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Dekan : Prof. Dr. B. Baumann

1. Berichterstatter: Prof. Dr. M. Düren
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Zusammenfassung

Ziel des HERMES-Experiments am DESY (Hamburg) ist die präzise Vermessung der Spin-

struktur des Protons mittels tiefinelastischer Lepton-Nukleon-Streuung. Hierzu wird der in

der HERMES- Wechselwirkungszone longitudinal polarisierte Positronen-Strahl des HERA-

Beschleunigers mit einem Impuls von 27,5 GeV/c an einem ebenfalls longitudinal polar-

isierten Gastarget gestreut.

Eine erfolgreiche Beschreibung der Wechselwirkungsprozesse zwischen Quarks und Glu-

onen ist nach allgemeiner Auffassung der Schlüssel zum Verständnis der Grundlangen des

Nukleonenspins. Die innere Struktur des Nukleons kann durch die Partonverteilungen der

Quarks und der Gluonen, aus denen das Nukleon aufgebaut ist, dargestellt werden. Die

spin-gemittelten PDFs (parton distribution functions) repräsentieren die Impulsverteilun-

gen der Quarks und Antiquarks, der Quarkflavours q = (u, d, s). Die Helizitätsverteilungen

∆q(x) = q↑↑(x) − q↑↓(x) beschreiben den flavourabhängigen Beitrag der Konstituenten-

quarks zum Nukleonenspin.

Die Helizitätsverteilung des Strange-Quark-Sees ∆S(x), ist hierbei von besonderem In-

teresse, da ihre Eigenschaften zum Verständnis des für die Entstehung des Quark-Sees ver-

antwortlichen Reaktionsmechanismus beitragen können. Ein Großteil unseres Verständnisses

der Spinstruktur des Nukleons und insbesondere die Tatsache, dass nur ein unerwartet

kleiner Anteil des Nukleonenspins von den Spins der Quarks herrührt, basiert auf inklusiven

Analysen der Daten aus tief-inelastischen Streuexperimenten sowie des Hyperonenzerfalls

unter der Annahme von SU(3)-Symmetrie zwischen den Strukturen des Baryon-Oktetts. In

solchen Experimenten jedoch ist die Helizitätsverteilung der Strange-Quarks keiner direkten

Messung zugänglich. Diese Messungen deuteten auf eine beträchtliche negative Polarisa-

tion des Strange-Quark-Sees hin. Dies wurde als Ursache für die ebenfalls in diesen Anal-

ysen beobachtete Verletzung der Ellis-Jaffe-Summenregel angesehen. Darüber hinaus lässt
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iv Zusammenfassung

eine von Null verschiedene Polarisation der Strange-Quarks insoweit Rückschlüsse auf eine

beträchtliche Polarisation der Gluonen zu, als Seequarks durch die Aufspaltung von Gluonen

erzeugt werden. In der Tat wurden aufgrund der beobachteten negativen Strange-Quark-

Polarisation Spekulationen bezüglich einer stark positiven Gluonenpolarisation angestellt.

Im Gegensatz zu den erwähnten inklusiven Analysen deuten aktuelle semi-inklusive

Messungen von HERMES darauf hin, dass der Strange-Quark-See unpolarisiert ist. Eine

Analyse, bei der Daten von Proton- und Deuteron-Targets komplett nach fünf Quarkflavours

separiert wurden (die Analyse ist insensitiv auf ∆s̄), ergab einen Wert von ∆s = 0.028 ±

0.033 ± 0.009. In einer unabhängigen Extraktion der Summe der Helizitätsverteilungen

∆s + ∆s̄ von Deuteron-Daten wurde ein Wert von ∆s + ∆s̄ = 0.129 ± 0.042 ± 0.129

gemessen. (Der große systematische Fehler dieser Messung ist auf die Unsicherheiten der

Kaon-Fragmentations-Funktionen zurückzuführen.)

Gegenstand dieser Dissertation ist eine neuartige ”isoskalare” Messung von ∆s + ∆s̄,

in der diese Probleme umgangen werden. Da Strange-Quarks keinen Isospin tragen, ist der

Strange-Quark-See im Proton und Deuteron gleich. Da das Deuteron ein isoskalares Tar-

get ist, kann der Fragmentationsprozess in der tiefinelastischen Streuung beschrieben wer-

den, ohne dass Annahmen bezüglich isospinabhängiger Fragmentation notwendig sind. Zur

isoskalaren Extraktion wird lediglich die Spinasymmetrie der K0
s -Mesonen, A

K0
s

1,d (x, Q2, z)

sowie die inklusive Asymmetrie A1,d(x,Q2) benötigt. Eine akkurate Messung der gesamten

nicht-strange-Polarisation ∆Q = ∆u+∆ū+∆d+∆d̄ ergibt sich direkt aus A1,d(x,Q2). Die

für eine Extraktion der gesamten Strange-Quark und -Antiquark-Polarisation ∆S = ∆s+∆s̄

in führender Ordnung (leading order, LO) erforderlichen Fragmentationsfunktionen erhält

man aus dem selben HERMES-Datensatz im benötigten kinematischen Bereich.

Ergebnis der hier beschriebenen Analyse ist, dass die Helizitäts-Dichteverteilungen für

Strange-Quarks innerhalb des gemessenen Bereichs von 0.02 < x < 0.7 konsistent mit Null

sind: ∆S = 0.010± 0.066± 0.004.



Abstract

The HERMES experiment at DESY, Germany was designed to carry out precision

measurements of the proton spin structure using polarised deep-inelastic lepton-

nucleon scattering. The experiment utilises the 27.5 GeV/c electron or positron

beam of the HERA accelerator which is longitudinally polarised at HERMES, in

combination with a longitudinal polarised internal gas target.

The key to understanding the origins of the spin of the nucleon is widely believed to

lie in a successful description of the interactions of the quarks and gluons from which

it is formed. The internal structure of the nucleon is embodied in parton distributions

of the constituent quarks and gluons. The spin-averaged parton distribution functions

q(x) of quarks and antiquarks of flavours q = (u, d, s) describe the parton momentum

distributions. The differences, or helicity distributions, ∆q(x) = q↑↑(x) − q↑↓(x),

describe the flavour dependent contributions of the constituent partons to the spin of

the nucleon.

The helicity distribution of the strange quarks sea, ∆S(x), is an essential feature

of the spin structure of the nucleon. Its properties reflect the reaction mechanism that

is responsible for the formation of the quark sea. Much of the information on nucleon

spin structure, in particular, the observation that an unexpected small fraction of

the spin of the proton comes from the intrinsic quark spins is based on an analysis

of inclusive deeply inelastic scattering and hyperon decay under the assumption of

SU(3) symmetry among the structures of the octet baryons. In these experiments

(EMC and SMC), the helicity distribution for strange quarks were directly accessible

to measurement. The strange quark sea was observed to have a substantial negative

polarisation. The violation of the Ellis-Jaffe sum rule observed in that analysis was

v



vi Abstract

attributed to this negative polarisation. To the extent that the virtual sea quarks are

generated by gluon splitting, a non-zero strange quark polarisation can be attributed

to a substantial polarisation of the gluons. Indeed, it has been speculated that the

observed value of the strange sea helicity distribution results from a large positive

gluon polarisation.

In contrast to the earlier inclusive measurements, recent data from semi-inclusive

DIS at HERMES suggest that the strange sea is unpolarised. A full 5 parameter

flavour decomposition using data from proton and deuteron targets, although not

sensitive to the anti-strange quark spin ∆s̄, yielded ∆s = 0.028 ± 0.033 ± 0.009. A

separate extraction of ∆s+∆s̄ from DIS data on the deuteron alone gave ∆s+∆s̄ =

0.129± 0.042± 0.129 where the large systematic error reflects the lack of knowledge

of the kaon fragmentation functions.

This thesis reports a new ”isoscalar” measurement of ∆s + ∆s̄ in which these

limitations are avoided. Because strange quarks carry no isospin, the strange seas

in the proton and neutron are identical. In the deuteron, an isoscalar target, the

fragmentation process in DIS can be described without any assumptions regarding

isospin dependent fragmentation. In the isoscalar extraction of ∆s + ∆s̄ only the

spin asymmetry for K0
s A

K0
s

1,d (x,Q2, z) and the inclusive asymmetry A1,d(x,Q
2) are

used. An accurate measurement of the total non-strange quark polarisation ∆Q =

∆u + ∆ū + ∆d + ∆d̄ comes directly from A1,d(x,Q
2). The fragmentation functions

needed for a leading order (LO) extraction of ∆S = ∆s + ∆s̄ are measured directly

at HERMES kinematics using the same data.

As a result of this analysis, the helicity densities for the strange quarks are con-

sistent with zero with the experimental uncertainty over the measured x kinematic

range.
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Chapter 1

Introduction

With the confirmation that the proton and neutron were not elementary particles,

physicists were challenged with the task of explaining the nucleon’s spin in terms of

its constituents [1]. The attempt to understand the origin of the intrinsic spin of

the proton and neutron has been an active area of both experimental and theoretical

research for the past twenty years.

