 

eukaryotes (Watanabe and Lam, 2008b). In Arabidopsis, BI-1 was demonstrated to involve 

ER stress response and its related cell death pathway (Watanabe and Lam, 2008a). The data 

indicated that ER stress-induced PCD can be manipulated by the disruption of AtBI1 or 

overexpressing AtBI1 proteins, which results in accelerated or attenuated PCD. Therefore, 

AtBI1 is thought to serve as a rheostat that functions to gauge the threshold of misfolded 

proteins in the ER for PCD activation (Watanabe and Lam, 2008b). Watanabe and Lam 

(2008b) summarized their data and indicated that AtBI1 is a critical survival factor for 

suppression of ER stress-induced PCD, thereby allowing the UPR sufficient time to recover 

cell homeostasis. However, the fundamental question regarding how ER stress-induced PCD 

pathway is regulated in plant cells still remains to be resolved (Urade, 2007).  

 

1.6 Objective 

 

Previous studies have demonstrated that the root endophytic fungus Piriformospora indica 

requires cell death for colonization during the mutualistic symbiosis with barley and 

Arabidopsis (Deshmukh et al., 2006; Jacobs, Zechmann, Kogel, Schäfer, unpublished). Since 

the genetic, molecular and biochemical mechanisms of P. indica-mediated cell death are still 
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not known, it is the aim of my work to elucidate the nature of the cell death associated with 

the colonization of Arabidopsis roots by P. indica. More specifically, I was interested to 

determine those processes particpating in the initiation, regulation and execution of 

colonization-associated cell death. These analyses would help to understand those 

mechanisms involved in the establishment of plant root-P. indica symbioses. Moreover, the 

studies will help to elucidate the impact of the different stages root colonization on beneficial 

effects mediated by the fungus. For my studies I followed cytological, genetic, molecular, and 

biochemical approaches to investigate cell death-associated colonization.  

In the first cytological approach, I analyzed the root cell ultrastructural alterations associated 

with P. indica colonization with the assistance of transmission electron microscopy 

(TEM).and confocal laser scanning microscopy (CLSM). Based on these results I performed 

genetic and molecular studies to evaluate the fungal colonization in Arabidopsis mutants, 

which are in absence of genes encoding crucial ER-QC components and VPEs by using 

quantitative real time-PCR (qRT-PCR). Furthermore, I applied qRT-PCR to investigate the 

expression of UPR marker genes during the fungal colonization in mock- or TM-treated plant 

roots. By this, I aimed to check how UPR signaling is affected by P. indica at transcriptional 

level. Finally I carried out biochemical studies to dissect the biochemical mechanisms of 

root-P.indica interaction. Through immunoblot analyses, I checked the accumulation of 

ER-resident proteins in P. indica colonized roots. It further indicated how UPR signaling is 

affected by P. indica at translational level. Moreover, pharmaceutical analyses using specific 

caspase-1 and VPE substrates were performed to investigate the enzyme activities in P. 

indica-colonized roots. Subsequently, a fluorescein diacetate (FDA)-based cell death assay 

was performed to relate the enzyme activities and colonization studies to the occurrence of 

cell death. 
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2. Materials and Methods 

 

2.1 Plant, fungal material and plant inoculation 

 

2.1.1 Arabidopsis Thaliana 
 

Arabidopsis (Arabidopsis thaliana L.) plants (cultivar Columbia-0) were obtained from the 

Nottingham Arabidopsis Stock Center. Arabidopsis seeds were sterilized with 3% sodium 

hypochlorite for 10 minutes and rinsed 3 to 4 times with autoclaved water before drying. The 

sterilized seeds were put on ½ MS medium or ATS medium in squared petri-dishes, incubated 

at 4°C for 48 hours prior to their transfer to a phyto-chamber for 3 weeks under the following: 

8 h light (fluorescent cool white, Toshiba FL40SSW/37, 180 µmol m-2 s-1 photon flux 

density) / 16 h night, 22°C / 18°C, and 60% relative humidity. In order to guarantee that all 

plant roots grew on the surface of the medium, petri-dishes with sterilized seeds were 

vertically arranged. For propagation, Arabidopsis seeds were put on top of a 1:3 (v / v) sand : 

soil mixture (nutrient concentrations of the soil: N:P:K = 150:150:250 mg/L), and were 

incubated at 4°C for 48 hours before transfer to the greenhouse  and their growth under long 

day conditions.  

½MSmedium                       ½ MS+  medium           

 4-5% gelrite                        4-5% gelrite 

½ concentration of MS salts           ½concentration of MS salts        

                                  1% sucrose 

ATS medium

Stock solution        Vol. of stock to add for 1L       Micronutrients 

1 M KNO3                             5 ml                70 mM H3BO3

1 M KPO4                           2,5 ml                14 mM MnCl2

1 M MgSO4                           2 ml               0,5 mM CuSO4

1 M Ca(NO3)2                        2 ml                 1 mM ZnSO4
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Micronutritients               1 ml                0,2 mM Na2MoO4

                                                10 mM NaCl 

                                               0,01 mM CoCl2

 

Table 2-1. Lists of applied Arabidopsis lines 

Lines Description Source Literature 

Columbia 
(Col-0) Wild type NASC 

N1092  

αvpe 

alpha vacuolar processing enzyme. 
alpha VACUOLAR PROCESSING 
ENZYME (VPE) belongs to a novel 
group of cysteine proteinases (VPEs) 
that is expressed in vegetative organs 
and is upregulated in association with 
various types of cell death and under 
stressed conditions. 

I. Hara-Nishimura, 
Dep. of cell biology, 
National Institute for 
Basic Biology, 
Okazaki, Japan 

Kuroyanagi 
et al., 2005 

βvpe 

beta vacuolar  processing enzyme. 
Lacks a vacuolar processing enzyme 
that is expressed specifically in seeds 
and is essential for the proper processing 
of storage proteins. 

I. Hara-Nishimura, 
Dep. of cell biology, 
National Institute for 
Basic Biology, 
Okazaki, Japan 

Kuroyanagi 
et al., 2005 

γvpe 

gamma vacuolar processing enzyme. 
Lacks a vacuolar processing enzyme 
that is expressed in vegetative organs 
and is upregulated in association with 
various types of cell death and under 
stressed conditions. 

I. Hara-Nishimura, 
Dep. of cell biology, 
National Institute for 
Basic Biology, 
Okazaki, Japan 

Kuroyanagi 
et al., 2005 

δvpe 

delta vacuolar processing enzyme. 
Lacks a vacuolar processing enzyme 
with caspase-1-like activity that is 
specifically expressed in inner 
integument of developing seeds. 

I. Hara-Nishimura, 
Dep. of cell biology, 
National Institute for 
Basic Biology, 
Okazaki, Japan 

Kuroyanagi 
et al., 2005 

vpe-KO vacuolar processing enzyme null. 
Mutant lacks all four VPEs. 

I. Hara-Nishimura, 
Dep. of cell biology, 
National Institute for 
Basic Biology, 
Okazaki, Japan 

Kuroyanagi 
et al., 2005 
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Columbia 
(Col-6) Wild type for βvpe 

I. Hara-Nishimura, 
Dep. of cell biology, 
National Institute for 
Basic Biology, 
Okazaki, Japan 

Kuroyanagi 
et al., 2005 

bip2 
It encodes Luminal binding protein 2 
(BiP2) and functions as ER-resident 
chaperone.  

X. Dong,  
Dep. of Biology, Duke 
University, Durham, 
NC, USA 

Wang et al., 
2005 

dad1 

Defender against apoptotic death1. It 
encodes ER-resident co-chaperone 
DAD1, which is a subunit of the 
oligosaccharyl transferase (OST) 
complex.. 

X. Dong,  
Dep. of Biology, Duke 
University, Durham, 
NC, USA 

Wang et al., 
2005 

sec61α 

It encodes a subunit of the SEC61 
translocon complex, which provides a 
channel for proteins to cross the ER 
membrane. 

X. Dong,  
Dep. of Biology, Duke 
University, Durham, 
NC, USA 

Wang et al., 
2005 

bzip28 

It encodes membrane-associated basic 
domain/leucine zipper (bZIP) factor, 
which is a candidate for ER stress 
sensors/transducers in plants. 

S. Howell,  
Plant Sciences Institute, 
Iowa State University, 
USA 

Liu et al., 
2007 

bip3  
 

It encodes luminal binding protein, 
which functions as ER-resident 
chaperone. 

C. Zipfel, The 
Sainsbury laboratory, 
Norwich Research 
Park, UK 

Li et al., 
2009 

 

2.1.2 Piriformospora indica 

 

In the work, the isolate of P. indica DSM11827 (German collection of microorganisms and 

cell cultures in Braunschweig, Germany) was applied. P. indica was isolate at the Indian Thar 

desert in 1997 (Verma et al., 1998). The chlamydospores of the applied P. indica isolate were 

stored in glycerin at -80°C, which can be used to prepare master plates. The fungi are 

subsequently propagated from master plates for experiments. The cultivation of P.indica was 

in modified Aspergillus minimalmedium (complex medium, modified after Pham et al., 2004) 

at room temperature for 6 to 8 weeks. 
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CM medium (Modified Aspergillus minimalmedium)

All components (1 liter)     20 x Salt solution        Microelements

20 x Salt solution          120 g NaNO3           6 g MnCl2 x 4H2O 

20 g Glucose             10,4 g KCl            1,5 g H3BO3

2 g Peptone              10,4 g MgSO4 x 7H2O  2,65 g ZnSO4 x 7H2O 

1 g Yeast extract          30,4 g KH2PO4             750 mg KI 

1 g Casamino-acid       Add 1 liter H2Odest       2,4 mg Na2MO4 x 2H2O 

1 ml Microelements                            130 mg CuSO4 x 5H2O 

950 ml dest. Water                             Add 1 liter H2Odest 

Optional: 15 g Agar-Agar 

 

2.1.3 Inoculation of plant roots with Piriformospora indica 

 

P. indica growing on CM medium plates for 3-4 weeks was ready for preparation of spore 

suspensions. To collect spores from CM agar plates, sterilized water containing 0,05% 

Tween-20 was added. Through gently scratching the surface of plates with a spatula, the 

spores were released and the suspension solution was filtered through miracloth (Calbiochem, 

Bad Soden, Germany) in order to remove mycelium. After that, spores were collected by 

centrifuging suspension solution at 3500 rpm for 7 minutes. Then, spores were washed at least 

3 times with sterilized Tween-H2O. By using a hemacytometer in combination with a 

microscope, spore densities were determined. The spore concentration was adjusted to 

500,000 spores / ml with sterilized Tween-H2O. For inoculation, 1 ml spore suspension was 

pipetted on top of plant roots in one squared petri-dish. 

 

2.2 Cyto-histochemical techniques 

 

2.2.1 Fixation and staining of P. indica in root tissue with WGA Alexa Fluor® 488 
(Wheat Germ Agglutinin)  
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The root material was fixed in a solution containing chloroform (20% v:v), ethanol (80% v:v), 

and trichloroacetic acid 0,15% w:v) for at least 24 h. Before staining, fixed roots were washed 

3 x 5 minutes with stilled water. Roots were boiled in 10% KOH for 30 seconds, and then 

washed 3 x 5 minutes with 1 x PBS buffer (pH 7,4). Subsequently, root segments were 

incubated in 1 x PBS (pH 7,4) containing 10 µg/ml WGA Alexa Fluor® 488 (Molecular 

Probes, Karlsruhe, Germany) and 0,02% Silwet L-77. During the incubation, the roots were 

stained by vacuum infiltration three times for 1 minute at 25 mm Hg and kept in staining 

solution for 10 minutes. After washing with 1 x PBS buffer(pH 7,4), roots were put on glass 

slides and WGA-AF 488 was detected with epifluorescence microscopy (Axioplan 2, Zeiss, 

Oberkochen, Germany) at excitation of 470/20 nm and detection of 505-530 nm. 

Staining solution                          1 x PBS buffer (pH 7,4) 

5 ml 1 x PBS buffer (pH 7,4)                 0,2 g KCl 

50 µg WGA Alexa Fluor® 488                0,2 g KH2PO4

0,05% Silwet L-77                        1,15 g Na2HPO4  

    Add 1 liter H2Odest 

 

2.2.2 Confocal layer scanning micropcopy  

 

The live root material was stained with WGA-AF 488 as described in chapter 2.2.1. Confocal 

fluorescence images were recorded on a multichannel TCS SP2 microscope (Leica, Bensheim, 

Germany). WGA-AF 488 and GFP were excited with a 488-nm laser line and detected at 

505–540 nm. 

 

2.2.3 Sample preparation for transmmision electron microscope 

 

Sample preparation for ultra-structural studies was performed according to Zechmann et al. 

(2007). Small pieces of roots (~2 cm) were cut and fixed in 2,5% glutardialdehyde in 0.06 M 

sodium phosphate buffer at pH 7.2 (Sørensen, 1909) for 90 min at room temperature (RT). 

Subsequently, samples were rinsed in 0.06 M sodium phosphate buffer at pH 7.2 (4 times 15 
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min each) and post-fixed in 0.1 M sodium phosphate buffer (pH 7.2) containing 1% osmium 

tetroxide for 90 min at RT. Samples were then  dehydrated for 20 min each step in increasing 

concentrations of acetone (50%, 70%, 90%, 100%). Pure acetone was exchanged by 

propylene oxide and specimen were gradually infiltrated with increasing concentrations (30%, 

50%, 70%, 100%) of Agar 100 epoxy resin (Agar Scientific Ltd., Stansted, England) for a 

minimum of 3 h per step. Samples were finally embedded in fresh resin agar at RT and 

polymerized at 60°C for 48 h. Ultrathin sections (80 nm) were cut with a Reichert Ultracut S 

ultramicrotome and post stained for five minutes with lead citrate and for 15 minutes with 1% 

uranyl acetate at RT before they were observed with a Philips CM10 TEM. 

0,06 M sodium phosphate buffer (pH 7,2) 

2 ml    0.2 M NaH2PO4  

9 ml    0.2 M Na2HPO4 

Add MiliQ H2O to 35 ml 

2,5% glutardialdehyde in 0.06 M sodium phosphate buffer (pH 7,2) 

3,5 ml      glutardialdehyde 

31,5 ml    0.06 M sodium phosphate buffer (pH 7.2) 

 

1% osmium tetroxide in 0,1 M sodium phosphate buffer (pH 7,2) 

Add 5 ml 4% osmium tetroxide to 0,1 M sodium phosphate buffer (pH 7,2). 

 

Agar 100 epoxy resin (prepare freshly for each step) 

Agar 100 epoxy resin 20 ml 10 ml 5 ml 2,5 ml 
DDSA (Hardener) 16 ml 8 ml 4 ml 2 ml 
MNA (Hardener) 8 ml 4 ml 2 ml 1 ml 

BDMA /(Accelerator) 1,3 ml 0,625 ml 0,312 ml 0,156 ml 

 

All the components are vortexed in a closed plastic cup and heated up in microwave for 5 to 

10 seconds until 60°C. Thereafter, the mixture is shaked thoroughly for a few seconds before 

adding BDMA (Accelerator) and propylenoxide. Subsequently, the plastic cup is closed and 

mixed carefully by hand. Because of an over pressure, the components should be thoroughly 

mixed after releasing the pressure. 
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2.3 Molecular biological standard methods 

2.3.1 DNA-Extraction 

 

Genomic plant DNA was extracted with the CTAB method. In addition, for screening the 

Arabidopsis mutants, a quick-dirty plant genomic DNA isolation method was applied. 

• DNA extraction using CTAB method 

Plant material was grinded to fine powder with liquid nitrogen of which 100 mg were mixed 

with 900 µl warm CTAB extraction buffer (65°C) by gentle inversion. This mixture was 

incubated for 60-90 minutes at 65°C with continuous gentle rocking. After that, 450 µl of 

chloroform / isoamylalcohol (24:1) was added to the cooled-down samples and mixed gently 

on a shaker for 5-10 minutes. Then the samples were spinned in a table-top centrifuge 

(Eppendorf, Hamburg, Germany) for 15 minutes with a speed of 10,000 rpm at room 

temperature. The supernatant was collected and 30 µg of RNase A was added. After 

incubation for 30 minutes at room temperature, 600 µl of isopropanol was added (20 minutes, 

RT) in order to precipitate DNA. The DNA pellet was obtained by centrifugation (13.000 rpm, 

30 minutes, RT), and washed with WASH 1 solution (76% ethanol, 0,2 M sodiumacetate) as 

well as WASH 2 solution (76% ethanol, 10 mM ammoniumacetate) for 20 minutes. Finally, 

the dry DNA pellet was dissolved in 20-50 µl TE-buffer and the concentration was measured 

using a NanoDrop ND-1000 (peqLab Biotechnology GmbH, Erlangen, Germany). 
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CTAB Extraction buffer             TE-buffer

100 mM Tris (pH 7,5)                5 mM Tris-HCl (pH 8,0) 

700 mM NaCl                      1 mM EDTA 

50 mM EDTA (pH 8,0) 

1% CTAB2 

140 mM β-mercaptoethanol 

Note: The buffer was freshly prepared and warmed to 65°C before adding the CTAB and 

β-mercaptoethanol. 

 

• Quick-dirty plant genomic DNA isolation method 

A small leaf from six-weeks-old Arabidopsis was crushed with a small pestle in liquid 

nitrogen and 500 µl of DNA extraction buffer was added. After vigorously vortex, the samples 

were incubated at room temperature for 10 minutes before adding 500 µl of chloroform. The 

samples were centrifuged at 13,000 rpm for 10 minutes and supernatants were removed to a 

new tube and precipitated by 500 µl isopropanol (2 minutes, RT). The DNA pellet was 

obtained by centrifugation (13,000 rpm, 10 min, RT) and washed with 70% ethanol. 

Subsequently, the dry pellet was dissolved in 20-50 µl TE-buffer and can be directly used for 

PCR. 

DNA extraction buffer 

200 mM Tris (pH 7,5) 

250 mM NaCl 

25 mM EDTA 

0,5% SDS 

H2Odest 

 

Before RNA extraction, Arabidopsis roots were grinded to fine powder with liquid nitrogen 

and stored at -80°C until use. The extraction was performed as described by Logemann et al. 

(1987) or by using TRIzol (Invitrogen, Karlsruhe, Germany). DNase-I treatment was done 

(Fermentas, Germany) in order to remove DNA-contamination from extracted RNA. 

• RNA-Extraction method (Logemann et al., 1987) 
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In the descibed protocol, 200 mg of grinded powder was added to 1 ml of RNA extraction 

buffer. After vigorously vortex, 200 µl of chloroform was added and shaked for 10 minutes at 

room temperature before centrifugation (13,500 rpm, 15 min, 4°C). The supernatant was 

transferred to a new tube and 850 µl chloroform was added. Then the samples were vortexed 

and again centrifuged (13,500 rpm, 15 min, 4°C). Subsequently, the supernatant was collected 

and precipitated by isopropanol (overnight, -20°C). The RNA pellet was obtained through 

centrifugation (13,500 rpm, 30 min, 4°C) and washed with 70% ethanol (2 times for 10 min). 

The dry RNA pellet was dissolved in 23-53 µl of H2ODEPC. The dissolved RNA was 

centrifuged for 10 minutes, and 20-50 µl of RNA was transfered to new tubes. Finally, the 

RNA concentration was determined by NanoDrop ND-1000 (peqLab Biotechnology GmbH, 

Erlangen, Germany). 

RNA Extraction buffer                   H2ODEPC

38 ml   phenol                         H2Odest+0.1% (v : v) DEPC 

11,82 g  guanidin thiocyanat              (Diethylpyrocarbonate) 

7,6 g    ammonium thiocyanat 

3,34 ml  sodiumacetate (3 M) 

5 ml     glycerin 

Add 100 ml H2ODEPC 

• RNA extraction with TRIzol reagent 

For the extraction of RNA with TRIzol, 50-100 mg of grinded material was well mixed in 1 

ml TRIzol reagent and incubated for 5 minutes at RT in order to completely dissociate 

nucleoprotein complexes. Then 200 µl of chloroform was added. After vigorously shaking by 

hands for 15 seconds and incubation at RT for 2 to 3 minutes, the samples were followed by 

centrifugation (14,000 rpm, 20 min, 4°C). The RNA-containing aqueous supernatant together 

with 500 µl of isopropanol was incubated for 30 min at RT followed by centrifugation (14,000 

rpm, 30 min, 4°C) in order to get pellet. Subsequently, the RNA pellet was washed with 75% 

ethanol and the dry pellet was dissolved in 30 µl of RNase-free water for 5 min at 65°C.  

• DNase-I digestion of RNA 

In order to remove DNA contamination in RNA, DNase-I digestion was performed in a 10 

µl-system containing 1 µl 10 X DNase-I buffer (Fermentas, Germany), 1 µl DNase-I 
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(Fermentas, Germany), 0,25 µl RNase inhibitor (Fermentas, Germany) and 500 ng to 2 µg 

RNA. The mixture was incubated at 37°C for 30 minutes; then the reaction was inactivated by 

adding 2 µl EDTA and incubated at 70°C for 10 minutes. Finally, the concentration of cleaned 

RNA was measured by NanoDrop ND-1000 (peqLab Biotechnology GmbH, Erlangen, 

Germany). 

 

2.3.2 Standard Polymerase Chain Reaction (PCR) 

 

The regular standard PCR was performed in a 25 µl volume. The reaction mixture contained 

1,25 U DCS-Pol DNA-polymerase (DNA Cloning Service, Hamburg, Germany), 2,5 µl 10 X 

Reaction buffer BD, 2,5 mM MgCl2, 200 µM dNTPs (Amersham Pharmacia Biotech, 

Freiburg, Germany), 10 pmol relative oligonucleotides together with 100 pg to 100 ng DNA 

template The standard PCR amplification was proceeded in TProfessional or TPersonal cyclers 

(Biometra, Göttingen, Germany). The PCR scheme is described below. If necessary, the PCR 

products were mixed with 10 X DNA-loading buffer and then separated by gel electrophoresis. 

According to the size of PCR products, the concentration of TBE-gels was ranged from 

1%-2% containing 0,75 v % ethidiumbromid (stock solution: 10 mg/ml). Subsequently, the 

visualisation of PCR products on the gel was performed with a UV-Transluminator (Fröber 

Larbortechnik, Lindau, Germany) at a wavelength of 312 nm. All results were documented by 

video documentation equipment (digitStore, INTAS, Göttingen, Germany). 
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PCR Scheme

              5 min              94℃          Denaturation 

26 - 45        30 sec              94℃          Denaturation 

cycles        30 sec           52 - 60℃          Annealing 

             30 - 120 sec        72℃            Elongation     

              7 – 10 min          72℃         Final elongation 

              For ever            4℃         Reaction termination 

10 X TBE                          10 X DNA-Loading buffer 

900 mM Tris                        0.25% (w/v) Bromphenol blue 

900 mM Boric acid                    40% Sucrose 

25 mM EDTA 

Add 1L H2Odest, pH 8,0 

 

2.3.3 Revers transcriptional polymerase chain reaction (RT-PCR) 

 

Different from standard PCR, the template of RT-PCR is RNA. The RT-PCR was performed 

with either one-step method that directly started from RNA or two-step method which cDNA 

was firstly produced from RNA, and then PCR was preceded using cDNA as template.  

 

2.3.3.1 One-step RT-PCR 

 

For one-step RT-PCR, QIAGEN OneStep RT-PCR kit was applied. According to the protocol, 

a master mix was prepared with 10 µl 5 X QIAGEN OneStep RT-PCR buffer, 400 µM of each 

dNTP, 0,6 µM specific oligonucleotides, 2 µl QIAGEN OneStep RT-PCR enzyme mix and the 

template RNA in the range of 1 pg to 2 µg per reaction was applied. Subsequently, the total 50 

µl of mix was preceded in TProfessional or TPersonal cyclers (Biometra, Göttingen, Germany) and 

the running programs were described below. Finally, the amplified products could be detected 

by gelelectrophoresis as described in chapter 2.3.3. 



 

One-step RT-PCR Scheme 

              Reverse transcription:       30 min    50°C 

              Initial PCR activation step:  15 min     95°C 

              3-step cycling 

             Denaturation:       0,5-1 min             94°C 

25-45 cycles   Annealing:         0,5-1 min          50-68°C 

             Extension:             1 min            72°C 

            Final extension:         10 min            72°C 

 

2.3.3.2 cDNA synthesis 

 

The transcription of total RNA to cDNA was performed with qScriptTM cDNA Synthesis kit 

(Quanta Biosciences, Gaithersburg, USA). 4 µl 5 X qScript reaction mix, 1 µl qScript reverse 

transcriptase and 500 ng of DNase-I treated RNA was mixed and incubated. When the 

reaction was completed, 80 µl H2ODEPC was added. For PCR-based analyses, 2 µl cDNA were 

applied. 

Reverse transcription scheme 

1 cycle: 22°C 5 min 

1 cycle: 42°C 30 min 

1 cycle: 85°C 5 min 

 

2.3.4 Quantitative Real-Time PCR (qRT-PCR)  

 

The quantitative real-time PCR was applied either to quantify the relative amount of P. indica 

genomic DNA and plant genomic DNA in colonised Arabidopsis roots or to analyse the 

relative expression level of candidate transcripts in cDNA samples. In each reaction (15 µl), 

40 ng of genomic DNA or 10 ng of cDNA was used as template and added to 7.5 µl SYBR 

Green JumpStart Taq ReadyMix (Sigma-Aldrich) and 350 nM relative oligonecleotides. In 

order to minimize the operating errors, each sample was triplicately pipetted. The 

amplification was performed in cyclers of Stratagene (Stratagene Mx3000P QPCR 
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SystemMx3000P; Stratagene Research, La Jolla, CA, USA) or of Applied Biosystems 

(Applied Biosystems 7500 Fast Real Time PCR, Applied Biosystems Inc., CA, USA). The 

running program started from the first step of denaturation (95°C, 7 min), and then continued 

with 40 amplification cycles with the annealing temperature of specific oligonuleotides (95°C 

30 s, AT 30 s, 72°C 30 s). Finally, the SYBR fluorescence was measured for each cycle and 

then the PCR dissociation curve was recorded in the range of 65-95°C by 0,5°C steps. The 

cycle threshhold (Ct)-value of specific genes was determined by the cycler software, from 

which the relative expression value 2-∆Ct was calculated (Livak and Schmittgen, 2001). 

 

2.4 Forward genetic screening of cell death mutants and ER Stress mutants 

 

2.4.1 Screening out homozygous lines of Arabidopsis mutants 

 

The screened Arabidopsis mutants are listed in Table. 2-1. If the mutant stock seeds were 

heterozygous, a PCR-based screening method was applied to select out homozygous plants 

for further experiments. Ten seeds from the stock were separately grown in a sand-soil 

mixture (1:3). Small leaves from six-weeks-old plants were separately harvested and genomic 

DNA was extracted with a quick and dirty protocol (see 2.3.1). The T-DNA left border primer 

(LBb1,3), the left and right genomic primers (LP and RP) of T-DNA inserted mutants were 

designed by the T-DNA primer design software of the SALK Institute. 

 

MaxN - Maximum difference of the actual insertion site and the sequence 
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Figure 2-1. SALK T-DNA primer design protocol. T-DNA fragment was inserted into 
genomic DNA. For SALK lines, by using primers of LB, genomic LP and RP, the wildtype 
(WT), heterozygous (HZ), and homozygous (HM) lines will be distinguished. WT lines, with 
no insertion, should get a product of 900-1100 bps (from LP to RP). HM lines, with insertions 
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in both chromosomes, will get a product of 410+N bps (300+N bases: from RP to insertion 
site, plus 110 bases: from LBb1.3 to left border of the vector). HZ lines, with insertion in one 
of the pair chromosomes, will get both products. LP, RP-left, right genomic primers; 
BP-T-DNA border primer LB; N-Difference of the actual insertion site and the flanking 
sequence position; MaxN-Maximum difference of the actual insertion site and the sequence; 
pZone-Regions used to pick up primers; Ext5, Ext3-Regions between the MaxN to pZone, 
reserved not for picking up primers. (http://signal.salk.edu/tdnaprimers.2.html) 
 

Two pairs of PCR were set up: LBb1.3+RP (PCR1) and LP+RP (PCR2). In PCR1, a band at 

the size of 410+N bps in HM or HZ lines was expected. In PCR2; a product of 900-1100 bps 

was expected in WT or HZ lines. The PCR programme was according to 2.3.4. The sequence 

of LB1.3 and applied T-DNA line-specific LP and RP primers are listed in Table 2. The HM 

lines that were confirmed by PCR1 and PCR2 were continuously grown until the seeds were 

harvested for further experiments.  