Since the 1960s it was hypothesized that the constituents of atomic nuclei (protons

and neutrons) and other strongly interacting particles (collectively known as hadrons)

have an internal structure. The elementary constituents of a hadron were first referred

to as quarks by M. Gell-Mann [2] and G. Zweig [3].

This model described the hadron as a composite system of only three kinds of

particles which Gell-Mann called ”quarks” (u, d and s) and of their corresponding

antiparticles. Static properties of the observed hadronic structure could be derived

from the flavour, spin and charge of these quarks. Gell-Mann called this classification

”The Eightfold Way”, since octets of nucleons and mesons naturally appeared. The

nucleons were found to belong to a supermultiplet of eight particles, i.e. an octet.

For the mesons an octet was proposed where the π- and K-mesons filled seven places.

And later the elementary constituents of a hadron were referred to as partons by R.

Feynman [4] who introduced the parton model to explain observations in scattering

experiments.

In both models the constituents of hadrons are point-like spin-1/2 particles car-
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2 CHAPTER 1. INTRODUCTION

rying a fraction of the electric charge, and are distinguished by different flavours.

But while in the constituent quark model only 3 quarks share the total mass of a

nucleon (proton or neutron), the parton model predicts a nucleon to be made of a

large number of partons of very small mass.

The quark and parton interpretations of the nucleus were subsequently merged

together in the Quark-Parton Model (QPM). Within this framework, the process of

electron-proton scattering could be expressed in terms of two structure functions, F1

and F2, which behave in accordance with Bjorken scaling. In 1972, measurements of

the structure function F2 of the nucleon revealed that the quarks only contribute for

about 50% to the total momentum of the nucleon. [5, 6] The remaining momentum

was later associated with new partons: the spin-1 gluons.

From the theoretical developments of new non-Abelian gauge field theories, Quan-

tum Chromodynamics (QCD) [7, 8] was established as the suitable candidate to

explain the interaction of quarks and gluons in terms of a strong force between color-

charged particles. The missing momentum could be explained in this framework of

QCD, which describes the strong interactions between the quarks in terms of the

exchange of a bicolor-charged particle, namely the gluon. The missing momentum is

carried by gluons which do not show up in the electro-weak scattering processes as

they carry no electro-weak charge. The extension of the simple color model to QCD

[9] could naturally describe the binding forces between quarks within hadrons.

The strength of the interaction is given by the strong coupling constant, which in

contract to the electromagnetic coupling constant, becomes weaker with decreasing

distance. This behavior explains the asymptotic freedom of quarks [7, 8].

In the asymptotic limit, i.e. when the strong coupling constant is small, QCD

can be approached perturbatively and quantitative predictions can be formulated.

In particular, a violation of Bjorken scaling of the structure functions is accurately

predicted within QCD. It arises from the interaction between quarks by exchange of

gluons. The momentum distributions of valence and sea quarks within the nucleon

have been determined to a certain level of accuracy and provide further evidence for

the important role of gluonic degrees of freedom.
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However, the intuitive picture of the QPM can be regarded as the zeroth order

approximation of perturbative QCD.

In a simple contituent picture, the total spin of the nucleon can be decomposed

as

JN
z = Sq

z + Lq
z + Sg

z + Lg
z =

1

2
(1.1)

Where Sz and Lz represent the intrinsic and orbital angular momentum respec-

tively for the quarks and the gluons. A simple non-relativistic quark model gives

directly 1
2

for Sq
z and 0 for all the other components.

The alternative expression is

1

2
=

1

2
∆Σ + ∆g + LZ (1.2)

where ∆Σ and ∆g are the net spin contributions from the quarks and the gluons,

respectively, and Lz is the contribution from the orbital angular momentum of the

all partons.

In the late 1960s, the first deep-inelastic scattering experiments were carried out

using high-energy electrons at the Stanford Linear Accelerator Center (SLAC) by

Jerome I. Friedman, Henry W. Kendall (MIT, LNS) Richard E. Taylor (SLAC) [10].

They were repeated in the early 1970s using neutrino beams at CERN, and later still

using mouns.

Starting from the late 1960s, experiments have provided evidence in support of

the existence of constituents of the nucleon by exploiting the high resolution of vir-

tual photons probing nucleon structure in deep-inelastic electron scattering. As the

experimental data [10] were in agreement with the kinematic dependencies predicted

by Bjorken [11] and Callan & Gross [12] on the basis of the Quark-Parton Model,

first compelling evidence for the existence of quarks came available.

The investigation of the hadronic final state in deep inelastic scattering allows a

deeper insight into the sub-nuclear process than the inclusive alone. One of the key

propertries of QCD, the color confinement, shows up experimentally by the fact that
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quarks are never observed as free particles. When a quark inside a nucleon obtains a

high momentum during a scattering process, it fragments into a bundle of hadrons,

called a jet, when it tries to leave the color ’bag’ of the nucleon. Experimentally, the

momentum, the charge and the flavour of a struck quark can be measured indirectly

by analysing the composition of the hadron jet. The first direct evidence for the

existence of gluons was the observation of multi-jet events [13].

Electron scattering provides a powerful tool for studying the structure of the

nucleus. In deep-inelastic electron scattering the interaction between an electron

and a nucleon is mediated by the exchange of a virtual photon. If the virtuality of

the photon (the square of its four-momentum) is high, the internal quark structure

of the nucleon is probed. After absorbing the virtual photon, the quark is ejected

from the nucleon with high kinetic energy. Because of the confinement property, the

kinetic energy of the quark is transformed as potential energy which increases with

the distance between the struck quark and the nucleon remnant. According to the

string model description of this process a new quark-antiquark pair is created when

the increase of potential energy is large enough, the string breaks eventually and leads

to the formation of a jet of hadrons. This is the common way to describe the process

of hadron formation (or string fragmentation).

Since the first SLAC-MIT experiments, the DIS process with charged lepton beams

has been widely used to probe the structure of the nucleon and to enhance our un-

derstanding of QCD. With the technological development of polarised beams and

targets the spin structure of the nucleon became accessible. The nucleon spin compo-

sition can be probed by studying the dependence of the cross sections on the relative

orientations of the helicity of the lepton beam and the nucleon polarization in DIS.

Experimentally, the determination of the ratio between the difference in the cross

sections and their sum is exploited to extract an asymmetry. In fact, the systematic

uncertainties in an asymmetry measurement are much more favorable than in the

measurement of a cross section difference alone.

Since the late 1970s, a variety of experiment have been carried out to investigate

the nucleon spin structure. The SLAC experiments E80 [14, 15] and E130 [16] mea-
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sured asymmetries in DIS of polarised electrons from polarised protons. Their results

confirmed the general ideas of scaling and QPM interpretation of the nucleon struc-

ture. In addition, the Ellis-Jaffe sum rule prediction for the integral of the proton

spin structure was verified, though within large experimental uncertainties.

In 1987, a high precision measurement of the proton spin structure function was

performed by the European Muon Collaboration (EMC) [17] with a polarised muon

beam. Their result significantly deviated from the prediction of the Ellis-Jaffe sum

rule. As a consequence, the EMC data imply that only 12% of the nucleon spin is

carried by the quarks. This surprising result lead to the proposal of a new series of

experiments which could test the validity of the EMC measurement with increased

accuracy and add information on the structure functions for neutron and deuteron.

Also the second generation of experiments (Spin Muon Collaboration ([17] 11) at

CERN and E142 [18] and E143 [19, 20] at SLAC) confirmed the deviation from the

naive parton model predictions found in the previous polarised scattering experiments.

The newly born ”spin crisis” of the parton model is nowadays established rather

as the ”nucleon spin puzzle”. In order to have a complete picture of the nucleon spin,

also the spin contributions from the gluons and the orbital angular monenta in the

nucleon must be taken into account.

Essentially, all the experimental information so far was gained through inclusive

DIS where only the kinematics of the scattered lepton were measured. Further insight

into the nucleon structure may be obtained through semi-inclusive DIS events in which

a forward hadron is detected in coincidence with the scattered lepton. The detection of

hadrons in the final state of a deep-inelastic scattering event (i.e. semi-inclusive deep-

inelastic scattering) enables the experimental study of the fragmentation process. The

identification of the particle in the hadronic final state gives a unique insight in the

individual quark flavour contributions. With appropriate kinematic constraints it

is possible to tag the flavour of the struck quark, allowing the separation of the

contributions of the different quark flavours to the nucleon spin. In this way, semi-

inclusive pion asymmetries are sensitive to the polarization of the light-sea quarks in

the nucleon. Furthermore, since the K− meson consists of only sea quarks, the K−
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asymmetry directly probes the spin content of the strange quarks in the nucleon. A

direct measurement of the spin contributions of the light-sea and strange sea quarks

is expecially interesting for a definitive interpretation of the nucleon spin puzzle. This

thesis will be concentrated on the ∆q analysis from the K0
s meson.

The HERMES (HERa MEasurement of Spin) experiment, together with the SLAC

experiments E154 [21, 22] and E155 [23, 24], SMC [25] and compass [26], belongs to

a new generation of polarised DIS experiments designed to optimize the study of the

spin nuclear structure. In particular, HERMES specialized its efforts not only on

precise inclusive measurements but also on the semi-inclusive physics via the mea-

surement of semi-inclusive pion and kaon asymmetries. The experiment is located

at the Deutsches Elektronen Synchrotron (DESY) laboratory in Hamburg, Germany.