Table 2-2. Primers used for genotyping of T-DNA insertion lines 

Mutants, 
AGI Primers AT(°C) Sequences 

HtRV  55 5´-CGAAGCTTATGCCAGAAATGGACAA-3´ 
αvpe 

LB3-1  55 5´-TAGCATCTGAATTTCATAACCAATCTCG-3´ 

scrF  55 5´-TTCTCGCTGCCATGGCTAAG-3´ 
βvpe 

CAPS  55 5´-CACCATCTCTTACACGATAGAT-3´ 

Forward 57.3 5´-AGTGGGAAGGTTGTGGATAG-3´ 
γvpe 

Reverse 52.0 5´-CTTTTCCCAAAAATGAACAAG-3´ 

kForward  55 5´-TCATGCAAGGTGCTTATGTGTGA-3´ 

kReverse  55 5´-CGTCCGTACCGTACAGTTGGTA-3´ δvpe 

P06RB 55 5´-TTCCCTTAATTCTCCGCTCATGATC-3´ 

LP 59.76 5´-CGACAGGTGCGACTAAAAATC-3´ bip2, 
AT5G42020 

RP 60.02 5´-AGGTCACATTTGAAGTGGACG-3´ 

dad1, LP 60.31 5´-AATGGCAGTTTTTCATCCCTC-3´ 

http://signal.salk.edu/tdnaprimers.2.html
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AT1G32210 RP 59.78 5´-TTTGTTCTCGTGCACGTAATG-3´ 

LP 59.96 5´-TCTTTGAAATTTGGAACGGTG-3´ sec61α, 
AT2G34250 

RP 59.85 5´-AGGAACAACAAATGGTGATGC-3´ 

  LBb1.3 52.4 5´-ATTTTGCCGATTTCGGAAC-3´ 

 

2.4.2 Production of γvpe dad1double mutant 

 

In order to produce the γvpe dad1double mutant, both γvpe and dad1 mutants were grown in a 

soil-sand mixture (3:1) in the greenhouse for at least 6 weeks. Prior to performing crossings, 

maturing flowers must be present in the bolting Arabidopsis plants. After crossings, 

homozygous γvpe dad1 lines and the relative wild-type lines were screened out at the T2 

generation.  

 

2.4.2.1 Mutant crossings 

 

During the crossing, γvpe was chosen to be the recipient line. An inflorescence from γvpe 

mutant was selected and all flowers that were either too young or already showing white 

petals were removed. 3-10 flowers were left to proceed with emasculation. With the help of a 

very fine forcep (INOX1), sepals, petals, and anthers were carefully removed without 

touching the stigma or style. Subsequently, the mature flowers from dad1 mutants were used 

to rub or dab the stigma of emasculated γvpe plant. In order to avoid pollen contamination, the 

forcep was always cleaned with 70% ethanol after touching flowers of the γvpe and dad1 

mutants. Once crosses were made, the meristem and all smaller buds were pinched out to 

prevent further development. Finally, crossed inflorescences were labelled. After 2-3 days, 

elongations indicated successful crosses. Before harvesting crossed T1 seeds, ovaries were 

kept developing until they started yellowing. 

 

2.4.2.2 Screening out homozygous and wild-type lines of γvpe dad1 mutant 
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For identification of γvpe dad1 mutants, a PCR-based screening method was applied. After 

crossing, the γvpe dad1 T1 seeds were obtained from successful crosses. Around 10 T1 seeds 

were further grown on a soil-sand mixture (3:1) for at least 6 weeks. Thereafter, small leaf 

pieces were separately harvested from each line and DNA was extracted with a quick and 

dirty protocol (see 2.3.1). Using the programme of PCR1 and PCR2 together with genotyping 

primers of γvpe and dad1 mutants described in 2.4.1, the positive γvpe dad1 T1 lines were 

screened out. Subsequently, positive lines were grown for 4 weeks and seeds were harvested. 

Because of segregation of T1 seeds in T2 generation (WT : HZ : HZ : HM = 9:3:3:1), 40 

seeds of a positive T1 line were further grown. By using the PCR-based screening method, 3 

γvpe dad1 T2 HM lines were successfully screened out. The seeds from γvpe dad1 T2 HM 

and WT lines were used for further experiments. 

 

2.4.3 Quantification of fungal colonization by qPCR 
 

For each analysis, mutants as well as their parent lines were prepared at the same time. The 

seeds were sterilized, put on ½ MS or ATS medium in squared petri-dishes (see 2.1.1). 

Around 1 cm of medium in squared petri-dishes was cut before putting the seeds on the plates. 

Three-weeks-old plants were inoculated, and 1 ml of P. indica chlamydospores solution 

(500,000 spores / ml) was well spread on the roots in each plate. At 3 and 7 days after 

inoculation (dai), roots were harvested (3-4 plates / time points) and DNA was extracted by 

using the described CTAB method (see 2.3.1). Subsequently, the colonization level of plant 

roots by P. indica was analysed by qPCR (see 2.3.5). For each sample, 40 ng of genomic 

DNA served as template. AtUBQ5-specific primers were used to amplify plant genomic DNA, 

while the of PiITS (Intragenic transcribed spacer)-specific primers were used to amplify P. 

indica DNA. The cycle threshold (Ct) values of AtUBQ5 and PiITS were extracted and the 

colonization levels of mutants and wildtype were calculated as described above. The 

sequences of AtUBQ5-specific primers were 5´-CCAAGCCGAAGAAGATCAAG-3´ and 

5'-ACTCCTTCCTCAAACGCTGA-3’. The sequences of PiITS-specific primers were 

5´-CAACACATGTGCACGTCGAT-3´ and 5´-CCAATGTGCATTCAGAACGA-3´. 
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2.5 Gene expression analyses of Arabidopsis roots in the colonization of P. indica 

 

In order to investigate how and to which extent P. indica interferes with the ER stress 

response / UPR (unfolded protein response), the kinetic analyses of UPR marker genes were 

performed in both tumicamycin-treated plants and tunicamycin-treated plants, which were 

inoculated with P. indica at 3 days prior to tunicamycin treatment. Gene expression patterns 

were compared in the two kinetic studies. 

Seeds of Arabidopsis ecotype Columbia-0 were grown on ½ MS medium for 3 weeks. 

Non-colonized and P. indica-colonized roots were treated with tunicamycin (5 µg / ml) or 

DMSO (mock). For fungal treatment, roots were inoculated with P. indica chlamydospores 

(500,000 spores ml-1) three days prior to tunicamycin and mock treatment. Roots were 

harvested as follows: 

Table 2-3. Treatment and harvest of roots 

 Treatment 1 Treatment 2 Harvest time points 

KineticTM

(I, II, III) 
Tunicamycin  
(5 µg / ml)  

0, ½, 1, 2, 3 days after 
treatment 1 

KineticMock of TM 

(I, II, III) 
Tween H2O 
(with DMSO)  

0, ½, 1, 2, 3 days after 
treatment 1 

KineticP. indica+TM 

(I, II, III) 

P. indica 
(500,000 
spores/ml) 

Tunicamycin (5 µg / ml) 
(3 days after Treatment 1) 

0, 3 days after treatment 
1 and ½, 1, 2, 3 days after 
treatment 2 

KineticMock of P. 

indica+TM 

(I, II, III) 

P. indica 
(500,000 
spores/ml) 

Tween H2O (with DMSO) 
(3 days after Treatment 1) 

0, 3 days after treatment 
1 and ½, 1, 2, 3 days after 
treatment 2 

Root material was harvested at the indicated time points. Firstly, one plant root from each 

plate was selected to be fixed and stained with WGA-AF 488 and forwarded to microscopical 

inspection of root colonization. P. indica colonization was detected by epifluorescence 

microscopy (see 2.2.1). Secondly, the other root material was grinded to fine powder with 

liquid nitrogen. The RNA was extracted with TRIzol reagent (Invitrogen, Karsruhe, country) 

and, subsequently, cDNA was synthesized as described (see 2.3.4.2). The relative expression 

levels of candidate transcripts were quantified by qRT-PCR using 10 ng cDNA template, 10 µl 

of SYBR Green and 350 nM specific oligonucleotides (see 2.3.5). The sequences of applied 
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primers are listed below. 

 

Table 2-4. Sequences of applied qPCR primers 

AGI code Primer Description Sequences Tm 
(°C) 

Product 
size 
(bp) 

Fwd 5´-CCAAGCCGAAGAAGATCAAG-3´ 
 AtUBQ5 Ubiquitin 

Rev 5'-ACTCCTTCCTCAAACGCTGA-3’ 
60 139 

Fwd 5´-GGAGAAGCTTGCGAAGAAGA-3´ 
AT1G09080 AtBIP3 ERSE-like, 

XBP1-BS-like Rev 5´-ATAACCGGGTCACAAACCAA-3´ 
54 156 

Fwd 5´-AGACTTTGAGCCTCCGTTGA-3´ 
At5g07340 AtCNX2 Calnexin2 

Rev 5´-TCTTCCTCGTCATCCCAATC-3´ 
58 249 

Fwd 5´-ATACGAAGCGAGGAGACGAA-3´ 
AT2G47470 AtPDI ERSE-like, 

XBP1-BS-like Rev 5´-GCAGCCTTCTCGTACTCAGG-3´ 
56 152 

 Fwd 5´-GCCACTAAGGCGATGATGTT-3´ 
At1g77510 AtSPDI ERSE-like 

 Rev 5´-GCTCTCTGCATCACCAACAA-3´ 
56 129 

Fwd 5´-GCCAGTGATCCTCTCTTTGC-3´ 
AT3G10800 AtbZIP28 

Membrane-associated 
basic domain/leucine 

zipper factor 28 Rev 5´-CAGAAGACAGTGCACCAGGA-3´ 
58 187 

Fwd 5´-ACAGGAGATCGGGAGAGGAT-3´ 
AT2G40950 AtbZIP17 

Membrane-associated 
basic domain/leucine 

zipper factor 17 Rev 5´-GCTCCTCGACGTAATGCTTC-3´ 
58 135 

Fwd 5´-CAAAACCACAGTCCCGAGTT-3´ 
AT3G56660 AtbZIP49 

Membrane-associated 
basic domain/leucine 

zipper factor 49 Rev 5´-TGGTCATGAGATGAGGGACA-3´ 
56 105 

Fwd 5´-GGCTGATAAAGTTCTAACCGT-3´ 
AT1G42990 AtbZIP60 

Membrane-associated 
basic domain/leucine 

zipper factor 60 Rev 5´-CCGCATCTCTATTTCTTACTCTC-3´ 
56 188 

Fwd 5´-TTCACGAAAGTTGCAGTTCG-3´ 
AT5G50460 AtSEC61 Membrane-associated 

translocon complex Rev 5´-ACCGACGATGATGTTGTTGA-3´ 
55 105 

Fwd 5´-GCAGCAGCAATGTTAGCAAG-3´ 
AT5G47120 AtBI-1 Arabidopsis Bax 

inhibitor-1 Rew 5´-CACCACCATGTATCCCACAA-3´ 
57 177 
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2.6 Investigation of MAMP-triggered immunity (MTI) in Arabidopsis mutants 

 

In order to investigate whether the applied mutants still have regular MAMP-triggered 

defense responses, series of experiments were performed. 

 

2.6.1 Analyses of flagellin-induced seedling growth inhibition 

 

The seeds of bip2, dad1, and sec61α mutants in addition to seeds of wild-type Col-0 were 

sterilized and grown on ½ MS medium for 2 weeks. Subsequently, seedlings were transferred 

to 4-well multidishes containing liquid full MS medium containing 1% sucrose (10 seedlings 

per line, 1 seedling per well). For flagellin treatment, 1 µM flg22 was added to the medium. 

For mock treatment, mock solution was added to the medium. At 10 days after treatment (dat), 

fresh weight of both flg22- and mock-treated seedlings were measured.  

Dissolving solution                 

0,1% BSA / 0,1 M NaCl 

1,5 g BSA + 8,766 g NaCl 

Add dH2O to 100 ml. 

1 µM flg22-solution                     Mock-solution 

1,5 µl flg22-stock was dissolved in 1 ml      1 ml dissolving solution was added 

dissolving solution and added to 14 ml       to 14 ml liquid full MS (+1% sucrose). 

liquid full MS (+ 1% sucrose).  

Note: Both of the flg22-solution and mock-solution are sterilized with filter membrane. 

 

2.6.2 Analyses of flagellin- or chitin- induced oxidative burst  

 

bip2, dad1, and sec61α mutants in addition to wild-type Col-0 were grown on a sand : 

soil-mixture (V/V=1:3) for around six weeks at short day conditions. Leaves of 6-weeks-old 

plants were cut to obtain 25 mm2 leaf discs. Leaf discs were incubated in glass tubes 
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containing water overnight. Water was removed and 195 µl luminol solution together with 5 

µl phosphate buffer was added. Samples were mixed and either 0.1 µM flg22 or 1 µM 

N-acetylchitooctaose added. Oxidative burst was measured using Berthold Lumat LB 9501 

(Berthold, Bad Widbach) for 40 minutes. 

 

1 mM luminol stock (5-Amino-2,3-Dihydro-1,4-Phthalazinedione) 

Dissolve 1,77 mg luninol in 1 ml 10 mM NaOH (with sonication for 10-30 sec). 

Add 9 ml H2Odest.  

Horseradish peroxidase stock 

1 mg/ml stock solution (2U / ml) 

Luminol assay solution

2 ml      Lumino stock 

100 µl    Horseradish peroxidase stock 

Add H2Odest to 100 ml 

Wrap the tube with aluminium foil and keep solution in dark. 

Phosphate buffer 

200 mM        Na2HPO4 81%, 7,12g / 200 ml 

200 mM        NaH2PO4 19%, 5,52g / 200 ml 

Adjust solution to pH 8.0 

 

2.7 Investigation of ER stress response in Arabidopsis plant roots colonized by P. indica 

 

2.7.1 Tunicamycin assay on mock-treated and P.indica-colonized Arabidopsis 
Columbia-0 plant roots 

 

Col-0 seeds were sterilized and grown on squarred petri dishes with full MS gelrite containing 

1% sucrose for 10 days. Thereafter, plants were either inoculated with P. indica or 

mock-treated. At 3 dai, seedlings were transferred to liquid MS solution containing 1% 

sucrose. 25 ng/ml tunicamycin or DMSO was added to these plants. Plant fresh weights were 
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measured at 7 dat. 

 

2.7.2 Investigation of BIP protein accumulation in Arabidopsis roots in response to 
tunicamycin treatment and in dependence of P. indica colonization 

 

2.7.2.1 Plant preparation and protein extraction 

 

Arabidopsis Col-0 seeds were sterilized and grown on ½ MS medium under short day 

conditions. Roots of three-weeks-old plants were performed the following treatments. Firstly, 

the roots were inoculated with P. indica or mock-treated and harvested at 0, 3 and 7 days after 

treatment; secondly, the roots were treated with 5 µg/ml tunicamycin solution and harvested at 

1 dat; thirdly, the roots were inoculated with P. indica at 3 days prior to tunicamycin or 

DMSO (mock) treatment, and root samples were harvested at 2 days after treatment.   

All root samples harvested at indicated time points were grinded to fine powder using liquid 

nitrogen. For each sample, around 100 mg root material was added to 400 µl extraction buffer. 

After centrifugation at 14,000 rpm and at 4°C for 20 minutes, the supernatant was collected 

containing the protein extract. Protein concentrations were measured with the Bradford assay. 

Therefore, a standard curve with bovine serum albumin (BSA) was prepared. Protein 

absorbance was measured at 595 nm using a spectrometer (Biorad, Munich, Germany) in 

order to estimate proteins concentrations. Subsequently, 20 µg of each protein sample was 

obtained using 5 X sample reducing buffer (Pierce, Rockford, USA) and MiliQ H2O. Samples 

were denatured at 95°C for 5 minutes. Samples were stored at -20°C until use. 

Protein extraction buffer 

250 mM sucrose 

50 mM HEPES-KOH pH 7.5 

5% glycerol 

1 mM Na2MoO4

25 mM NaF 

10 mM EDTA 

2 mM DTT 



 

45 

0,5% Triton X-100 

Protease inhibitor cocktail tablet (Roche, Mannheim, Germany) was freshly added and can be 

stored at -20°C for at least 12 weeks. 

 

2.7.2.2 SDS-PAGE and western blotting analysis of BIP protein 

 

The acrylamide gels (1 mm, 10%) including stacking gel and separation gel were prepared as 

described below. PAGE system was assembled and filled with 1 X SDS running buffer. The 

denatured samples were loaded on the gel and run at 100 V for ~1,5 h until bromophenol blue 

front reached the end of the gel. Thereafter, the apparatus was dissembled and gels were 

transferred to 1 X TOWBIN buffer.  

For western blot analysis, Roti-PVDF membrane with a pore size of 0.45 µm (Karl Roth, 

Karlsruhe, Germany) was cut and activated by methanol. Subsequently, the western sandwich 

was assembled as described below and put in cold 1 X TOWBIN buffer. 
Cathode  

---------------- 
Black grid of clamp 

Sponge 
2 Watman paper 

Gel (facing the cathode) 
PVDF membrane 
2 Watman paper 

Sponge 
Transparent/red grid of clamp  

----------------- 
Anode 

After blotting (80 V for 2h or 25 V overnight, 4°C), proteins are transferred to PVDF 

membrane. Thereafter, the membrane was blocked with 1 X TBS-Tween 20 / 5% milk powder 

buffer (2h at RT or overnight at 4°C) before further incubation with anti-BIP antibody (Santa 

Cruz, Heidelberg, Germany; Dilution factor = 1:1000) and alkaline phosphatase-conjugated 

anti-rabbit antibody (Sigma-Aldrich, Munich, Germany; Dilution factor = 1:5000). After 

washing of incubated membranes with 1 X TBS-Tween 20 (4 times, 5 minutes each), the 

membrane was further washed in alkaline phosphatase (AP) buffer for 10 minutes. Finally, by 
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incubating the membrane with Immunstar AP substrate (Biorad, Munich, Germany) for 5 

minutes, signals were detected using X-ray films. 

Polyacrylamide gel (for 2 mini-gels, 10%) 

Seperationgel:                                  Stacking gel: 

2,5 ml  lower gel 4 X buffer                    2,5 ml  upper gel 4 X buffer 

4,9 ml  H2ODEPC                                               6,6 ml  H2ODEPC

2,5 ml  acrylamide solution 40%             0,8 ml  acrylamide solution 40% 

50 µl  10% ammonium persulfate           100 µl  10% ammonium persulfate 

5 µl  TEMED                            10 µl  TEMED 

Note: Ammonium persulfate is always freshly prepared. 

10x SDS running buffer (pH 8,3)          1 X TOWBIN buffer                 

250 mM  Tris                          25 mM    Tris 

1,92 M   Glycine                      192 mM  Glycine 

1%      SDS                         20%     Methanol 

Add H2Odest to 1 Liter                    Add H2Odest to 1 Liter 

20xTBS-T (Tris Buffered Saline Tween)    Alkaline PhosphataseBuffer (AP buffer) 

3 M NaCl                                100 mM TRIS pH = 9.5 

200 mM Tris pH=8                        100 mM NaCl 

1% Tween-20                             50 mM MgCl2 

 

2.8 Investigation of caspase-dependent vacuolar cell death in Arabidopsis plant roots 
colonized by P.indica 

 

2.8.1 Caspase 1 and vacuolar processing enzyme activity assays 

 

In this assay, bip2, dad1, γvpe, vpe-KO, γvpe dad1 mutants together with wild-type Col-0 

plants were grown on ½ MS medium for three weeks. Subsequently, three-weeks-old plant 

roots were inoculated with P. indica or mock-treated, and roots were harvested at 7 dai. A 

buffer containing 100 mM sodium acetate (pH 5,5), 100 mM NaCl, 1 mM EDTA and 1 mM 

phenylmethylsulfonyl fluoride was applied and root material homogenized. Root extracts 



 

47 

were collected after centrifugation at 5500 rpm for 5 minutes. In order to measure caspase 1 

and VPE activity, 1 mM fluorogenic caspase 1 substrate (Ac-YVAD-MCA) and VPE substrate 

(Ac-ESEN-MCA) (Peptide Institute, Osaka, Japan) were added to the root extracts. After 

incubation for 15 minutes and 30 minutes, fluorescence intensities were measured at 465 nm 

after excitation at 360 nm using a fluorescence microplate reader (TECAN infinite® 200, 

Männedorf, Switzerland). 

 

2.8.2 Cell death assay 

 

In this assay, bip2, dad1, γvpe, vpe-KO, γvpedad1 mutants together with wild-type Col-0 

plants were grown on ½ MS medium for two weeks. Subsequently, two-weeks-old plant roots 

were either treated with tunicamycin solution (5 µg / ml) or inoculated with P. indica. At 3 

days after tunicamycin treatment and 7 days after P. indica inoculation, root samples were 

segmented to 1.5 cm pieces (8 segments / line) and transferred to liquid ½ MS medium 

containing 2 µl of fluorescein diacetate (FDA) stock solution. After 10 minutes incubation, 

FDA-stained root segments were washed 5 times and the fluorescence intensities were 

measured at 535 nm after excitation at 485 nm using a fluorescence microplate reader 

(TECAN infinite® 200, Männedorf, Switzerland). 

 

Fluorescein diacetate stock solution 

Dissolve 5 mg fluorescein diacetate in 1 ml aceton. 
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3. Results 

 

3.1 P. indica impairs the integrity of the endoplasmic reticulum 

 

3.1.1 Ultrastructural studies on P. indica-colonized Arabidopsis root cells by 
transmission electron microscopy 

 

In order to observe and monitor subcellular changes associated with P. indica colonization of 

Arabidopsis root cells, transmission electron microscopy (TEM) was performed. These 

studies revealed an initial biotrophic colonization up to 3 days after inoculation (dai), which 

was followed by a cell death-associated colonization (> 3 dai) of Arabidopsis roots by P. 

indica. Cell death-associated colonization was characterized by the lysis of cytoplasm, and 

then followed by swelling of the endoplasmic reticulum as well as tonoplast rupture, which is 

an indication of vacuolar collapses. Nevertheless, plastids and mitochondria remained 

ultrastructurally unaltered (Fig. 3-1A, B).  

 

3.1.2 Confocal laser-scanning microscopy studies on P. indica-colonized Arabidopsis 
roots 

 

The TEM studies indicated ER disintegration by P. indica. In order to substantiate the 

indications of impaired ER integrity, colonization of Arabidopsis line GFP-tmKKXX was 

analyzed by confocal laser-scanning microscopy. The KKXX is a C-terminal signal of tomato 

Cf-9 disease resistance gene, which encodes a type I membrane protein carrying a cytosolic 

dilysine motif. Previous studies on mammals and plants demonstrated that this motif 

promotes the retrieval of type I membrane proteins from the Golgi apparatus to the ER. In the 

above line, green fluorescent protein was fused to the transmembrane domain of Cf-9 and 

expressed in Arabidopsis (Benghezal et al. 2000). In this study, P. indica-colonized 

GFP-tmKKXX roots were stained with WGA-AF488 and the fungal intracellular hyphae were 

visible. The confocal fluorescence images indicated ER structure collapses in colonized root 



 

cells. This collapse was restricted to P. indica-colonized root cells as ER remained intact in 

adjacent non-colonized root cells (Fig. 3-1C).  

Taken together, the cytological studies indicated that the integrity of the ER was impaired by 

P. indica. 
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A 

C B 

 
Figure 3-1. ER disintegration in Arabidopsis root cells during cell death-associated 
colonization by P. indica.  
A, B: Transmission electron micrographs (TEM) show intracellular fungal hyphae. A: Cell 
death-associated colonization at which the ER is partially swollen (arrowheads). Intact ER is 
also visible (arrows). Tonoplast of non-colonized neighbouring cells is intact. B: At later cell 
death stages, the ER disintegrates (arrows) and vacuolar collapse (arrowheads) is visible. H, 
hyphae; CW, cell wall; M, mitochondria; V, vacuole. Bars = 2 µm. C: Confocal microscopy of 
P. indica-colonized GFP-tmKKXX (ER marker) expressing plant roots. The fungus penetrated 
(arrows) two cells and intracellular hyphae are visible (arrowheads). The ER of the lower cell 
is still intact, while ER disintegration is associated with colonization of the upper cell. Note 
the ER of surrounding, non-colonized cells is intact. P. indica was stained with WGA-AF488. 
Intracellular hyphae are faintly stained due to limited dye diffusion. WGA-AF488 and GFP 
were excited with a 488 nm laser line and detected at 505-540 nm using a TCS SP2 CLSM 
(Leica). Bar = 20 µm. 
 

3.2 Impaired ER function improves mutualistic root colonization  

 



 

3.2.1 Quantification of P. indica colonization on roots by qRT-PCR 
 

As the cytological analyses demonstrated colonization-associated ER impairment, the 

question arose to what extend the disturbed ER function would affect fungal colonization 

success. Therefore, Arabidopsis mutants lacking central components of the ER processing 

machinery were selected. These mutants, which were comprimised in the ER-resident 

chaperone BIP2 (luminal binding protein 2, bip2), the DAD1 (defender against apoptotic 

death 1, dad1, a subunit of the oligosaccharide transferase complex [OST]), or in a component 

of the SEC61 translocon complex (SEC61α, sec61α), were analyzed for P. indica colonization. 

To this end, bip2, dad1, sec61α, and their parent line Col-0 were checked for altered 

colonization at 3 and 7 dai with P. indica. The relative amount of fungal DNA in plant roots 

was determined by qRT-PCR. All mutants exhibited enhanced fungal colonization rates at 7 

dai compared with Col-0 (Fig. 3-2).  
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Figure 3-2. Increased P. indica colonization of mutants sec61α, dad1, and bip2 at the cell 
death-associated colonization stage (7 dai).  
Three-week-old Arabidopsis Col-0 plants as well as sec61α, dad1, and bip2 mutants were 
inoculated with P. indica. Root samples were harvested at 3 and 7 dai. The fungal biomass 
were determined by qRT-PCR at biotrophic (3 dai) and cell death-associated colonization 
stages (7 dai) using AtUBI5 and PiITS-specific primers. The root fungal colonization levels in 
all mutants were normalized to Col-0 colonization. Results shown are means of three 



 

independent experiments. For each experiment, around 200 plants were analyzed per line at 
each time point. Asterisks indicate significance at P < 0.05 (*), 0.01 (**) analyzed by 
Student’s t-test. 
 

3.2.2  Analyses of MAMP-triggered immune responses on investigated Arabidopsis 
mutants 

 

Altered colonization might be explained by malfunctional immunity in these ER processing 

mutants. Therefore, it was necessary to elucidate their immune responsiveness to 

microbe-associated molecular patterns (MAMPs). A series of experiments were performed. In 

a first assay, two-week-old plant roots from sec61α, bip2, dad1 mutants and their parent line 

Col-0 were treated with flg22 or respective mock solution. Subsequently, flg22-induced 

seedling growth inhibition (SGI) was analyzed in all plants. Plant biomass of Col-0 and all 

mutants was significantly reduced by flg22 treatment, as opposed to flg22-insensitive fls2c 

mutant (Fig. 3-3). This indicated sensitivity of mutant seedlings to the MAMP flg22. 
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Figure 3-3. flg22-triggered growth inhibition in seedlings of sec61α, dad1 and bip2 
mutants.  
Roots of two-week-old WT plants (Col-0) together with sec61α, dad1, bip2, and fls2c (flg22 
insensitive) mutants were challenged with 10 µM flg22. All mutants displayed WT-like 
growth inhibition. fls2c mutants served as flg22-insensitive control. Plant fresh weights were 
determined 10 days after flg22 treatment. Data represents mean values of three independent 
biological experiments.  
 
 
Secondly, the occurrence of flg22-, or chitin-induced oxidative burst in mutants and wildtype 

Col-0 roots were analysed. Transient root oxidative bursts upon treatment with flg22 or chitin 

were observed in bip2, dad1, sec61α mutants and Col-0 but not in flg22- and 

chitin-insensitive mutants fls2c and cerk1-2, respectively (Fig. 3-4). Taken together, the data 

indicated the responsiveness of the mutants to chitin and flg22-triggered immunity. 

 

 

 

52 
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B
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chitin

Figure 3-4. flg22- or chitin-induced ROS production in sec61α, dad1, and bip2 mutants. 
Roots of two-week-old WT plants together with sec61α, dad1, bip2, fls2c (flg22 insensitive), 
and cerk1-2 (chitin insensitive) mutants were challenged with 0.1 µM flg22 (A) or 1 µM 
N-acetylchitooctaose (chitin) (B). fls2c and cerk1-2 mutants served as flg22- or 
chitin-insensitive control, respectively. Oxidative bursts were measured in 10 mg root 
segments (1 cm each segment) by a luminol-based assay directly after application of 
respective MAMPs. Values are given as relative light units (RLU) over time. Data displayed 
are means with standard errors of four independent measurements per treatment of one 
biological experiment. Experiments were repeated thrice with similar results. 
 
 

3.3 P. indica-colonized plants are hypersensitive to ER stress 

 

Since fungal colonization analyses indicated improved colonization of mutants lacking crucial 

components of the ER processing machinery, the question arose whether P. indica 

colonization affects ER stress tolerance of plants. A pharmaceutical approach with the 

application of ER stress inducer tunicamycin was performed. Tunicamycin specifically blocks 

dolichol synthesis and thereby inhibits protein N-glycosylation. In this assay, both of P. 

indica-colonized (3 dai, biotrophic stage) and mock-treated (3 dat) Col-0 plants were treated 

with tunicamycin (TM, 25 ng/ml) or DMSO (control). Plant fresh weights were determined at 

7 days after treatment. In non-colonized plants, TM treatment resulted in a ~ 20% reduction of 

fresh weight compared to DMSO-treated plants. While in P. indica-colonized plants, TM 



 

reduced the plant biomass significantly by ~ 60% (Fig. 3-5). This indicated that P. 

indica-colonized plants were hypersensitive to ER stress.  

 

 

 

Figure 3-5. P. indica-colonized plants are hypersensitive to ER stress.  
Arabidopsis Col-0 plants were grown on MS gelrite plates containing 1% sucrose for 10 days. 
Thereafter, plants were inoculated with P. indica or mock-treated. Three days later, seedlings 
were transferred to liquid MS solutions (+ 1% sucrose) containing 25 ng/ml tunicamycin or 
DMSO (mock). Fresh weights of seedlings were determined at 7 days after treatments. The 
experiment was repeated three times with similar results. For each experiment, 10 plants were 
analyzed per treatment. Letters indicate significance analyzed by Student’s t-test. 
 