The longitudinally self-polarised 27.5 GeV positron beam circulating in the HERA

(Hadronen Electronen Ring Anlage) storage ring interacts with a longitudinally po-

larised atomic gas of the HERMES target. For the experimental set-up the novel

technique of an open-ended storage cell target internal to the positron beam pipe is

used. In the HERMES experiment the reduction in luminosity due to the limited

thickness of the gaseous target is compensated by the multiple interactions of the

circulating positron beam.

The HERMES large acceptance spectrometer detects the forward going positrons

and the corresponding hadronic fragments resulting from the interactions. A good

hadron/positron separation is achieved by four particle identification detectors: a

leadglass calorimeter combined with a preshower, a threshold Cerenkov counter and a

transition radiation detector (TRD). Pion identification was possible with the thresh-

old Cerenkov counter. Since 1998 a Ring Imaging Cerenkov detector has been in

operation, allowing full hadron identification over a wide momentum range.

The spin distribution of the sea quarks can be directly accessed through the mea-

sured pion and kaon semi-inclusive asymmetries. Since the commissioning of the

experiment in 1995, three different polarised targets have been used: 3He (1995),

hydrogen (1996-1997) and deuterium (1998-2000). In this thesis, the results obtained

on deuteron target are shown.
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The work presented in this thesis is organized as follows. Chapter 1, is an intro-

duction to DIS, the HERMES experiment and the physics analysis motivation. In

chapter 2, an overview is given about the theoretical framework of polarised deep-

inelastic scattering. The interpretation of observables within the Quark-Parton Model

and its extension to the theory of Quantum Chromodynamics is also reviewed. The

HERMES experimental setup is introduced briefly in chapter 3. In chapter 4, the

event selection has been discussed in detail. The related K0
s reconstruction and

background suppression is introduced in chapter 5. The measured semi-inclusive

asymmetries, which are related to the quark polarisation, are presented in chapter

6. The integral fragmentation functions, which extracted from the multiplicity of

K0
s , are given in chapter 7. Finally, the results of the strange and the non-strange

quark polarisation and the quark helicity distributions are presented in chapter 8.

The conclusions derived from this analysis are given in chapter 9.





Chapter 2

Polarised deep inelastic scattering

This chapter will give a brief introduction to a large and important field in particle

physics, Deep Inelastic Scattering (DIS).

The idea is to accelerate electrons to very high energies, then allow them to interact

with a stationary proton, and investigate what happens.

Deep inelastic scattering may be viewed in two ways: as inelastic scattering off

a proton because it has constituents inside, or as elastic scattering from one of the

constituents inside (ignoring the whole proton and other constituents). We are able

to say that the constituents appear to be point-like and so can be considered as

fundamental particles. (see section 2.3 Quark-Parton model). The DIS experiments

in the late 60s paved the way for understanding the structure of the proton and

neutron which was interpreted in the Quark-Parton model.

In this chapter, the formalism of polarised deep inelastic scattering is discussed.

The kinematics are given in Section 2.1 for the DIS of a charged lepton from a nucleon.

The polarised cross section for this process is discussed in Section 2.2 for the inclusive

case. It will be shown how the measurement of polarised cross section asymmetries

can be related to spin observables. The structure functions are interpreted in terms

of point-like constituents of the nucleon within the framework of the Quark Parton

Model (Section 2.3). Section 2.3.2 presents the sum rules for the spin structure of the

nucleon by using the Operator Product Expansion formalism. Finally, in Section 2.4

the importance of the polarised semi-inclusive asymmetries is discussed. It is shown

9
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that they provide essential information on the flavour dependence of the polarised

quark distributions.

2.1 Deep inelastic scattering kinematics

Deep inelastic scattering plays a key role in determining the partonic structure of

the proton. If the incident lepton carries enough energy, all sorts of other stuff may

come out–pions, kaons, deltas, and so on. In inclusive DIS process only the scattering

lepton is detected, which is denoted as:

e+N → e′ +X (2.1)

while in semi-inclusive process at least one of the final state hadrons is measured in

coincidence with the lepton, that is:

e+N → e′ + h+X (2.2)

The DIS process is mediated by the exchange of a virtual boson (γ∗, Z0) between the

lepton and one of the partons inside the target nucleon.

HERMES performs deep-inelastic positron-nucleon scattering experiments. At

HERMES energy (
√
s ∼ 7.2GeV in the center of mass), where the energy transfer ν

is small compared to the Z-boson mass, the contributions due to the weak interaction

can be neglected, the dominant process is one-photon exchange. Therefore only the

electromagnetic interaction in the approximation of one-photon exchange is discussed

at HERMES. In this case, The deep inelastic scattering can be described in lowest

order, as schematically depicted in Fig. 2.1.

The corrections due to multi-photon exchange are suppressed by the smallness of

the fine structure constant αEM ∼ 1/137. Since the interference between one- and

two-photon exchange is sensitive to the charge of the lepton beam. The contributions

from multi-photon exchange processes can be extracted by comparing the results from

DIS experiments which use oppositely charged leptons. There is no experimental

evidence for the DIS cross section ratio σe+/σe− at HERMES energies, thus it can be
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negligible. Moreover only the three light quark flavours up (u), down (d) and strange

(s) are of relevance at this energy.

The relevant kinematic variables are denoted as the four-momenta of the incoming

positron k = (E,
−→
k ) and scattered positron k′ = (E ′,

−→
k′ ), q = (µ,−→q ), p = (Ep,

−→p ),

and ph = (Eh,
−→ph) as those of the exchanged virtual photon, the target nucleon, and

a hadron produced in the scattering process. The following Lorentz invariants are

defined in the standard way as [27]:

Q2≡− q2 = −(k− k′)
2
, squared four–momentum transfer, (2.3)

s = (p + k)2, squared center–of–mass energy, (2.4)

W 2 = (p + q)2, squared invariant mass of the photon–nucleon system. (2.5)

As a fixed target experiment, p = (M, 0), HERMES also neglect the thermal

motion of the target atoms and the Fermi motion of the nucleons. The laboratory

frame coincides with the nucleon rest frame. In addition, since the energies of incident

and scattered leptons are large compared to their mass, the lepton mass may also be

Figure 2.1: Diagram of the deep-inelastic lepton-nucleon scattering in the one-photon

exchange approximation as seen in the laboratory system. The shaded arrows indicate

the spins of the particles.
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neglected. These approximations are used in the derivation of the DIS kinematic

quantities listed in Tab. 2.1. Therefore, in the nucleon rest system:

Q2Lab' 4EE ′sin2(θ/2) = 2EE ′(1− cos θ) (2.6)

s
Lab
= M2 + 2ME (2.7)

ν
Lab
= E − E ′ (2.8)

W 2 Lab
= M2 + 2Mν −Q2 (2.9)

Where θ is the electron scattering angle in the laboratory system, M is the mass

of the proton. and ν is the energy of the virtual photon transfered from the electron

to the nucleon. The dimensionless scaling variables x and y are defined as:

x =
Q2

2p · q
Lab
=

Q2

2Mν
, (2.10)

y =
p · q
p · k

Lab
=

ν

E
. (2.11)

x is the Bjørken scaling variable. For the elastic scattering, W 2 = M2, and

consequently x = 1, while for the inelastic process, W 2 > M2 and x < 1. The variable

x can also be interpreted as the fraction of the nucleon’s light–cone momentum carried

by the struck quark. y is the fractional energy–transfer from the electron to the

nucleon. In general the kinematically allowed ranges are 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

In the case of semi-inclusive measurements, the kinematics of the final state hadron

are described by its fractional energy z with respect to the energy transfer ν in the

laboratory frame.

z =
p·ph

p·q
Lab
=

Eh

v
(2.12)

and the Feynman variable xF ,

xF =
P ∗
||

|−→q |
'

2P ∗
||

W
(2.13)
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Experimental Observables

Lepton:

kµ = (E,~k) Four-momentum of the incodent lepton

k′µ = (E ′, ~k′) Four-momentum of the scattered lepton

(θ, φ) Polar and azimuthal angles of the scattered lepton

Hadron:

P µ Lab
= (M,~0) Four-momentum of the target nucleon

P µ
h

Lab
= (Eh, ~Ph) Four-momentum of a detected final state hadron h

Derived Quantities

Inclusive DIS:

qµ = kµ − k′µ = (ν, ~q) Four-momentum of the virtual photon

~q = ~k − ~k′ Three-momentum of the virtual photon in the lab. frame

ν = Pµqµ

M

Lab
=E − E ′ Energy of the virtual photon in the lab. frame

Q2 = −qµqµ Squared invariant mass of the virtual photon
Lab' 4EE ′sin2(θ/2)

W 2 = (P µ + qµ)2 Squared invariant mass of the final hadronic system

Lab
=M2 + 2Mν −Q2

x = Q2/(2Pµq
µ) Bjorken scaling variable

Lab
=Q2/(2Mν)

y = Pµq
µ/Pµk

µLab
= ν/E Fractional energy transfer of the photon

s = (P µ + kµ)2 Squared centre of mass energy

Lab
= 2ME +M2 +m2

l

Semi-inclusive DIS:

P ∗
|| = ~Ph · ~q

|~q| Longitudinal momentum of a hadron h in the γ∗ −N

centre of mass system

xF =
P ∗
||
|~q| w

2P ∗
||

W
Feynman scaling variable

z =
PµP µ

h

Pµqµ

Lab
=Eh/ν Fractional energy of the photon carried by the hadron h

Table 2.1: A legend of kinematic quantities used in the description of deep inelastic

positron nucleon scattering.
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where P ∗
|| is the hadron’s longitudinal momentum with respect to the photon momen-

tum in the virtual photon-nucleon center-of-mass system. The kinematically allowed

ranges for the variables z and xF are 0 < z < 1 and −1 < xF < 1 respectively. The

hadron that contains the struck quark carries a large energy fraction z and has pos-

itive x-Feynmann, as it travels in the forward direction with respect to the photon.