3.4 The unfolded protein response is suppressed by P. indica 

 

The cytological and pharmaceutical data indicated the occurrence of ER stress in plant roots 

during P. indica colonization; it prompted us to investigate whether root colonization resulted 

in an activation of ER stress signaling. In order to elucidate this question, the unfolded protein 

response (UPR) in P. indica-colonized roots was analyzed at transcriptional and translational 

levels. 
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3.4.1 Gene expression analyses of ER stress sensors and UPR markers in P. 

indica-colonized Arabidopsis roots 

 

Arabidopsis Col-0 plant roots were inoculated with P. indica or treated with mock solution. P. 

indica-colonized and mock-treated roots were harvested at 1, 3, and 7 dai in order to monitor 

gene expression levels of putative ER stress sensors (bZIP17, bZIP28, bZIP60) and markers 

of the unfolded protein response (UPR) (sPDI, BIP3, CNX2) by qRT-PCR. Interestingly, none 

of the tested genes was induced during fungal colonization (Fig. 3-6). Moreover, expression 

levels of bZIP28, BIP3, and CNX2 were even suppressed in colonized roots at various time 

points (Fig. 3-6).  

 

 

 

Figure 3-6. ER stress signaling is not induced during root colonization by P. indica. 
Expression of ER stress sensors (bZIP17, bZIP28, bZIP60) and markers for the unfolded 
protein response (sPDI, BIP3, CNX2) was measured by qRT-PCR. For the analyses, 
three-week-old Arabidopsis WT plants were inoculated with P. indica or mock-treated. Root 
samples were harvested at 1, 3 and 7 dai. The obtained Ct thresholds of the candidate genes 
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were related to the Ct thresholds of the housekeeping gene AtUBI5 using the ∆∆Ct method. 
Data shown represent fold changes of candidate genes and display the ratio of candidate 
expression in colonized roots relative to mock-treated roots. The values are means with 
standard error and base on three independent biological experiments.  
 

Subsequently, in order to elucidate if the selected ER stress markers were induced by ER 

stress in roots and if P. indica might suppress ER stress signaling, another experiment was set 

up, in which both non-colonized and P. indica-colonized roots (3 dai, biotrophic stage) were 

treated with tunicamycin (TM, 5 µg/ml) or DMSO (control). The root samples were harvested 

at 1 and 3 days after TM treatment and the expression levels of ER stress sensors (bZIP17, 

bZIP28, bZIP60) and UPR markers (sPDI, BIP3, CNX2, BI-1, SEC61γ) were analyzed by 

qRT-PCR. The analysis indicated that all tested genes (except bZIP28) were induced by TM 

treatment (Fig. 3-7). By contrast, all genes (except bZIP28) exhibited a reduced induction in P. 

indica-colonized roots upon TM treatment (Fig. 3-7).  
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Figure 3-7. Tunicamycin-induced ER stress is suppressed by P. indica.  
Three-week-old Arabidopsis WT plants were inoculated with P. indica (Pi) or mock-treated. 
Three days later, inoculated and mock-treated plants were treated with tunicamycin (TM, 5 
µg/ml) or DMSO (control). Root samples from different treatments (Pi + TM, Pi + control; 
mock + TM, mock + control) were harvested at 1 and 3 dat. Data represent the Ct thresholds 
of the indicated candidate genes relative to the Ct thresholds of the housekeeping gene 
AtUBI5 using the ∆∆Ct method. ∆∆Ct values obtained from Pi + TM samples were divided by 
∆∆Ct values of Pi + control to obtain the displayed fold changes. Similarly, ∆∆Ct values of 
samples mock + TM were divided by ∆∆Ct values of mock + control. The values are means 
with standard error and base on three independent biological experiments. 
 

3.4.2 Accumulation of UPR marker BIP in P. indica-colonized Arabidopsis roots 
 

In complementary analyses, we investigated if impaired ER stress signaling was also 

detectable at the protein level. The regulatory protein, luminal binding protein (BIP), is one of 

ER-localized chaperones. It functions in cotranslational folding and modification of secreted 

proteins (Koizumi, 1996). The expression of BIP is induced in reponse to tunicamycin or 

heat-shock stress (Koizumi, et al., 1999). In the presented study, BIP accumulation was 

investigated in Arabidopsis roots during P. indica colonization. First, I tested the 

accumulation of the luminal binding protein (BIP) in dependence of P. indica colonization as 

described above for transcriptional analyses (Fig. 3-8A). P. indica-colonized and 

non-colonized roots were harvested at 0, 3, and 7 dai and forwarded to immunoblot analyses 

using the Arabidopsis polyclonal anti-BIP antibody. In analogy to our gene expression 

analyses by qRT-PCR, BIP protein levels were reduced in colonized roots compared to 

non-colonized roots at 3 and 7 dai (Fig. 3-8A). In addition, BIP accumulation after TM 

treatment in dependence of P. indica colonization was monitored. For this, P. indica-colonized 

(3 dai) and non-colonized roots were treated with TM or DMSO (control) and roots were 

harvested two days after treatment. The immunoblot analyses with anti-BIP antibody revealed 

that BIP accumulation was clearly increased by TM treatment in non-colonized roots, which 

indicated translational induction of UPR (Fig. 3-8B). By contrast, BIP accumulation was 

obviously suppressed by P. indica in TM-treated roots.  

Taken together, the analyses indicated that P. indica is affecting ER stress signaling at 

transcriptional and translational levels. 



 

 
Figure 3-8. ER-localized BIP protein accumulation is impaired by P. indica.  
A: BIP protein accumulation during P. indica colonization. For the analyses, Arabidopsis WT 
roots were inoculated with P. indica or mock-treated and harvested at 0, 3 and 7 dai for 
protein extraction. B: BIP protein accumulation indicative of ER stress in dependence of TM 
treatment and P. indica inoculation. Samples were run on the same blot but the lanes were 
rearranged for presentation. For the analyses, Arabidopsis WT roots were inoculated with P. 
indica or mock-treated. At 3 dai (biotrophic stage), roots were treated with TM (5 µg /ml) or 
DMSO (control) and harvested 2 dat. For all experiments, 20 µg total protein per sample was 
separated by 10% SDS-PAGE. Immunoblot analyses were performed with Arabidopsis 
anti-BIP antibodies. The staining with coomassie Brilliant Blue indicates equal loading of all 
samples. 
 

 

3.5 Vacuole-mediated cell death is downstream of ER stress induction and affects 

mutualistic root colonization 

 

The previous TEM studies indicated the co-occurrence of ER swelling and vacuolar collapse 

in colonized cells at later interaction stages (Fig. 3-1B). Therefore, I followed the question 
58 
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whether vacuole collapse is essential for cell death-associated root colonization. Vacuolar 

processing enzymes (VPEs) are summarized in a small gene family consisting of four 

members (αVPE, βVPE, γVPE, δVPE). VPEs possess proteolytic activities and cleave 

caspase-1-specific substrates (Hatsugai et al., 2006). In mammalian system, programmed cell 

death depends on caspase activities (Cohen, 1997). In plants, it was reported that VPEs 

mediate vacuolar collapse and are important for the execution of virus-induced cell death 

(hypersensitive response) (Hatsugai et al. 2004). In a first experiment, fungal colonization of 

all vpe mutants was determined at 3 and 7 dai by qRT-PCR.  

 

3.5.1 Deficiencies in vacuolar processing enzymes alter P. indica colonization of roots 
 

In this assay, we quantified root colonization of αvpe, βvpe, γvpe, δvpe, and the null mutant 

vpe-KO at 3 and 7 dai by qRT-PCR. Compared to wild-type plants, altered colonization 

patterns were observed in vpe mutants. In αvpe and γvpe mutants, the relative amount of 

fungus was efficiently reduced at 7 dai. In addition, γvpe mutant showed an increased fungal 

colonizaion at 3 dai. βvpe and δvpe mutants showed an (non-significant) enhancement in 

fungal colonization at 3 and 7 dai (Fig. 3-9). Notably, the relative fungal colonization in 

vpe-KO mutant revealed a higher colonization level at earlier stages (3 dai) similar to that in 

γvpe, but a lower colonization level at later stages (7 dai) (Fig. 3-9).  

 



 

 

 

Figure 3-9. P. indica colonization of Arabidopsis roots is dependent on vacuolar 
processing enzymes (VPEs).  
For the analysis, three-week-old Arabidopsis WT, αvpe, βvpe, γvpe, δvpe and vpe null mutants 
(vpe-KO) were inoculated with P. indica. Root samples were harvested at 3 and 7 dai. The 
fungal biomass was determined at both biotrophic (3 dai) and cell death-associated 
colonization stages (7 dai) by qRT-PCR using AtUBI5 and PiITS-specific primers. The fungal 
colonization levels of all mutants were normalized to WT colonization. Results shown are 
means of three independent experiments. For each experiment, around 200 plants were 
analyzed per line at each time point. Asterisks indicate significance at P < 0.05 (*) analyzed 
by Student’s t-test. 
 

3.5.2 Analyses of P. indica colonization on γvpedad1 roots  
 

Since severe ER stress results in cell death in mammalian organisms, we were interested if 

VPE-mediated cell death might be downstream of ER stress induction. In order to elucidate 

this question, a γvpe dad1 double mutant was generated. In a first experiment, P. indica 

colonization of γvpedad1 roots was determined by qRT-PCR. 
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3.5.2.1 Production of double mutant γvpedad1 by PCR-based screening analyses 

 

Based on the colonization phenotype of γvpe mutant, it was chosen as the recipient line and 

crossed with dad1 mutant. Seeds of γvpe dad1 F1 generation were obtained. Considering the 

possibility of false crossing, F1 seeds (~10 seeds) were separately grown on sand: soil mixture 

(1:3) to confirm successful crossing in a PCR-based approach. Therefore, six-week-old plant 

leaves were separately harvested and genomic DNA of each plant was extracted. Two PCR 

reactions were performed, which identified γvpe and dad1 mutant-specific T-DNA insertions 

in the selected lines. The positive lines #2 and #12, which contained γvpe and dad1 T-DNA 

insertions, were used to receive homozygous F2 seeds (Fig. 3-10). 

 

M             #2  #12       WT  M          #2   #12      WT   

PCR1: Mut. γvpe PCR1: Mut. dad1  

 

Figure 3-10. PCR-based screening of double mutant γvpe dad1 F1 seeds.  
The F1 seeds were separately grown on sand : soil mixture (1:3) for six weeks. The genomic 
DNA of each line was extracted and used as PCR template. In PCR1: the γvpe mutagenized 
fragment (Mut. γvpe) was detected by LBb1.3 and RPγvpe primers. In PCR1: the dad1 
mutagenized fragment (Mut. dad1) was detected by LBb1.3 and RPdad1 primers. In both 
PCR reactions, respective PCR products were obtained for lines #2 and #12. Arabidopsis 
Col-0 plant DNA served as control. 
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Segregation in the F2 generation is expected as follows: WT:HZ:HZ:HM = 9:3:3:1. F1 γvpe 

dad1 lines were confirmed by PCR, the F2 seeds from F1 line #2 were subsequently harvested 

for further screening of homozygous γvpe dad1 lines. A 3-Primer-PCR-based screening as 

described in chapter 2.4.1 was applied. For detection of the dad1-specific T-DNA insertion, a 

PCR product should be amplified in homozygous lines using LB- and RPdad1-specific 

primers. By contrast, amplification should fail using LP- and RP-specific primers. Similarly, a 

PCR product should be amplified in homozygous γvpe T-DNA insertion lines using LB- and 

RPγvpe-specific primers. In homozygous wild-type lines, a PCR product should be amplified 

using LP- and RP-specific primers. From 20 F2 lines, homozygous γvpedad1 mutant (#3) and 

wild-type plant (#17) were identified and forwarded to further experiments (Fig. 3-11).   
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Figure 3-11. Identification of homozygous γvpedad1 lines by 3-Primer-PCR method. 
(A) Schematic representation of a T-DNA insertion. The position of the T-DNA insertion is 
shown as a black box above the gene that is symbolized by the green arrow. The primers LB 
and RP are used to detect the presence of the insertion in the progeny of the original mutant 
(PCR1). The primers LP and RP are used to detect the presence of the wildtype version of the 
gene (PCR2). (B) PCR analysis for dad1-specific T-DNA insertion in 20 F2 plants. Presence 
of a PCR product in PCR1 but not in PCR2 indicates that the corresponding plant is a 
homozygous mutant (plants 1, 2, 3, 4, 7, 11). Amplification of a fragment in PCR2, but not in 
PCR1 implies that the corresponding line is homozygous wildtype (plant 6, 8, 10, 14, 17, 19). 
The amplification of products in both PCR1 and PCR2 suggests the plant is heterozygous. 
The DNA of dad1 mutant and Col-0 are used as respective control in PCR1 and PCR2. (C) 
PCR analysis for γvpe-specific T-DNA insertion in 20 F2 plants. Presence of a PCR product in 
PCR1 but not in PCR2 indicates that the corresponding plant is a homozygous mutant (plants 
3, 15, 19). Amplification of a fragment in PCR2, but not in PCR1 implies that the 
corresponding line is homozygous wildtype (plant 5, 11, 12, 17). The amplification of 
products in both PCR1 and PCR2 suggests the plant is heterozygous for the insertion. The 
DNA of γvpe mutant and Col-0 are used as respective control in PCR1 and PCR2. 
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3.5.2.2 Quantification of P. indica colonization on γvpe dad1 roots 

 

Homozygous γvpe dad1 (3# line) and wildtype plants (17# line) were inoculated with P. 

indica. Root colonization was determined by qRT-PCR at 3 and 7 dai. Compared with 

wild-type plants, γvpe dad1 displayed reduced colonization at 7 dai (Fig. 3-12) which was 

comparable to the colonization of γvpe at this timepoint (Fig. 3-12). These data implicated 

that P. indica might force ER stress-induced cell death during root colonization that might be 

executed by VPEs.  