Hadrons that contain the struck quark or that are part of the ”jet” that contains the

struck quark are called the current fragments, where as hadrons in the final state that

are formed from the spectator quarks are the target fragments.

2.2 Inclusive deep inelastic scattering

In lowest-order perturbation theory, for one photon exchange, the differential deep-

inelastic cross section for detection the scattering lepton in a solid angle dΩ and in an

energy range [E ′, E ′ + dE ′] can be written in term of leptonic and hardronic tensors,

Lµν and W µν , which describe the structure of the leptonic and hardronic vertices

[28, 29, 30, 31, 32, 33]

d2σ

dΩdE ′ =
α2

Q4

E ′

E
LµνW

µν (2.14)

Where α denotes the electromagnetic coupling constant (The fine-structure con-

stant), and Lµν and Wµν are the lepton and hadron tensors, respectively. As the elec-

tromagnetic interaction conserves parity, only terms with like symmetry contribute

to the DIS cross section in Eq. 2.14. Due to the pointlike nature of the positrons,

the lepton tensor Lµν can be calculated in QED from

Lµν(k, s; k
′, s′) = [ū′(k′, s′)γµu(k, s)] ∗ [ū′(k′, s′)γνu(k, s)] (2.15)

where u(k, s), u′(k′, s′) are the Dirac spinors for spin-1
2

particles with four-momentum

k[k′] and spin four-vector s[s′], describing the incident [scattered] positron. Due to

that the polarisation is not observed in the experiment, summing over the spin four-

vector s′ of the scattered positron, the lepton and hadron tensors can be split into
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two parts, which are symmetric tensors L
(S)
µν W

(S)
µν and anti-symmetric tensors L

(A)
µν

W
(A)
µν under parity transformations:

Lµν = L(S)
µν + L(A)

µν (2.16)

Wµν = W (S)
µν +W (A)

µν (2.17)

where L
(S)
µν (k, k′) and L

(A)
µν (k, s, k′) are defined as:

L(S)
µν (k, k′) = 2[kµkν

′ + kµ
′kν − gµν(k · k′ −m2

e)] (2.18)

L(A)
µν (k, s, k′) = 2meεµνλσs

λ(k − k′)σ (2.19)

The anti-symmetric part depends on the spin sλ of the incident positron, while the

symmetric part is spin-independent. In the above expressions, gµν is the metric tensor,

me denotes the positron mass, and εµνλσ is the totally anti-symmetric Levi-Civita

tensor of rank four.

The unknown hadronic tensor Wµν , which contains the strong interaction dy-

namics, can be written in terms of four scalar inelastic form factors, W1,2 and G1,2,

functions at most of q2 and p · q [34].

W (S)
µν =

(
−gµν +

qµqν
q2

)
W1 +

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
W2

M2
(2.20)

W (A)
µν = εµναβq

α

{
MSβG1 +

[
(p · q)Sβ − (S · q)pβ

] G2

M

}
(2.21)

In contrast to the lepton tensor, the hadron tensor Wµν which describes the in-

teraction at the virtual photon-nucleon vertex is unknown. It represents the internal

structure of the nucleon, whose understanding in a specific aspect is the aim of this

thesis. The internal nucleon structure, and hence the hadronic tensor, can be param-

eterized by a set of structure functions, which will be discussed in the following two

sections.
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2.2.1 The unpolarised cross section and structure functions

The usual unpolarised cross section is proportional to L
(S)
µν W µν(S).

d2σunpol

dΩdE ′ =
1

4

∑
s,s′,S

d2σ

dΩdE ′ (k, s, P, S; k′, s′)

=
α2

Q4

E ′

E
L(S)

µν W
µν(S) (2.22)

Inserting Eqs. 2.18 and 2.20 in 2.22, then the well-known unpolarised cross section

expression can be obtained with neglecting the lepton mass in the laboratory frame:

d2σunpol

dΩdE ′ =
4α2E ′

Q4

[
2W1(ν,Q

2)sin2 θ

2
+W2(ν,Q

2)cos2 θ

2

]
(2.23)

Where θ is the scattering angle of lepton, W1 and W2 are unpolarised structure

functions. In the Bjørken limit, or DIS regime, (i.e. Q2 → ∞ and ν → ∞), x =

Q2

2P ·q = Q2

2Mν
is fixed. Introducing the dimensionless structure functions F1(x,Q

2) and

F2(x,Q
2),

F1(x,Q
2) = MW1(Q

2, ν) (2.24)

F2(x,Q
2) = νW2(Q

2, ν) (2.25)

which vary very slowly with Q2 at fixed x. The unpolarised cross section becomes

d2σunpol

dxdQ2
=

4πα2

Q4
·
[
F1(x,Q

2) · y2 +
F2(x,Q

2)

x
·
(

1− y − Mxy

2E

)]
(2.26)

Precise measurements of the proton and deuterium structure functions F p
2 and

F d
2 have been performed by numerous fixed target (BCDMS [35], E665 [36], NMC

[37], SLAC [38]) and collider experiments (H1 [39] and ZEUS [40]), covering a broad

kinematic range of 0.000063 ≤ x ≤ 0.85, and 0.1 ≤ (Q2/GeV2) ≤ 5 ·103. In Fig. 2.2 a

compilation of world data on the proton structure function F p
2 in the kinematic range

relevant to HERMES is shown. For values of x ≤ 0.18 and x ≥ 0.3 the structure

function shows a significant dependence on Q2, which is not expected from the naive

quark model. This Q2-dependence is a consequence of QCD effects.
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16. Structure functions 1

NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE REPRESENTATIVE DATA.

THEY ARE NOT MEANT TO BE COMPLETE COMPILATIONS OF ALL THE WORLD’S RELIABLE DATA.
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Figure 16.6: The proton structure function F p
2 measured in electromagnetic scattering of positrons on

protons (collider experiments ZEUS and H1), in the kinematic domain of the HERA data, for x > 0.00006
(cf. Fig. 16.9 for data at smaller x and Q2), and for electrons (SLAC) and muons (BCDMS, E665, NMC)
on a fixed target. Statistical and systematic errors added in quadrature are shown. The data are plotted
as a function of Q2 in bins of fixed x. Some points have been slightly offset in Q2 for clarity. The ZEUS
binning in x is used in this plot; all other data are rebinned to the x values of the ZEUS data. For the
purpose of plotting, F p

2 has been multiplied by 2ix , where ix is the number of the x bin, ranging from
ix = 1 (x = 0.85) to ix = 28 (x = 0.000063). References: H1—C. Adloff et al., Eur. Phys. J. C21, 33 (2001);
C. Adloff et al., Eur. Phys. J. (accepted for publication) hep-ex/0304003; ZEUS—S. Chekanov et al., Eur.
Phys. J. C21, 443 (2001); BCDMS—A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989) (as given in [54])
; E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Nucl. Phys. B483, 3
(97); SLAC—L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).

Figure 2.2: The unpolarised proton structure function F p
2 (x,Q2) measured in electro-

magnetic scattering of positrons on protons (collider experiments ZEUS and H1), in

the kinematic domain of the HERA data, for x > 0.00006, and for electrons (SLAC)

and mouns (BCDMS, E665, NMC) on a fixed target. The statistical and systematic

errors added in quadrature are shown. For the better representation, F p
2 has been

multiplied by 2ix , where ix is the number of the x bin. [41].
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Figure 16.7: The deuteron structure function F d
2 measured in electromagnetic scattering of electrons

(SLAC) and muons (BCDMS, E665, NMC) on a fixed target, shown as a function of Q2 for bins of fixed
x. Statistical and systematic errors added in quadrature are shown. For the purpose of plotting, F p

2 has
been multiplied by 2ix , where ix is the number of the x bin, ranging from 1 (x = 0.85) to 29 (x = 0.0009).
References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990). E665, NMC, SLAC—same
references as Fig. 16.6.

Figure 2.3: The unpolarised deuteron structure function F d
2 (x,Q2) measured in elec-

tromagnetic scattering of electrons (SLAC) and mouns (BCDMS, E665, NMC) on a

fixed target. The statistical and systematic errors added in quadrature are shown.

For the better representation, F d
2 has been multiplied by 2ix , where ix is the number

of the x bin. [41].
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Photon absorption cross section

The unpolarised cross section can alternatively be expressed in terms of the trans-

versely photon absorption cross section σT and the longitudinally polarised virtual

photon absorption cross section σL on a nucleon:

d2σunpol

dxdQ2
= Γ

[
σT (x,Q2) + εσL(x,Q2)

]
(2.27)

Where, Γ gives the flux of virtual photons, which originate from the lepton beam.

And ε is the degree of longitudinal polarisation of the virtual photon. Neglecting the

positron rest mass me, ε is given by

ε
Q2>>2m2

e
w

1− y − 1
4
γ2y2

1− y − 1
4
y2(γ2 + 2)

(2.28)

with γ2 =
Q2

ν2
=

4M2x2

Q2
(2.29)

Introducing the ratio R(x,Q2) of the photo absorption cross sections

R(x,Q2) =
σL(x,Q2)

σT (x,Q2)
(2.30)

the structure functions F1(x,Q
2) and F2(x,Q

2) can be related to each other by the

longitudinal structure function FL(x,Q2)

R(x,Q2) =
FL(x,Q2)

2xF1(x,Q2)
=

(1 + γ2)F2(x,Q
2)− 2xF1(x,Q

2)

2xF1(x,Q2)
(2.31)

or

F1(x,Q
2) = F2(x,Q

2) · 1 + γ2

2x[1 +R(x,Q2)]
(2.32)

The cross section ratio R(x,Q2) has been measured by several DIS experiments

in the HERMES kinematic range and found to be identical for proton and neutron

targets within the experimental uncertainties. The available data and a parameteri-

zation of R [42] are shown in Fig. 2.4, which is used in extracting the photon-nucleon

asymmetries in the analysis in this thesis.
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Figure 2.4: The Ratio of longitudinal and transverse cross sections R = σL/σT

as a function of x in three ranges of Q2. The solid line shows the parameterization

R1998 [42]. Also shown are measurements from various experiments. The dashed

lines show the results of a next-to-next-to-leading order calculation in perturbative

QCD. The figure is reported in Ref. [42].

In the Bjørken limit (i.e. Q2 →∞ and ν →∞), x = Q2/2Mν remains constant,

for longitudinally polarised photons, the photo absorption cross section σL vanishes as

a consequence of the requirement of helicity conservation at the virtual photon-quark

scattering vertex.

In the limit, R→ 0, Eq. 2.32 gives the Callan-Gross relation [12]:

2xF1(x) = F2(x) (2.33)
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2.2.2 The polarised cross section differences, structure func-

tions and asymmetries

The differences of cross sections with opposite target spins are proportional to L
(A)
µν W µν(A).

∑
s′

[
d2σ

dΩdE ′ (k, s, P,−S; k′, s′)− d2σ

dΩdE ′ (k, s, P, S; k′, s′)

]

=
α2

Q4

E ′

E
2L(A)

µν W
µν(A) (2.34)

In the target frame, using the definitions of scattering angles in Fig. 2.5 the cross

section difference can be expressed as:

d2σ(−S)

dΩdE ′ − d2σ(+S)

dΩdE ′ =
4α2E ′

Q2E

× {[E cosα+ E ′(sin θ sinα cosφ+ cos θ cosα)]MG1

+ 2EE ′(sin θ sinα cosφ+ cos θ cosα− cosα)G2} (2.35)

In particular, when the target nucleon is longitudinally polarised (that is the

polarised along the incoming lepton direction, α = 0), and the differences of cross

section becomes

Figure 2.5: Definition of the angles in polarised inclusive deep inelastic scattering in

the laboratory system.
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d2σ
→⇐

dΩdE ′ −
d2σ

→⇒

dΩdE ′ =
4α2E ′

Q2E
[(E + E ′ cosφ)MG1 −Q2G2] (2.36)

When the target nucleon is transversely polarised (that is, polarised orthogonally to

the incoming lepton direction, α = π/2), and the differences of cross section becomes

d2σ→⇓

dΩdE ′ −
d2σ→⇑

dΩdE ′ =
4α2E ′

Q2E
sin θ[MG1 + 2EG2] (2.37)

Where G1 and G2 are the polarised structure functions. In the Bjørken limit, (i.e.

Q2 →∞ and ν →∞), they are expected to scale approximately:

g1(x,Q
2) = M2νG1(ν,Q

2) (2.38)

g2(x,Q
2) = Mν2G2(ν,Q

2) (2.39)

Here, → indicates the spin orientation of the incoming lepton and ⇐,⇒ denote

the different spin states of the target nucleon. The cross section is dominated by the

structure function g1(x,Q
2), since g2(x,Q

2) is suppressed by γ2 ∼ 1/Q2 and g2(x,Q
2)

is small quantity and even is neglected in the simple quark parton model. The con-

tribution of g2(x,Q
2) vanishes completely in case of a target polarised longitudinally

with respect to the virtual photon. Experimentally, however, a polarisation with

respect to the virtual photon is not achievable. Figure 2.6 shows measurements on

longitudinally polarised proton and deuteron targets of different experiments.

The structure function g2(x,Q
2) is usually taken into account by a parametrization

of world data. The precision of the parametrization has only a marginal effect on

the g1(x,Q
2) measurement and is part of the systematic uncertainty. The neutron

structure function is extracted from the difference of the results for the deuteron and

the proton. It can be measured also directly with a polarised 3He target, which is

an effective polarised neutron target due to the almost complete cancellation of the

proton spins (see e.g. [49]).
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16. Structure functions 7

!"#"$

"

"#"$

"#"%

"#"&

"#"'

!"#"$

"

"#"$

"#"%

(
)*
+
,

-./
-+%$
-+%0
1./
2-3.-1
-+4%
-+44
5678)-99!++:
/;.<=11

(
)*
+
>

(

(
)*
+
?

!"#"$

"

"#"$

+"
!%

+"
!0

+"
!$

+"
!+

+

Figure 16.12: The spin-dependent structure function xg1(x) of the proton, deuteron, and neutron (from 3He
target) measured in deep inelastic scattering of polarized electrons/positrons: E142 (Q2 ∼ 0.3−10 GeV2), E143
(Q2 ∼ 0.3− 10 GeV2), E154 (Q2 ∼ 1− 17 GeV2), E155 (Q2 ∼ 1− 40 GeV2), HERMES (Q2 ∼ 0.8− 20 GeV2)
and muons: EMC (Q2 ∼ 1.5 − 100 GeV2), SMC (Q2 ∼ 0.01 − 100 GeV2), shown at the measured Q2

(except for EMC data given Q2 = 10.7 GeV2 and E155 data given at Q2 = 5 GeV2). Note that gn
1 (x) may

also be extracted by taking the difference between gd
1(x) and gp

1(x), but these values have been omitted in
the bottom plot for clarity. Statistical and systematic errors added in quadrature are shown. References:
EMC—J. Ashman et al., Nucl. Phys. B328, 1 (1989); E142—P.L. Anthony et al., Phys. Rev. D54, 6620
(1996); E143—K. Abe et al., Phys. Rev. D58, 112003 (1998); SMC—B. Adeva et al., Phys. Rev. D58,
112001 (1998), B. Adeva et al., Phys. Rev. D60, 072004 (1999) and Erratum-Phys. Rev. D62, 079902 (2000);
HERMES—A. Airapetian et al., Phys. Lett. B442, 484 (1998) and K. Ackerstaff et al., Phys. Lett. B404,
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Figure 2.6: The spin-dependent structure function xg1(x) of the proton, deuteron,

and neutron (from 3He target) measured as function of x in deep inelastic scattering

of polarised electrons/positrons. (EMC: [43], E142: [44], E143: [45], SMC: [46],

HERMES: [47], E155: [23, 48], ). Statistical and systematic uncertainties added in

quadrature are shown.

Double spin asymmetries

In principle, the spin-dependent structure functions g1 and g2 can be determined by

measuring the cross section differences for a longitudinally (α = 0, π) and a trans-

versely (α = π
2
, 3π

2
) polarised target. Rather than measuring cross section differences,

it is advantageous from an experimental point of view to measure the following cross

section asymmetries:

A||(x,Q
2) =

σ
→⇐ − σ

→⇒

σ
→⇐ + σ

→⇒
, A⊥(x,Q2) =

σ→⇓ − σ→⇑

σ→⇓ + σ→⇑ (2.40)

Here, σ
→⇐(

→⇒) is a short notation for the differential cross sections
d2σ

→⇐(→⇒)

dxdQ2 for

parallel (anti-parallel) alignments of beam and target spin, which have been intro-
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duced in the previous section. The σ→⇑(→⇓) are defined accordingly. Provided the

time intervals between the flipping of the target or beam spin are short enough, effi-

ciency and acceptance effects, which are not correlated to the relative orientation of

the beam and target spins, cancel out by measuring cross section asymmetries instead

of cross section differences. Hence, asymmetry measurements are less susceptible to

systematic effects than measurements of differences of absolute cross sections.