 

 

Figure 3-12. P. indica colonization of single mutant γvpe and dad1 compared to 
colonization of the double mutant γvpe dad1. 
For the analysis, three-week-old Arabidopsis WT, dad1, γvpe and γvpedad1 mutants were 
inoculated with P. indica. Root samples were harvested at 3 and 7 dai. The fungal biomass 
were determined by qPCR at both biotrophic (3 dai) and cell death-associated colonization 
stages (7 dai) using AtUBI5 and PiITS-specific primers. Root colonization levels in all 
mutants were normalized to WT colonization. Results shown are means of three independent 
experiments. For each experiment, around 200 plants were analyzed per line at each time 
point. Asterisks indicate significance at P < 0.05 (*) analyzed by Student’s t-test. 
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3.6 VPE and caspase-1 activities are enhanced in P. indica-colonized roots 

 

VPEs were shown to have protease activities, which are detectable as VPE and caspase-1 

activity. These activities were shown to be important for plant cell death execution (Hatsugai 

et al. 2004, Kuroyanagi et al. 2005). To confirm the significance of vacuolar-mediated cell 

death for root colonization, VPE- and caspase-1 activities were measured in wild-type, γvpe, 

vpe-KO, dad1, and γvpedad1 roots in dependence of P. indica colonization. An assay for VPE 

and caspase activities was set up to measure VPE- and caspase-1 activities in root extracts 

from P. indica-colonized and non-colonized roots during cell death-associated colonization (7 

dai). In this assay, either 1 mM of VPE-specific substrate Ac-ESEN-MCA or 

caspase-1-specific substrate Ac-YVAD-MCA was applied to root extracts. Respective 

protease activities were determined spectrometrically by measuring VPE- and 

caspase-1-specific cleavage of the fluorophore 4-metyl-coumaryl-7-amide (MCA). The results 

indicated that both VPE and caspase-1 activities were increased in P. indica-colonized 

compared to non-colonized roots (Fig. 3-13A). As expected, enzyme activities were weakly 

detectable in vpe-KO (Fig. 3-13A). Similarly, enzyme activities were hardly detectable in γvpe 

roots. Interestingly, although non-colonized dad1 roots displayed VPE and caspase-1 

activities as observed in Col-0 roots, both enzyme activities were strongly enhanced in 

colonized dad1 roots and even higher when compared to respective wild-type roots (Fig. 

3-13A). In order to confirm whether reduced colonization of γvpe dad1 might be associated 

with altered enzyme activities, VPE- and caspase-1 activities were measured in γvpe dad1 

roots in dependence of P. indica colonization. Enzyme activities were hardly detectable in 

colonized or non-colonized γvpe dad1 roots and resembled enzyme activities detected in γvpe 

(Fig. 3-13B). In summary, the results of the enzyme activity assay correlated with the 

colonization data (Fig. 3-2, 3-9, 3-12). It indicated that VPE- and caspase-1 activities might 

be essential for cell death execution and, thus, colonization success. 

 



 

 

 

Figure 3-13. VPE and caspase-1 activities are enhanced during root colonization by P. 
indica.  
A,B: VPE and caspase-1 activities during cell death-associated colonization of roots by P. 
indica. Three-week-old Arabidopsis WT and mutant plants were inoculated with P. indica or 
mock-treated. Root samples were harvested at 7 dai (cell death-associated colonization stage). 
For the assay, 100 nM VPE substrate of Ac-ESEN-MCA or caspase-1 substrate 
Ac-YVAD-MCA were added to root extracts to determine VPE and caspase-1 activities, 
respectively. Fluorescent intensities were spectrometrically detected at 465 nm after excitation 
at 360 nm. The values are given as relative fluorescence units (RFU). Data displayed are 
means with standard errors of four independent measurements per treatment of one biological 
experiment. Experiments were repeated thrice with similar results. Asterisks indicate 
significance between P. indica-colonized and non-colonized roots at P < 0.05 (*), 0.01 (**), 
0.001 (***) analyzed by Student’s t-test. 
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3.7 ER dysfunction enhances P. indica- and TM-induced cell death in a VPE-dependent 

way 

 

In order to relate the enzyme activities and colonization studies to the occurrence of cell death, 

a fluorescein diacetate (FDA)-based cell death assay was performed. Therefore, root segments 

were stained with FDA. In viable cells, esterases will cleave off the fluorescein and the degree 

of cleavage as indication of cell viability can be spectrometrically quantified. In a first assay, 

bip2, dad1, vpe-KO, γvpe, γvpe dad1 mutants as well as respective wild-type plants were 

treated with tunicamycin (TM) and root segments were stained with FDA at 3 days after 

treatment (dat). The results showed that bip2 and dad1 mutants had ~ 20% less fluorescence 

intensity than wild-type segments, which indicated a reduced number of living cells (Fig. 

3-14A). By contrast, vpe-KO and γvpe mutants showed an increase of fluorescence intensity 

(> 30%) compared to wild-type root segments, which was an indication for an elevated 

number of living cells. Similarly, root segments of γvpe dad1 also exhibited enhanced 

fluorescence intensities (Fig. 3-14A). In a second assay, we determined FDA cleavage in the 

same mutants during cell death-associated colonization by P. indica (7 dai). Similar to the 

results obtained in the TM assay, bip2 and dad1 exhibited reduced fluorescence intensities, 

while fluorescence intensities were enhanced in vpe-KO, γvpe, and γvpe dad1 (Fig. 3-14B). 

These analyses confirmed enhanced ER stress- and P. indica-induced cell death in plants that 

are impaired in ER function. In addition, ER stress- and P. indica-induced cell death is 

dependent on γVPE function. 



 

 

 
Figure 3-14. Tunicamycin- and P. indica-induced root cell death depends on γVPEs and 
is enhanced in mutants that are impaired in ER function.  
A,B,: Fluorescein diacetate (FDA)-based assay indicative of cell death in dad1, bip2, γvpe, 
vpe-KO and γvpe dad1 roots compared to WT (set to one) after TM treatment (A) or P. indica 
inoculation (B). Two-week-old Arabidopsis WT plants, bip2, dad1, γvpe, vpe-KO, and γvpe 
dad1 mutants were treated with TM (5 µg/ml) or mock-treated (A). Alternatively, WT and 
mutant plants were inoculated with P. indica or mock-treated (B). Roots were harvested at 3 
dat (A) or at the cell death-associated colonization stage (7 dai) (B). For either treatment, root 
segments were cut in 2 cm pieces and stained with fluorescein diacetate (FDA). After staining, 
roots were washed and fluorescence intensities were spectrometrically determined at 535 nm 
after excitation at 485 nm. The values are given as fluorescence units (RFU) relative to WT 
roots. Data displayed are means with standard errors of eight independent measurements per 
treatment of one biological experiment. Experiments were repeated thrice with similar results. 
Asterisks indicate significance at P < 0.05 (*) analyzed by Student’s t-test. 
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4. Discussion 

 
Unlike mammalians, programmed cell death (PCD) pathways in plants are less understood. 

Studies during the past decades indicate that plant PCD has a pivotal association with plant 

development (e.g. senescence, xylogenesis) and defense responses (hypersensitive response). 

The hypersensitive response (HR) is among the best characterized cell death responses in 

plants. It is commonly controlled by direct or indirect interactions of pathogen avirulence 

gene products (effectors) with their cognate R gene products. Although the subcellular 

changes associated with HR have been determined, the molecular process involved in the 

initiation and execution of HR are fairly unknown (Heath 2000; Mur et al., 2008). In plants, 

another process so called autophagy is involved in various cellular remodelling processes 

during plant development and cell differentiation (Bassham et al., 2006). Interestingly, 

autophagy might be important for the restriction of HR to infected cells thereby inhibiting its 

uncontrolled spreading (Liu et al., 2005). 

Interestingly, root colonization by the mutualistic fungal endophyte P. indica is different from 

the biotrophic life style of mycorrhizal fungi, not at least due to the cell death dependence of 

this association. First evidence on cell death dependence of root colonization was provided in 

the barley-P. indica system (Deshmukh et al., 2006). Such an activation of cell death 

pathways was not reported in other mutualistic plant-fungus symbioses. In the present work, 

cytological, genetic, molecular, and biochemical strategies were applied to analyze the 

interaction between the endophyte P. indica and Arabidopsis roots. My aim was to draw a 

picture of molecular and cellular processes involved in cell death-associated colonization of 

Arabidopsis roots. 
 

4.1 The mutualistic symbiosis of Arabidopsis root with P. indica 

 

Similar to the symbiotic interaction between barley roots and P. indica, a mutualistic 

symbiosis is also formed between Arabidopsis roots and P. indica. Here, the fungus colonizes 

host plant roots, proliferates by inter- and intracellular growth and produces chlamydospores 
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inside root cells as well as on the root surface (Jacobs, Zechmann, Kogel, Schäfer 

unpublished). Recent phylogenetic studies have indicated that P. indica is a member of the 

order Sebacinales, which exclusively houses mycorrhizal fungi (Weiss et al., 2004). All 

members of this order that have been examined so far, produce comparable biological 

activities regarding biomass increase and systemic resistance to biotrophic powdery mildew 

fungi (Varma et al., 1999; Deshmukh et al., 2006, Stein et al., 2008). Thus, P. indica is 

regarded as a representative of the order of Sebacinales, which harbour microbes with 

prospective agronomical impact (Deshmukh et al., 2006, Weiss et al., 2004). 

Former studies in our group demonstrated that Arabidopsis root colonization by P. indica is 

characterized by an initial biotrophic lifestyle. These cell biological studies further revealed 

that biotrophic colonization is transient and followed by a cell death-associated colonization 

phase (Jacobs, Zechmann, Kogel, Schäfer, unpublished). Moreover, the former analyses 

detected a broad-spectrum suppression of root innate immunity by P. indica. Defense 

suppression was found to be crucial for root colonization and might be the reason of its wide 

host range (Jacobs, Zechmann, Kogel, Schäfer, unpublished). In the present study, 

colonization-associated cell death was analyzed and was demonstrated to be initiated by an 

uncoupled ER stress response, which meets in a vacuolar-mediated, caspase 1-dependent cell 

death. 

 

4.2 ER stress occurrence in Arabidopsis roots during P. indica colonization  

 

The previous transmission electron- (TEM) and confocal laser-scanning microscopy 

(CLSM)-based studies demonstrated that colonization-associated cell death is characterized 

by ER swelling (Fig. 3-1A, 1B and 1C), lyses of the cytoplasm (Fig. 3-1B), and vacuolar 

collapse (Fig. 3-1B). These studies implicated that ER stress occurred during colonization. 

This was substantiated by the pharmacological analyses with tunicamycin (TM). P. 

indica-colonized plants were hypersensitive to TM-induced ER stress (Fig. 3-5). As 

mentioned, adaptation and recovery from ER stress is mediated by the unfolded protein 

response (UPR) (Schröder and Kaufman, 2005). However, cells will die if the mechanisms 

for stress adaptation are insufficient to relieve the ER stress (Boyce and Yuan, 2006). The 
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application of TM, which is a known ER stress inducer as it inhibits N-linked glycosylation 

of proteins, was demonstrated to induce strong PCD phenotypes such as nuclear 

condensation, DNA laddering and H2O2 production in Arabidopsis roots (Watanabe and Lam, 

2008a). In mammals, apoptosis is known to be activated in response to severe or constant ER 

stress (Malhotra and Kaufmann, 2007). Therefore, we speculated that P. indica-induced ER 

stress might result in cell death mediated by vacuolar collapse. It prompted me to further 

dissect to which extent the ER stress response was affected by the fungus and whether this 

ER stress was the initiator for cell death execution. 

 

4.3 The suppression of ER stress response signaling by P. indica  

 

ER stress is generally elicited during plant development or by abiotic and biotic stress (eg. salt 

stress or pathogenesis). ER stress is the result of an enhanced working load of the ER as stress 

adaptation is associated with an elevated secretion of proteins. This enhanced working load 

ends in the accumulation of misfolded proteins, which is sensed through different sensor 

proteins and results in the activation of the ER stress response or so called unfolded protein 

response (UPR). UPR encompasses translational attenuation, transcriptional induction of ER 

chaperones (e.g. BiPs), and elevated degradation of misfolded proteins by the proteasome. By 

these responses, eukaryotic cells aim to relieve ER stress (Malhotra and Kaufman 2007, Vitale 

and Boston 2008).  

In plants, the UPR was initially described in the floury-2 endosperm mutant of maize (Zea 

mays), which produces an aberrant 24-kD α-zein storage protein with a defective signal 

peptide processing site (Boston et al., 1991; Fontes et al., 1991). The defective storage 

protein accumulates as an ER membrane-resident protein and provokes an ER stress response 

with dramatically increased levels of BiP and other ER-resident chaperones (Coleman et al., 

1995; Gillikin et al., 1997). Thereafter, studies demonstrated that in response to ER stress 

plant cells aim to create a more optimal protein-folding environment by the induction of BiP 

and Ca2+-dependent ER folding proteins (Jelitto-Van Dooren et al., 1999; Martinez and 

Chrispeels, 2003; Noh et al., 2003; Iwata and Koizumi, 2005a; Kamauchi et al., 2005). 

Compared with the knowledge on signal transduction mechanisms that trigger UPR in yeast 
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and mammalian cells, the mechanisms of UPR in plants are much less well understood. The 

chemical tunicamycin (TM) is commonly used to induce ER stress in yeast and animals. 

Several studies indicated that TM is able to induce ER stress in plants (Koizumi et al., 1999; 

Iwata and Koizumi, 2005b; Urade, 2007). Interestingly, homologues of ER stress sensors of 

animals have also been identified in Arabidopsis, which included several genes encoding 

bZIP transcription factors similar to ATF6 in mammalian cells (Iwata and Koizumi, 2005b; 

Liu et al., 2007), two IRE1-related genes (Koizumi et al., 2001; Noh et al., 2002), and a 

number of genes related to PERK. However, the involvement of IRE1 homologues in ER 

stress responses has not been demonstrated.  

Iwata and Koizumi (2005a) described a membrane-associated bZIP transcription factor in 

Arabidopsis, bZIP60, which is upregulated in response to ER stress. Arabidopsis bZIP60 was 

shown to be transcriptionally activated by TM. The bZIP60 protein is composed of 295 

amino acids and contains a bZIP domain and an adjacent putative trans-membrane domain. 

They further performed a transient expression assay which demonstrated that expression of 

bZIP60∆C, a truncated version of bZIP60 lacking the trans-membrane domain, activated BiP 

and calnexin (CNX). The analyses suggested that bZIP60 functions in a way analogous to 

ATF6 during the ER stress response. It was also proposed that bZIP60 is an ER stress 

sensor/transducer similar to ATF6 (Iwata et al., 2008).  

Another bZIP transcription factor, bZIP28, has been reported to be activated by TM and 

involved in the ER stress response (Liu et al., 2007; Tajima et al., 2008). bZIP28 activated 

expression of BiP genes in response to ER stress. Consistenly, the T-DNA insertion mutant 

bZIP28 exhibited reduced induction of all BiP genes. Liu and colleagues (2007) described 

that bZIP28 is an N-glycosylated protein including an N-terminal bZIP domain, a putative 

transmembrane domain (TMD), and a C-terminal domain. They further showed that 

Arabidopsis bZIP28 tagged with Myc or GFP at its N-terminus resides in the ER membrane 

under unstressed conditions, but is cleaved in response to TM-induced ER stress. According 

to the size of the processed AtbZIP N-terminal fragment, it is speculated that similar to ATF6, 

AtbZIP28 might be cleaved by the plant S1P/S2P-dependent regulated intra-membrane 

proteolysis (RIP) system under ER stress conditions. Further, both tunicamycin (TM) and 

dithiothreitol (DTT) treatments obviously increased GFP fluorescence in the nucleus, which 



 

suggested that AtbZIP28 N-terminal fragment is translocated into the nucleus (Liu et al., 

2007). Time-lapse imaging experiments further indicated that the N-terminal fragment of 

AtbZIP28 translocated from the ER into the nucleus in response to ER stress (Tajima et al., 

2008). A model for the ER stress-induced activation of bZIP60 and bZIP28 in plants is 

summarized below (Fig. 4-1). In addition to bZIP28 and bZIP60, bZIP17, which was found 

to mediate salt stress signaling in a way similar to ER stress signaling, might also function as 

ER stress sensors (Iwata et al., 2008, Liu et al., 2008). 