Photon absorption cross section

In the virtual photon-nucleon reference frame, the cross section differences can be

expressed in terms of the two asymmetries A1 and A2:

A1(x,Q
2) = A1 =

σ 1
2
− σ 3

2

σ 1
2

+ σ 3
2

=
g1 − γ2g2

F1

(2.41)

A2(x,Q
2) = A2 =

2σI

σ 1
2

+ σ 3
2

=
γ(g1 + g2)

F1

(2.42)

where the dependence of the structure functions and cross sections on the kine-

matical quantities x and Q2 has been omitted for clarity. In these definitions, σ 1
2
(σ 3

2
)

denotes the cross section for the absorption of a virtual photon by the nucleon, when

the projection of the total angular momentum of the virtual photon-nucleon system

along the momentum of the photon is 1
2
(3

2
). σT = 1

2
(σ 1

2
+ σ 3

2
) is the total transverse

photo absorption cross section, while σI arises from the interference of longitudinal

and transverse photo absorption amplitudes. Like in the above definitions for A|| and

A⊥, the σj, (j = I, L, T ) are short notations for the corresponding differential cross

sections with respect to x and Q2. The interference cross section term has to obey

the triangular relation σI ≤
√
σLσT , thus leading to a positivity limit for the absolute

value of the asymmetry A2:

|A2| = | σI

σT

| ≤
√
σLσT

σ2
T

=
√
R(x,Q2) (2.43)

which is given by the square root of the cross section ratio R introduced in Sect.

2.2.2. The virtual photon asymmetries A1 and A2 are related to the experimental
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asymmetries A|| and A⊥ by

A|| = D(A1 + ηA2), A⊥ = D(ξA2 −
η

ξ
A1) (2.44)

D = D(x,Q2) is the depolarisation factor of the virtual photon, which depends

on the kinematical quantities and the cross section ratio R, while η and ξ are purely

kinematical factors:

D =
1− (1− y)ε

1 + εR
(2.45)

η =
εγy

1− (1− y)ε
(2.46)

ξ =

√
2ε

1 + ε
(2.47)

and ε is the degree of longitudinal polarisation of the virtual photon, already defined

in Eq. (2.28).

Rewriting Eq. 2.41 and using the definition in Eq. 2.44, the virtual photon

asymmetry A1 can be expressed as

A1 =
A||

D(1 + ηγ)
− ηγ(1 + γ2)

1 + ηγ

g2

F1

g2=0
'

A||

D(1 + ηγ)
(2.48)

This allows to approximately extract the virtual photon asymmetry A1 from a

measurement of the longitudinal asymmetry A|| alone, under the assumption that

the polarised structure function g2 vanishes. The contribution from g2 in Eq. 2.48 is

additionally suppressed by the kinematic factors γ2 and ηγ, which in the HERMES

kinematic domain are small (0.003 < γ2 < 0.15 and 0.001 < ηγ < 0.15 ). The

uncertainty arising from neglecting g2 is considered in the calculation of the systematic

uncertainties on the extracted values of the virtual photon asymmetry A1 in Sect. 6.4.

2.3 Quark Parton Model

The Quark-Parton Model (QPM) is a simple model (and a very useful tool), which

was developed by Bjørken and Paschos [50], and Feynman [51] in order to give an
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interpretation of deep inelastic scattering and its scale invariance. The structure func-

tions describe the internal composition of the target nucleon and are approximately

independent of the variable Q2, (i.e. scaling behaviour). The observation of Bjørken

scaling at SLAC provide experimental verification of Feynman’s parton model [4]. As

Q2 defines the resolution of the scattering process, the independence of Q2 has to be

interpreted in the way that the internal structure of the components is point-like or

at least much smaller than the resolution of the process. In the QPM, deep inelastic

lepton-nucleon scattering is interpreted as elastic scattering of lepton from pointlike

particles in the nucleon with spin-1
2

and charge eq 6= 0: the partons. Later the partons

were identified with the quarks proposed by Gell-Mann [2] and Zweig [52] to describe

the hadronic spectra. In the framework of QCD, partons behave approximately like

free particles due to the asymptotic freedom of QCD.

2.3.1 The naive QPM, structure functions and quark distri-

bution

Elastic quark scattering

The deep inelastic scattering process is actually the incoherent superposition of elastic

scattering off partons, from the elastic scattering kinematics, the following conditions

can be derived:

Q2 = 2mqν (2.49)

x =
Q2

2Mν
=
mq

M
(2.50)

where mq is an apparent mass of the parton in the scattering process. The picture of

the infinite momentum frame is used to illustrate the meaning of the Bjøken variable

x in an intuitive way. The parton carries the fraction pq = xp of the momentum p of

the nucleon. Momentum distributions qf (x) are assigned in the quark model which

describe the probability to find a quark of flavour f with momentum fraction x inside

the nucleon.
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The cross section for the scattering off quarks can be directly calculated from

the probability distribution qf (x). The hadronic tenser Wµν becomes similar to the

leptonic tenser in formula (2.18,2.19) where k and k′ are replace by xp and p′ and the

’charge density’ e2fqf (x) and a phase space factor is added to the formula:

Wµν =
e2fqf (x)

2Mxp · q
[xpµxp

′
ν + xpνxp

′
µ − gµνxp · p′ + ihεµναβq

αxpβ] (2.51)

Here, h is the helicity of the quark. With the relation p′ = xp + q and after

omitting the pµ and pν terms (they disapper in the contraction with Wµν due to

current conservation) the equation becomes:

Wµν =
e2fqf (x)

2Mxp · q
[2xpµxpν − gµνxp · q + ihεµναβq

αxpβ] (2.52)

This formula has to compared with the parameterisation of Wµν in terms of struc-

ture functions. The following formula is deduced from equations (2.20, 2.21) by omit-

ting qµ, qν terms (they desappear when Wµν is contracted with Lµν). The expression

for Wµν becomes:

Wµν = −F1(Q
2, ν)

M
gµν

+
F2(Q

2, ν)

Mp · q
pµpν

+
ig1(Q

2, ν)

Mν
εµνλσq

λsσ
h

+
ig1(Q

2, ν)

M2ν2
εµνλσq

λ(p · qsσ
h − sh · qpσ) (2.53)

In the quark-parton model, with the notation that q
+(−)
f is the probability to find a

quark of momentum fraction x with the helicity parallel (anti-parallel) to the nucleon

spin. The structure functions are related to the quark distributions:
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F1(x,Q
2) =

∑
f

e2f
2

(q+
f (x) + q−f (x)) (2.54)

F2(x,Q
2) =

∑
f

e2fx(q
+
f (x) + q−f (x)) (2.55)

g1(x,Q
2) =

∑
f

e2f
2

(q+
f (x)− q−f (x)) (2.56)

g2(x,Q
2) = 0 (2.57)

where the sum is over all quark and antiquark flavours (u, d, s, c, b, t and ū, d̄, s̄, c̄,

b̄, t̄) which contribute to the structure of the nucleon at a given momentum transfer.

The unpolarised quark distributions

In the simple parton model, all structure functions are independent of Q2. The struc-

ture functions F1(x) and F2(x) are determined by the unpolarised quark distributions

qf (x) = q+
f (x) + q−f (x) (2.58)

From formula 2.54 and 2.55 it follows that F1(x) and F2(x) are directly correlated

by equation

F2 = 2xF1 =
∑

q

e2qxq(x) (2.59)

The first identity, F2 = 2xF1, is known as the Callan-Gross relation [12] and

is a direct consequence of the spin-1
2

nature of the quarks. The function q(x) is

known as the parton distribution function. The second identity is also interesting:

it predicts that the cross section only depends on one variable, x. This property is

called Bjørken scaling. Approximate scaling is observed in the data at x ≈ 0.1, but

violation of scaling is observed for lower and higher x. Fig. 2.2 shows F2 versus Q2

measured by various HERA- and fixed target experiments [2].

At the energy of the HERMES experiment only the u, d, s and ū, d̄, s̄, quarks

contribute and the structure functions F p
2 (x) for the proton is
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F p
2 (x) = x

[
4

9
u(x) +

1

9
d(x) +

1

9
s(x) +

4

9
ū(x) +

1

9
d̄(x) +

1

9
s̄(x)

]
(2.60)

The contribution by charm and heavier quarks is neglected at moderate momen-

tum transfer. Assuming SU(2) isospin symmetry, the structure function of the neu-

tron is

F n
2 (x) = x

[
(
1

9
u(x) +

4

9
d(x) +

1

9
s(x) +

1

9
ū(x) +

4

9
d̄(x) +

1

9
s̄(x)

]
(2.61)

Note that u(x) is the momentum distribution of the ’up’ quark in the proton and of

the ’down’ quark in the neutron:

u(x) = up(x) = dn(x) (2.62)

d(x) = dp(x) = un(x) (2.63)

A different parameterisation distinguishes between valence distributions qν which

account for the quantum numbers of the nucleon and sea distributions qs(x) = q̄s(x)

which arise from the production of quark-antiquark pairs due to quantum fluctuations:

F p
2 (x) = x

{
4

9
[uv(x) + us(x) + ūs(x)]

+
1

9

[
dv(x) + ds(x) + d̄s(x) + ss(x) + s̄s(x)

]}
(2.64)

It should be mentioned that according to recent measurement [53], the light quark

sea is not flavour symmetric:

us(x) 6= ds(x) (2.65)

The polarised quark distributions

In a similar way, the function g1(x) is determined by the spin distributions ∆qf (x) of

the quarks:
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∆qf (x) = q+
f (x)− q−f (x) (2.66)

The spin structure function gp
1(x) for the proton is given as

gp
1(x) =

1

2

[
4

9
∆u(x) +

1

9
∆d(x) +

1

9
∆s(x) +

4

9
∆ū(x) +

1

9
∆d̄(x) +

1

9
∆s̄(x)

]
(2.67)

The spin structure function g2(x) is zero in this simple model which neglects mass

and intrinsic momenta of the quarks inside the nucleon.

2.3.2 Quantum chromodynamics improved QPM and sum

rules

Quantum chromodynamics (QCD) is the theory of the strong interaction (color force),

a fundamental force describing the interactions of the quarks and gluons found in

hadrons, such as the proton and the neutron. QCD is a quantum field theory of a

special kind called a non-abelian gauge theory. It is an important part of the Standard

Model of particle physics. A huge body of experimental evidence for QCD has been

gathered over the years. QCD is able to explain the confinement of quarks, the basic

features of fragmentation and the asymptotic freedom of quarks at high momentum

transfer.

asymptotic freedom, which means that in very high-energy reactions, quarks and

gluons interact very weakly. That QCD predicts this behavior was first discovered in

the early 1970s by David Politzer and by Frank Wilczek and David Gross. For this

work they were awarded the 2004 Nobel Prize in Physics.

confinement, which means that the force between quarks does not diminish as they

are separated. Because of this, it would take an infinite amount of energy to separate

two quarks; they are forever bound into hadrons such as the proton and the neutron.

Although analytically unproven, confinement is widely believed to be true because it

explains the consistent failure of free quark searches, and it has been demonstrated

in lattice QCD.
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QCD in principle should be able to predict the quark wave functions of the nu-

cleons, however theory is still far away from this goal as pertubative methods are not

applicable and lattice calculations are very difficult and not yet far enough advanced.

Neverless, techniques have been developed to approach the calculation of structure

functions [54]. They can be illustrated by the following intuitive picture: with in-

creasing Q2 the resolution of the scattering process increases and more softer at high

momentum transfer. The experimental results are in excellent agreement with the

QCD predictions. The variation of the structure functions with Q2 is used to extract

the coupling constant (as) of the strong interaction [55].

A powerful technique to derive sum rules of the structure functions is the operator

product expansion (OPE) [56]. In OPE the virtual photon-proton scattering ampli-

tude is divided into a part which represents the long-distance physics and another

which describes the light-cone physics. The latter one can be handled by techniques

of pertubative QCD. The importance of these sum rules comes from the fact that

they are derived directly from QCD and allow for a model independent test of QCD.

Operator production expansion

The Operator Production Expansion (OPE) [57, 58] formalism allows one to directly

derive QCD sum rules for the structure functions. The importance of the sum rules

relies on the fact that they do not depend on any model of hadronic structure, and

provide a direct test of QCD. Integrated over the range in momentum fraction , the

parton number densities have to reproduce the quantum numbers of the nucleon. The

simplest integrals, or sum rules, are the first moments of the unpolarised densities

that for the proton give baryon number one, charge one and strangeness zero,

∫ 1

0

duV (x,Q2) =

∫ 1

0

(u(x,Q2)− ū(x,Q2)) = 2 (2.68)∫ 1

0

ddV (x,Q2) =

∫ 1

0

(d(x,Q2)− d̄(x,Q2)) = 1 (2.69)∫ 1

0

(s(x,Q2)− s̄(x,Q2)) = 0 (2.70)
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The Gottfried sum rule [59] involves the proton and neutron structure functions F p
2

and F n
2 respectively:

∫ 1

0

dx

x
(F p

2 (x,Q2)− F n
2 (x,Q2)) =

1

3
(2.71)

This sum rule follows in the simple parton model, with the assumptions of isospin

symmetry and of a symmetric light quark sea, ū(x,Q2) = d̄(x,Q2). Perturbative

QCD corrections to the right hand side of Eq. 2.71 were found to be small [60]. Clear

evidence of a deviation from the Gottfried sum rule was found at CERN in 1990 [61],

showing that the symmetry of the light quark sea is violated.

Sum rules involving the polarised structure function provide insight into the nu-

cleon spin structure. The integral of the proton and neutron structure functions g
p(n)
1

can be written as [30]

Γ
p(n)
1 =

∫ 1

0

dxg
p(n)
1 (x,Q2) =

1

12

(
+(−)a3 +

a8

3

)
∆CNS(Q2) +

a0

9
∆CS(Q2) (2.72)

where the minus sign is for the neutron structure function. ∆CS(Q2) and ∆CNS(Q2)

are the singlet and non-singlet coefficient functions respectively.

In the MS-renormalization scheme, they are for three quark flavours to second

(third) order in [62]:

∆CS(Q2) = 1− as(Q
2)

π
− 1.096

(
as(Q

2)

π

)2

(2.73)

∆CNS(Q2) = 1− as(Q
2)

π
− 3.583

(
as(Q

2)

π

)2

− 20.215

(
as(Q

2)

π

)3

(2.74)

The quantities a0, a3, and a8 measure the proton matrix elements of the flavour

singlet, triplet, and octet vector currents:

a3 = ga/gv = F +D = ∆u−∆d (2.75)

a8 = 3F −D = ∆u+ ∆d− 2∆s (2.76)

a0 = ∆Σ = ∆u+ ∆d+ ∆s (2.77)



2.3. QUARK PARTON MODEL 33

a3 and a8 are known from neutron and from hyperon decay. The numerical values

are [63, 64]

F +D = 1.2573± 0.0028 (2.78)

F/D = 0.575± 0.016 (2.79)

or

F = 0.459± 0.008 (2.80)

D = 0.798± 0.008 (2.81)

However, the determination of a8 requires the assumption of SU(3) flavour sym-

metry. The effects of symmetry breaking in hyperon β-decay were estimated to be

on the order of 10% [65].

Bjørken sum rule

From the knowledge of axial vector coupling in weak interactions, a prediction for∫
dx(gp

1(x)−gn
1 (x)) can be obtained based on isospin only. This is the famous Bjørken

sum rule [66], which relates the difference of the first moments of the spin structure

functions on a proton and a neutron target to the decay constant ga = |gA/gV | =

1.2670± 0.00035 [67] from neutron β-decay. Including QCD corrections, the Bjørken

sum rule is written as:

ΓBj
1 = Γp

1 − Γn
1 =

∫ 1

0

dx[gp
1(x,Q

2)− gn
1 (x,Q2)] =

1

6

∣∣∣∣gA

gV

∣∣∣∣∆CNS(Q2) (2.82)

where ∆CNS(Q2) is given in Eqn. 2.74. At a scale of Q2
0 = 5GeV and using an

input value for the strong coupling constant as(mZ0) = 0.118±0.003 at the mass of the

neutral boson Z0, the value for the Bjørken sum rule is ΓBj
1 (Q2

0) = 0.182±0.003. From

the combined results of EMC, SMC, and E143 data, an experimental value, ΓBj
1,exp. =

0.170±0.012 [45], was obtained, thus confirming the theoretical prediction within the
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experimental and theoretical uncertainties. Alternatively, under the assumption that

the Bjørken sum rule is accurate, Eq. 2.82 can be solved for αs(Q
2) using Eq. 2.74

to obtain a rather precise value of αs(mZ0) = 0.123+0.010
−0.006 [45].

Ellis-Jaffe sum rule

Ellis and Jaffe derived sum rules for Γp
1 and Γn

1 separately. They assumed the validity

of SU(3) flavour symmetry and that the strange sea quarks and the gluons carry

no net polarisation: ∆s + ∆s̄ = ∆g = 0 [68]. Including the QCD corrections, the

Ellis-Jaffe sum rule for the proton (neutron) can be expressed as:

Γ
p(n)
1 =

∫ 1

0

g
p(n)
1 (x)dx =

1

12

(
+(−)a3 +

a8

3

)
∆CNS(Q2) +

a0

9
∆CS(Q2) (2.83)

or separately for the proton and the neutron:

Γp
1(Q

2) =
1

18
[(3F +D)∆CNS(Q2) + 2(3F −D)∆CS(Q2)] (2.84)

Γn
1 (Q2) =

1

9
[−D∆CNS(Q2) + (3F −D)∆CS(Q2)] (2.85)

At the same scale Q2
0 = 5GeV and using the same value for the strong coupling

constant as(mZ0) = 0.118±0.011, the values of Γp
1(Q

2
0) = 0.163±0.004 and Γn

1 (Q2
0) =

−0.019± 0.004 from the Eqs. 2.84 and 2.85 can be obtained. A comparison with the

combined experimental results Γp
1,exp(Q

2
0) = 0.118± 0.004 and Γn

1,exp(Q
2
0) = −0.058±

0.005, shows a significant violation of the Ellis-Jaffe sum rule [1]. This violation

implies that there might be a SU(3) symmetry breaking, or there is a significant

contribution from strange quarks and/or gluons to the spin of the nucleon. Under

the assumption that SU(3) flavour symmetry is valid, it is possible to extract values

for the strange quark polarization. As a surprise a relatively large negative value was

obtained: ∆s+ ∆s̄ = −0.14± 0.03 [1].
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2.4 Semi-inclusive deep inelastic scattering

As presented in Sect. 2.1, the Semi-Inclusive Deep Inelastic Scattering (SIDIS) is

such process that at least one final state hadron is detected in coincidence with the

scattered lepton. To analyse the polarised SIDIS events may offer another way to

access more information on the spin structure of nucleon.