 

 

Figure 4-1. Model for the ER stress response mediated by bZIP transcription factors 
bZIP60 and bZIP28 in plants. (Modified from Urade, 2009) 
This model describes that both bZIP60 and bZIP28 proteins localize to the ER membrane. 
Abiotic or biotic stress ends in the accumulation of unfolded proteins in ER, which activate 
the processing of ER stress sensors bZIP60 and bZIP28. The N-terminal cytoplasmic domain 
of bZIP28 protein is proposed to be released from the ER membrane by a 
S1P/S2P-dependent RIP-like mechanism. In turn, processing of bZIP60 protein was not 
shown to be dependent on S1P cleavage. Eventually, the cleaved N-terminal cytoplasmic 
domains of bZIP60 and bZIP28 are translocated to the nucleus and induce transcription of 
UPR genes. 
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As indicated earlier, microarray analyses with Arabidopsis plants exposed to TM-induced ER 

stress revealed the induction of a set of genes including those involved in protein folding (e.g. 

BIPs, CNXs, PDIs), protein degradation (e.g. HRD1, DER1), and translocation (e.g. SEC61γ) 

(Kamauchi et al. 2005; Iwata et al. 2008). Therefore, these genes can be considered as ER 

stress marker genes and were applied in my studies. Although my cytological and 

pharmaceutical studies indicated ER stress associated with P. indica colonization, 

TM-induced ER stress markers were not induced but rather suppressed by P. indica (Fig. 3-7). 

In accordance with this, BiP protein levels were also suppressed during P. indica colonization 

and after TM treatment of P. indica-colonized roots (Fig. 3-8). In addition, none of the bZIP 

transcription factors (bZIP17, bZIP28, bZIP60) were induced and bZIP28 was even 

suppressed during P. indica colonization. Consistently, UPR genes (e.g. BIP3) were not found 

to be induced by P. indica (Fig. 3-6). The application of TM to P. indica-colonized roots (3 dai) 

confirmed the suppression of ER stress signaling (UPR signaling) by P. indica (Fig. 3-7). 

Surprisingly, although expression of bZIP28 was non-responsive to TM and suppressed 

during P. indica colonization, TM application to P. indica-colonized roots caused its induction 

(Fig. 3-6, 3-7). Therefore, one might speculate that the combined stresses induced by P. indica 

and TM might activate stress pathways, which may recruit bZIP28. These data clearly 

indicated that the signaling involved in ER stress response is suppressed by P. indica at the 

transcriptional and translational level. 

If the UPR fails to restore the protein-folding defect, apoptosis is activated in response to ER 

stress. The ER might function as a site where apoptotic signals are generated and intergrated 

to elicit the death response (Malhotra and Kaufman, 2007). The molecular basis of ER 

stress-induced PCD in plants is less well understood than that in mammals. However, several 

indications implicate a conservation of ER stress signaling between plants and mammals. So 

far, the mammalian BCL-2 related proteins, which were identified to control apoptosis are 

divided into three subfamilies, including pro-survival type Bcl-2 subfamily (Bcl-2, Bcl-XL, 

Bcl-w, Mcl-1 and A1), pro-apoptotic type Bax subfamily (Bax, Bak and Bok) and BH3 

subfamily (Bad, Bid, Bik, Blk and BimL). The Bcl-2 subfamily proteins inhibit apoptosis, 

whereas Bax subfamily proteins activate apoptosis. BH3 subfamily proteins share a short 

motif with Bcl-2 family proteins and regulate their activity antagonistically through their 
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direct interaction (Watanabe and Lam, 2009). However, plant genome sequences do not reveal 

homologues to several key cell death regulators as described above. It is known that BAX 

INHIBITOR-1 (BI-1) is a negative cell death regulator in mammals as it antagonizes 

BAX-induced cell death (Xu and Reed 1998). Although BAX homologues were not found in 

plants, barley BI-1 and other plant BI-1 proteins suppress BAX-induced cell death in planta 

(Eichmann et al. 2006; Babaeizad et al., 2008; Imani et al., 2006; Hoefle et al., 2009). 

Moreover, the expression of Arabidopsis BI-1 (AtBI-1) was induced in response to ER stress, 

while Arabidopsis plants overexpressing BI-1 exhibited enhanced TM tolerance, which 

indicated its antiapoptotic function in ER-PCD (Kamauchi et al., 2005; Watanabe and Lam, 

2008). Therefore, it is speculated that the level of BI-1 might determine plant survival during 

ER stress in Arabidopsis plants. AtBI-1 might not control the UPR directly; in turn, it may act 

as a cell death suppressor that functions in parallel to the UPR when the ER stress is activated 

(Watanabe and Lam, 2009). A recent mammalian BI-1 study revealed functional interactions 

of BI-1 with Bcl-2 and Bax proteins which indicated that BI-1 and Bcl-2 control apoptosis 

downstream of or parallel to Bax action through regulating Ca2+ balance in the ER (Xu et al., 

2008). Therefore, Bax might manipulate ER homeostasis through facilitating Ca2+ release 

from the ER. Because there are no obvious homologues to Bcl-2 subfamily proteins in plants, 

plant BI-1 might play an important role in regulating Ca2+ homeostasis during ER stress 

(Watanabe and Lam, 2009). Interestingly, P. indica was shown to suppress BI-1 transcription 

during barley root colonization and BI-1 overexpression resulted in reduced P. indica 

colonization (Deshmukh et al. 2006). Consistently, in the present work, I observed a slight 

suppression of AtBI-1 by P. indica after TM treatment (Fig. 3-7). 

 

4.4 P. indica colonization-associated cell death is executed by a vacuolar-mediated 

caspase 1-dependent plant cell death 

 

4.4.1 Caspase-dependent mammalian apoptosis  

 

As mentioned above, both the death-receptor- and mitochondrial-mediated mammalian 
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apoptotic pathways are ultimately executed by the activation of specific subsets of caspases 

and Bcl-2 family members (Szegezdi et al., 2006), which finally aim to eliminate cells that 

may be unnecessary or harmful for the organisms. Caspases are known as cysteine proteases 

which exist within cells as inactive zymogens and are subsequently cleaved to form active 

enzymes during the induction of apoptosis. Although the caspases associated with ER 

stress-induced apoptosis have not yet been conclusively established, processing of caspase 12, 

2, 3, 4, 7, and 9 have been observed in different ER stress studies (Cheung et al., 2006; 

Dahmer, 2005; Di Sano et al., 2006; Hitomi et al., 2004). Caspase 12 is associated with the 

ER membrane and activated by ER stress (Tan et al., 2006). In addition, proapoptotic BCL2 

family members Bax and Bak colocalize to the ER membrane and function to activate 

apoptosis via caspase 12 (Cheung et al., 2006; Dahmer, 2005; Di et al., 2006; Hitomi et al., 

2004). Caspase 12 activates caspase 9, which in turn activates caspase 3 leading to cell death 

(Morishima et al., 2002). Caspase 12-/- mice are partially resistant to ER stress-induced 

apoptosis but sensitive to other death stimuli, suggesting that caspase 12 is a regulator 

specific to ER stress-induced apoptosis (Nakagawa et al., 2000).  

  

4.4.2 Caspase-mediated cell death pathways in plants  

 

The extent of conservation of plant and mammalian programmed cell death pathways is still 

not clear. However, extensive studies have shown that PCD in plants and animals share 

components with caspase-like activities (Cohen, 1997; Lam and del Pozo, 2000; Woltering et 

al., 2002). These findings indicated the central role of caspases in certain pathways. In 

addition, it showed that plant PCD partly relies on proteins which exhibit functional 

homology to PCD signaling components in mammals.  

Caspase-like activities have been detected in plants by synthetic substrates and therefore base 

on consensus cleavage site of mammalian caspases (Table 4-1). Among the detected 

caspase-like activities in plants YVADase (VPE) and DEVDase activities were best studied 

and were found to be associated with various PCD pathways (Bonneau et al., 2008).  



 

Table 4-1. Caspase-like activities detected in plants. (Bonneau et al., 2008) 

 

 

In order to prove the requirement of caspase-like activities for PCD execution, caspase 

inhibitors have been applied in several studies. The baculovirus protein p35, a pan caspase 

inhibitor, has been demonstrated to effectively block cell death in several systems such as the 

hypersensitive response (HR) in tobacco plants infected by Pseudomonas syringae pv. 

phaseolicola or tobacco mosaic virus (TMV) (del Pozo and Lam, 2003) and UV-induced 

PCD in Arabidposis (Danon et al., 2004). Bonneau et al (2008) summarized inhibitors that 

efficiently suppress various types of plant cell death (Table 4-2). Taken together, caspase-like 

activities are thought to be involved in most plant PCD responses. It further indicates that 

caspase-like activities might represent a central mechanism of plant cell death. 
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Table 4-2. Application and function of caspase inhibitors in different plant PCD systems. 

(Bonneau et al., 2008) 

 
 

4.4.3 The proteases vacuolar processing enzymes and their function in plant cell death 

 

Plant vacuolar processing enzymes (VPEs) were initially characterized to cleave the protease 

substrates ESEN and AAN. VPEs were found to be involved in various protein maturation 

processes of seeds or leaves (Yamada et al., 2005). Virus-induced silencing of VPE genes 

which correspond to the most abundant VPEs in Nicotiana benthamiana (NbVPE-1a and 

NbVPE-1b) demonstrated that VPEs possessed YVADase/casapase-1 activity (Hatsugai et al., 

2004).  

In tobacco, infection by tobacco mosaic virus (TMV) is stopped by HR in cultivars that carry 

the N resistance gene (Holmes, 1983). Recent investigations demonstrated that VPE deficient 

plants exhibited no apparent characteristic of TMV-induced cell death and were markedly 

more susceptible against TMV (Hatsugai et al., 2004). In addition, PCD induced in plants by 
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the fungal toxin fumonisin B1 (FB1) (Asai et al., 2000), was found to depend on VPEs. In 

Arabidopsis VPE-null mutants, that lack all four VPEs, FB1-induced cell death was 

completely abolished (Kuroyanagi et al., 2005). This implicates that both PCD-dependent 

resistance and susceptibility processes share VPE activities (Hatsugai et al., 2006). In addition, 

studies using promoter-GUS fusions showed that αVPE and γVPE were up-regulated in dying 

cortex cells next to the emerging lateral root (Kinoshita et al., 1999). Moreover, experiments 

with Arabidopsis VPE-null mutant (KO) have shown the requirement of VPE for the 

developmental cell death in seed integuments (Nakaune et al., 2005). δVPE was found to 

exhibit caspase 1-like activity using the biotinylated inhibitor biotin-YVAD-fmk (Nakaune et 

al., 2005) and its expression in Arabidopsis plants was restricted to the inner integuments of 

the seed coat at an early stage of seed development (Nakaune et al., 2005; Hara-Nishimura et 

al., 2005). Additionally, both αVPE and γVPE were also up-regulated in senescing tissues 

(Kinoshita et al., 1999). Notably, γVPE was further indicated to exhibit a caspase 1-like 

activity and might be recruited in plants to regulate vacuole-mediated cell dismantling during 

cell death progression in plant-pathogen interaction (Rojo et al., 2004).  

Despite the structural and enzymatic similarities between plant VPEs and mammalian caspase 

1, caspase 1 is a cytosolic enzyme (Cohen, 1997), while VPE enzymes are supposed to have a 

vacuolar localization (Kinoshita et al., 1999; Hara-Nishimura et al., 2005). The collapse of the 

vacuole is considered as a specific and crucial feature of plant PCD (Jones, 2001; van Doorn 

and Woltering, 2004). VPE-deficient plants did not exhibit vacuolar collapse accompanied 

with cell death after virus infection (Hatsugai et al., 2004). Thus, it is suggested that VPEs 

plays a key role in cell death by triggering vacuolar collapse (Hatsugai et al., 2006).  

Taken together, all these results suggest that VPEs are involved in various types of cell death 

associated with plant development, senescence, and plant-microbe interactions.  

 

4.4.4 Vacuolar processing enzymes play an important role in P. indica colonization 

associated cell death  

 

Interestingly, the present studies indicated that not all VPE members support P. indica 
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colonization. In opposite to the reduced colonization of γvpe, αvpe and vpe-KO mutants, βvpe 

and δvpe mutants showed a higher (but insignificant) colonization by P. indica (Fig. 3-9). 

Reduced colonization of αvpe and γvpe mutants at 7 dai (Fig. 3-9) might indicate that αVPE 

and γVPE function in the same signaling cascade. Notably, the enhanced colonization of γvpe 

at 3 dai (biotrophic stage) might indicate an additional immunity-related function of γVPE. 

Accordingly, as described before, this γVPE was formerly identified to be participating in 

vacuolar collapse associated with virus-induced hypersensitive cell death (Hatsugai et al. 

2004). 

In accordance with the function of caspases as executioner in ER stress-induced PCD in 

mammals (Szegezdi et al. 2006), my studies indicated that caspase 1 activity, which was 

found to be mainly associated by γVPE, was enhanced during cell death-associated 

colonization (7 dai) by P. indica (Fig. 3-13) while we did not detect altered caspase 1 activity 

at the early biotrophic root colonization by P. indica (3 dai) (not shown). Consistently, the 

significance of caspase 1 activity for ER stress-induced PCD during P. indica colonization 

was indicated by a fluorescein diacetate (FDA)-based cell death assays. The analyses 

displayed a reduction of both colonization-associated and tunicamycin (TM)-induced cell 

death in γvpe as well as vpe-KO mutants (Fig. 3-14). Intriguingly, these analyses did not only 

indicate an essential role of VPE in colonization-associated cell death, but also underlined the 

significance of ER dysfunction as PCD initiator. I observed that the dad1 mutant displayed an 

elevated level of caspase 1 activity compared to roots of wild-type plants during cell 

death-associated colonization (7 dai) (Fig. 3-13) and an increased cell death occurrence after 

both TM treatment and P. indica colonization (Fig. 3-14). Importantly, the extent of 

TM-induced and colonization-associated cell death phenotypes was highly similar in γvpe 

dad1 double mutant and γvpe mutant (Fig. 3-14). Hence my studies revealed that the 

execution of ER stress-induced PCD and colonization-associated PCD was crucially 

dependent on γVPE-/caspase 1 activity. Consistently, γvpe dad1 and γvpe showed a similar 

degree of P. indica colonization (Fig. 3-9 and 3-12). It further implies that VPE-mediated 

vacuolar collapse is downstream of ER stress-induced cell death. 



 

81 

4.5 P. indica induced ER stress impairs MAMP-triggered immunity 

 

4.5.1 The role of the ER in transport and secretion in plant-microbe interactions 

 

In plant-microbe interactions, once a pathogen is recognized by plants, an arsenal of defense 

responses is activated to inhibit microbial enzymes, to strengthen the cell wall, or to kill the 

pathogen. Several studies demonstrated that plant basal defense infrequently recruits the 

hypersensitive cell death reaction. In general, cell wall-associated plant defenses are activated 

to stop pathogens (Hückelhoven, 2007a). It was further shown that fungal attacks also 

influenced the endomembrane systems. Golgi-derived vesicles were required for secretion of 

defense-related components into the apoplast (Collins et al., 2003; Wang et al., 2005, Lipka et 

al., 2005). Consistently, ER and Golgi bodies accumulated at penetration sites of oomycete 

pathogens such as non-pathogenic Phytophthora sojae and Hyaloperonospora parasitica 

isolates Cala2 (avirulent) and Noks1 (virulent) in Arabidopsis (Takemoto et al., 2003). In 

plant leaves, focal secretion processes and formation of locally confined cell wall appositions 

(CWAs) efficiently control colonization by non-adapted biotrophic pathogens such as barley 

powdery mildew fungus B. graminis. These immune responses base on vesicle-mediated 

transport processes of compounds partially generated in the ER (Lipka et al., 2005; 

Hückelhoven, 2007b). Our previous cytological studies of root colonization by P. indica 

indicated a very infrequent appearance of CWAs during the biotrophic phase (Jacobs, 

Zechmann, Kogel, Schäfer, unpublished). Interestingly, in the present study, we recorded a 

disturbance of ER-localized proteins at biotrophic-dependent colonization stages (3 dai) (Fig. 

3-8). At this biotrophic stage, UPR marker genes were not induced in P. indica-colonized 

roots (Fig. 3-6, 3-7). These data might indicate an impaired generation of MTI components 

(e.g. antimicrobial proteins, PRRs) by P. indica.  

 

4.5.2 The role of receptor proteins quality control in the ER for plant innate immunity 

 

Innate immunity in eukaryotes bases on the prompt detection of non-self structures (MAMPs) 
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derived from potential microbial invaders. Plants detect potential threats derived from 

surrounding microbes through two classes of immune receptors, which are the pattern 

recognition receptors (PRRs) that can directly recognize their cognate MAMPs and the 

disease resistance (R) proteins that can recognize the activities and structures of 

pathogen-derived effectors (Chisholm et al., 2006; Jones and Dangl, 2006; Boller and Felix, 

2009). The recognition of MAMPs by PRRs was evidenced to maintain a critical function in 

host defense activity because an increase of pathogen invasion and propagation in 

Arabidopsis plants was observed in the absence of single PRRs (Zipfel et al., 2004; Zipfel et 

al., 2006).  

FLS2 and EFR are two well-known PRRs recognizing the bacterial flagellin and bacterial 

elongation factor TU (EF-TU) respectively (Gomez-Gomez and Boller, 2000; Zipfel et al., 

2006). Both of them are plasma membrane-localized glycoproteins that need to transit the 

secretory pathways for maturation and to reach their final destination at the plasma membrane. 

Maturation in the ER and Golgi is required for proper receptor function. These processes are 

regulated by the ER quality control (ERQC) system including the SDF2-ERdj3b-BIP complex, 

the calreticulin/calnexin cycle, and the protein disulfide isomerase (PDI) system (Reddy et al., 

1996; Anelli et al., 2007). 

Several studies revealed that specific components of the ER machinery are required to 

mediate processing of the pattern recognition receptor (PRR) EFR1, which activates innate 

immunity after recognition of the bacterial MAMP elongation factor TU (Nekrasov et al. 2009; 

Saijo et al. 2009; Zipfel et al. 2006). Nekrasov and co-workers (2009) demonstrated that the 

ER protein complex, which comprises stromal-derived factor-2 (SDF2), ERdj3b and BiP, was 

required for the proper biogenesis of EFR1. Furthermore, they revealed an unexpected 

differential requirement for ERQC and glycosylation components for the two closely related 

receptors EFR and FLS2. They identified in elfin (elf18-insensitive) population alleles of 

STT3A (Staurosporin and temperature sensitive -3A), coding for a component of the ER 

oligosaccharyltransferase (OST) complex involved in N-glycosylation of nascent proteins 

(Koiwa et al., 2003). The characterisation of stt3a mutants revealed that STT3a-mediated 

N-glycosylation is indispensable for EFR, but dispensible for FLS2. Although both EFR and 

FLS2 carry numerous putative glycosylation sites, they may have different glycosylation 
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states (e.g. position, glycan structures) that could impact their interaction with and 

dependence on the ER-QC machinery. Similarly, the studies from Saijo and co-workers (2009) 

revealed a key function of the CRT/UGGT cycle and STT3A-dependent N-glycosylation for 

two fundamental types of plant immunity - MTI and SA-induced immunity. Recent studies in 

our lab demonstrated that P. indica impairs early root immune signaling. Roots in which MTI 

was activated were more resistant against P. indica (Jacobs, Zechmann, Kogel, Schäfer, 

unpublished). These analyses revealed the presence of a functional MAMP-triggered 

immunity (MTI) in plant roots and P. indica must suppress root MTI in order to achieve root 

compatibility.  

 

4.5.3 The ER is crucially required for the secretion of immunity-related compounds 

 

The ERQC components do not only play a critical role in plant MAMP-triggered immunity, 

but also in the ER-associated secretion of antimicrobial proteins after activation of systemic 

acquired resistance (SAR) (Wang et al., 2005). The accumulation of the endogenous signaling 

molecule salicylic acid (SA) is known to be required for the induction of SAR as it activates 

gene expression via the central regulator protein NPR1 (Non-expressor of 

pathogenesis-related genes 1, also known as NIM1) (Dong, 2004). NPR1 activation results in 

the induction of PR genes, which encode small, secreted or vacuole-targeted proteins with 

antimicrobial activities (Van Loon and Pieterse, 1999). The ER participates in the processing 

and translocation of PR proteins to vacuoles or to the apoplast. In microarray analyses, Wang 

et al (2005) identified additional NPR1 regulated genes. Intriguingly, among the induced 

genes, one group consisted of defense genes, such as several PR genes, while a second main 

group was found to include members involved in the protein secretory pathway. Among the 

latter were genes that are encoding ER-localized proteins, for example components of the 

Sec61 translocon complex, luminal binding protein (BiP) and defender against apoptotic 

death 1 (DAD1). All these components are known to be crucially required for the ERQC 

system. Moreover, through electrophoretic mobility shift assays (EMSA), they found that the 

corresponding ER chaperone genes share a novel promoter cis element TL1, which is targeted 

by a nucleus-translocated transcription factor after salicylic acid treatment. Therefore, 
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considering the situation of a massive upload of PR proteins in vacuoles and the apoplast 

during SAR, the basal activity of the protein secretory pathway might not be sufficient to 

accommodate the exploding increase of newly synthesized PR proteins. It was speculated that 

a coordinated up-regulation of the ERQC-mediated protein secretory machinery is required to 

guarantee correct folding, modification and transport of antimicrobial proteins. 

 

4.6 Conclusion 

 

Based on the presented data, the question arises whether impaired ER integrity during P. 

indica colonization only aims to induce PCD in order to improve root colonization? The 

previous studies revealed the presence of a functional MAMP-triggered immunity (MTI) in 

plant roots (Millet et al. 2010) and P. indica achieves root compatibility by suppressing the 

root MTI (Jacobs, Zechmann, Kogel, Schäfer, unpublished). In present studies, the 

disturbance of ER-localized proteins (Fig. 3-8) along with a lack of induction of UPR marker 

genes were observed in P. indica-colonized roots (Fig. 3-6, 3-7) at biotrophic colonization 

stages (3 dai). All these results indicate that P. indica-induced ER dysfunction might also 

impair root MAMP-triggered immunity. By impairing root defense, the fungus might further 

enhance root compatibility at early biotrophic colonization. I propose that the disturbance of 

ER integrity by P. indica might follow two pathways to ultimately enhance root compatibility: 

(1) reduction of processing and secretion of MTI components (eg. PR proteins, PRRs) and (2) 

induction of ER stress-induced caspase 1-dependent PCD. Additionally, in plant 

PCD-associated cell-autonomous immunity, vacuoles accumulate a variety of antimicrobial 

proteins; and through the fusion of a large central vacuole with the plasma membrane, these 

proteins can be released to intercellular space where they attack bacterial pathogens (Hatsugai 

et al., 2009). Furthermore, this membrane fusion is triggered by the infection of avirulent 

bacterial strain Pseudomonas syringae pv. tomato DC3000 having the Avr gene avrRpm1 (Pst 

DC3000/ avrRpm1) (Mackey et al., 2002) and suppressed by the infection of virulent bacterial 

strain Pst DC3000 that does not have avrRpm1 in a plant caspase 3-like enzyme-dependent 

manner. This indicates a novel plant defense strategy against bacterial pathogens (Hatsugai et 



 

al., 2009). Therefore, it is tempting to speculate that impaired ER function by P. indica also 

affects vacuole load with antimicrobial proteins. This might explain that VPE-mediated 

vacuolar collapse was not stopping but even supporting fungal growth at early colonization 

stages (3 dai) (Fig. 3-9). According to the data presented in this work, I propose the following 

scenario (Fig. 4-2) to explain P. indica colonization-associated ER dysfunction and root cell 

death processes.  
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Figure 4-2. Scenario of P. indica colonization-associated root cell death processes. 
(A) Generally, root MAMP-triggered immunity is activated after pathogen recognition and 
followed by the MAPK signaling cascade activation. Through the regulation of transcription 
factors (TF) (e.g. WRKYs), defense genes (e.g. PR genes, PRRs) are induced. The 
defense-related proteins (PR proteins, PRRs proteins) are synthezied and processed within the 
ER by ER-QC components (e.g. BIP2, DAD1) and then sequestered in vesicles that transport 
to the cis-Golgi reticulum and subsequently pass through the Golgi to the trans-Golgi network 
(TGN). Here, the secreted proteins are transported to the plasma membrane in an 
actin-dependent manner. (B) During P. indica colonization, ER function is disturbed by the 
fungus. This is proposed to result in a reduced ability of the ER to process and secret MTI 
components (e.g. PR proteins, PRR proteins), which would impair the function of root MTI. 
In addition, ER stress signaling (UPR) is suppressed by P. indica. Therefore, ER 
stress-induced plant PCD is initiated, and through yet to be defined pro-apoptotic signaling 
pathways, plant cell death is executed by a γVPE/caspase 1-mediated vacuolar collapse.  
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5. Summary / Zusammenfassung 

 

5.1 Summary  

 
The basidiomycete Piriformospora indica colonizes roots of a multitude of plants thereby 

transferring several beneficial effects such as growth promotion as well as enhanced local and 

systemic resistance against pathogens (Varma et al., 1999; Waller et al., 2005; Deshmukh and 

Kogel, 2007; Stein et al., 2008). The wide host range of P. indica implicates that the fungus 

has developed effective strategies to overcome plant innate immunity. Recent cytological 

studies on P. indica-colonized Arabidopsis roots revealed that the fungus has developed an 

initial biotrophic colonization strategy followed by a cell death-associated colonization 

pattern (Jacobs, Zechman, Kogel, Schäfer, unpublished). It was the aim of my project to 

analyze the genetic, molecular, and biochemical mechanisms of P. indica-mediated cell death 

during root colonization. Cell biological analyses uncovered an impaired ER integrity as well 

as vacuolar collapse at later cell-death-associated fungal colonization stages. Subsequent 

pharmacological analyses confirmed ER stress induction by P. indica, but molecular and 

biochemical analyses suggested suppression of ER stress signaling, known as unfolded 

protein response, by the fungus. Based on biochemical and genetic experiments, I provide 

evidence that colonization-associated cell death is initiated by an uncoupled ER stress 

signaling. My data raises the possibility that the emerging ER stress activates a cell death 

programme, whose execution is dependent on the caspase-1 activity mediated by 

vacuole-localized vacuolar processing enzymes (VPEs). I propose a model in which P. indica 

is impairing ER integrity to induce VPE/caspase 1-dependent cell death. In addition, the 

fungus might interfere with ER functionality to disturb root MAMP-triggered immunity. The 

combined inhibitory activity might ultimately enhance the fungus´ ability to colonize roots. 
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5.2 Zusammenfassung 
 
Der Basidiomyzet Piriformospora indica besiedelt Wurzeln einer Vielzahl von Pflanzen, die 

dadurch ein verbessertes Wachstum sowie erhöhte lokale und systemische Resistenz 

gegenüber Pathogenen zeigen (Varma et al., 1999; Waller et al., 2005; Deshmukh and Kogel, 

2007; Stein et al., 2008). Das breite Wirtsspektrum von P. indica weist auf die Entwicklung 

effektiver Strategien zur Überwindung der Pflanzenabwehr hin. Kürzlich durchgeführte 

zytologische Studien von durch P. indica besiedelter Arabidopsiswurzeln zeigten eine 

zweiphasige Besiedlungsstrategie, welche durch eine initiale biotrophe gefolgt von einer 

Zelltod-assoziierten Phase gekennzeichnet war (Jacobs, Zechman, Kogel, Schäfer, 

unpublished). Auf diesen Ergebnissen aufbauend war das Ziel meiner Arbeit, die genetischen, 

molekularen und biochemischen Mechanismen des Besiedlung-assoziierten Zelltods zu 

untersuchen. Zellbiologische Studien zeigten zunächst eine beeinträchtigte ER Integrität als 

auch einen vakuolären Kollaps während der Zelltod-assoziierten Wurzelbesiedlung. 

Nachfolgende pharmokologische Analysen bestätigten eine ER Stressinduktion durch P. 

indica, während molekulare und biochemische Untersuchung eine gleichzeitige, 

Pilz-vermittelte Suppression in der ER Stress-assoziierten Signalgebung nachwiesen. 

Basierend auf biochemischen und genetischen Experimenten konnte ich schließlich zeigen, 

dass Besiedlung-assozierter Zelltod durch eine unangepasste ER Stresssignalgebung initiert 

wird. Die Exekution des daraufhin ausgelösten Zelltodprogramms ist von Caspase 1 Aktivität 

abhängig, welche durch vakuolär lokalisierte vacuolar processing enzymes (VPEs) vermittelt 

wird. In dem von mir aufgestellten Modell beeinträchtigt P. indica die ER Integrität, um 

VPE/Caspase 1-abhängigen Zelltaod zu induzieren. Daneben könnte eine Störung der 

Funktionalität des ERs durch den Pilz eine Beeinträchtigung der Wurzelabwehr zur Folge 

haben. Diese kombinierte inhibitorische Aktivität führt vermutlich zu einer erhöhten 

Wurzelkompatibilität. 
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