2.4.1 Semi-inclusive cross section and asymmetries

In LO QCD the differential cross section
dσh

dz for the production of a hadron of

type h can be expressed in terms of fragmentation functions and unpolarised quark

distribution functions as:

dσh

dz
= σINCL

[∑
f e

2
fqf (x,Q

2)Dh
f (Q2, z)∑

f e
2
fqf (x,Q

2)

]
(2.86)

Where σINCL is the inclusive DIS cross section. TheDh
f (z,Q2) are called fragmentation

functions and denotes the probability to find a hadron h with momentum fraction z

if a quark of flavour f has been struck in the hard-scattering subprocess.

Furthermore, the unpolarised and polarised semi-inclusive structure functions F h
1

and gh
1 are defined in LO as

F h
1 (x,Q2, z) =

1

2

∑
f

e2fqf (x,Q
2)Dh

f (Q2, z) (2.87)

gh
1 (x,Q2, z) =

1

2

∑
f

e2f∆qf (x,Q
2)Dh

f (Q2, z) (2.88)

The definition of gh
1 is valid under the assumption that the fragmentation process is

independent of the relative orientation of the spin of the struck quark with respect

to the spin of the target nucleon.

Using the same assumption as in the inclusive case, the semi-inclusive photon

asymmetry is obtained from
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Ah
1(x,Q

2)
gh
2 =0
'

∫ 1

zmin
dgh

1 (x,Q2, z)∫ 1

zmin
dF h

1 (x,Q2, z)
=

∑
f e

2
f∆q(x,Q

2)
∫ 1

zmin
dzDh

f (Q2, z)∑
f e

2
fq(x,Q

2)
∫ 1

zmin
dzDh

f (Q2, z)

=
Ah
||(x,Q

2)

D(1 + ηγ)
(2.89)

where the integration is performed over the range in z, as applied to select hadrons

from the current fragmentation region. Given the integrated fragmentation functions

and the unpolarised quark distributions qf (x,Q
2), Eq. 2.89 will be the basis for the

extraction of the polarised quark distributions ∆qf (x,Q
2) from a set of semi-inclusive

asymmetries.

Semi-inclusive asymmetries offer more direct information on the individual contri-

butions of the different quark flavours. Within the QPM, the charge and the valence

quark composition of the hadron detected in coincidence with the scattered lepton

provided sensitivity to the flavour of the struck quark.

In Chapter 8, a method of accessing quark polarisation in semi-inclusive data will

be presented. From the measured semi-inclusive asymmetries, the quark polarisation

and helicity of the nucleon spin can be performed at the LO QCD by using Eq. 2.89

in combination with an input parameterisation STEQ6 for the unpolarised parton

distributions qf (x,Q
2) and the integrated fragmentation functions.

2.4.2 Fragmentation functions

With the quark model, in the laboratory frame, the semi-inclusive DIS process is

described in terms of a single quark which is struck by the virtual photon and ejected

from the nucleon (see Fig. 2.1). The struck quark absorbs the energy of the virtual

photon and is ejected along the direction of the virtual photon. Due to the confine-

ment properties of QCD, both the struck quark and the target remnants have to form

a set of colour neutral final state hadrons. This process is so called hadronisation, and

can not be described in perturbative QCD, because it involves long-range interactions

between the struck quark and the target remnant as they move apart. Instead, the

hadronisation process is parameterised by fragmentation functions Dh
f (Q2, z), which
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give the probability density that a struck quark of flavour f , probed at a particular

scale Q2, produces a final state f hadron with fractional energy z.

The fragmentation functions are normalised to conserve energy and particle multi-

plicities nh:

∑
h

∫ 1

0

dzz ·Dh
f (Q2, z) = 1 (2.90)

∑
f

∫ 1

0

dzDh
f (Q2, z) = nh(Q

2) (2.91)

Since the fragmentation process proceeds by the strong interaction, charge conju-

gation and isospin invariance reduce the number of independent fragmentation func-

tions significantly. In the case of charged pions, for three different flavours of quarks

and antiquarks, the total number of twelve possible combinations can be reduced

to three independent fragmentation functions, using charge conjugation symmetry

[Dπ+

u (z) = Dπ−
ū (z)] and isospin symmetry [Dπ+

u (z) = Dπ−

d (z)]:

D+ = Dπ+

u (z) = Dπ−

ū (z) = Dπ+

d̄ (z) = Dπ−

d (z) (2.92)

D− = Dπ−

u (z) = Dπ+

ū (z) = Dπ−

d̄ (z) = Dπ+

d (z) (2.93)

Ds = Dπ+

s (z) = Dπ−

s̄ (z) = Dπ+

s̄ (z) = Dπ−

s (z) (2.94)

The fragmentation function D+ is called favoured fragmentation function as the

initial quark which produced the pion is in their ground state wave function. Such pro-

cess are more probable than the unfavoured fragmentation function D− and strange

fragmentation function Ds. The dependence on Q2 has been omitted here.

In the Børken limit, factorisation demands that the hadronisation process is inde-

pendent of the hard photon-quark scattering process, and hence should be indepen-

dent of x and Q2. The fragmentation process is assumed to be universal, i.e. indepen-

dent of the original environment of the initial quark, which starts the hadronisation
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process. This environmental independence implies that fragmentation functions de-

termined in DIS should equally well describe hadronisation processes from qq̄ pair

production in e+e− collisions, which has been confirmed experimentally [69, 70].

2.4.3 Fragmentation models

As already mentioned, the fragmentation process cannot be calculated from the first

principles in perturbative QCD directly, fragmentation models have been developed

in order to provide a general framework in which the properties of hadron production

can be studied phenomenologically [71]. In particular, the models have been designed

to be used in Monte Carlo programs.

The models are based on the quark-parton model. Two important models, the

independent fragmentation model and the LUND string fragmentation model, have

been implemented into the JETSET Monte Carlo generator [72, 73, 74], which is

used at HERMES. The models contain parameters, which have to be adapted to the

kinematical domain of the experiment. These model parameters have been adjusted

to reproduce measured particle multiplicities and event shapes optimally in a recursive

tuning procedure [75, 76].

The independent fragmentation model

The independent fragmentation model was developed in the early 1970s by Field and

Feynman [77] to reproduce the limited transverse momenta and approximate scaling

of energy fraction distributions observed in quark jets produced in e+e−-annihilation.

It is based on the simple assumption that every parton fragments independently. In

this model, the struck quark q0 combines with the antiquark q̄1 of a quark-antiquark

pair q1q̄1 created out of the vacuum. The q0q̄1 creates the first rank primary meson

with energy fraction z0, see Fig. 2.7.

In the model, the ”rank” of a specific hadron is the ordering in production time

in the center-of-mass system, starting with the hardron containing the struck quark.

The left over energy fraction (1− z0) = z1 of the first-rank primary meson q0q̄0 is



2.4. SEMI-INCLUSIVE DEEP INELASTIC SCATTERING 39

initial quark Rank
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q̄2

q2

q̄3
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Figure 2.7: Diagram of independent fragmentation.

assigned to the remaining quark q1. In this way, quark-antiquark pair qiq̄i are created

with energy fraction (1− zi). The antiquark q̄i then combines with the quark of the

former rank qi−1 to form a meson with quark content qi−1q̄i. The energy is assigned

randomly according to an universal distribution f(z) which cause the fragmentation

to scale with energy. This precess proceeds until the remaining energy falls below cut-

off Emin. The produced mesons may be unstable and decay to long-lived particles

after their formation.

The transformation into a different reference frame does not conserve the relative

momenta and hence the multiplicities of produced particles change. Furthermore,

the colour and flavour quantum numbers are not conserved, because the last quarks

below the energy cut-off are neglected.

The string fragmentation models

The LUND String Fragmentation (SF) model [78] is based on the idea that a frag-

menting quarks system is connected by colour flux tubes, or string. It employs the

concept of linear confinement, motivated by QCD. In this model, the initial partons
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are connected via the colour field stretching in between them. This colour field is

assumed to possess a constant field energy density per unit length, which leads to a

linear rising potential for two partons separated by a distance . As the struck parton

moves apart from its partner, the energy stored in the colour string exceeds the mass

of a pair. At this point the string breaks up and forms a pair, connecting now two

strings to the initial pair of partons. These new substrings continue to break inde-

pendently, until a string-connected quark-antiquark pair is close to the mass shell of

a colour singlet hadron. (See Fig. 2.8).

X

T

1 1̄

3 3̄

0̄ 0

2 2̄

Figure 2.8: Hadroproduction in e+e−-annihilation according to the Lund string model.

The initially produced quark q0q̄0, denoted here by 0 and 0̄, are moving away in

opposite directions. Quark-antiquark pairs are produced in the field. The production

point of a qq̄ pair is lying on a hyperbola given by (∆x)2 − (∆t)2 = const.

The LUND SF model has up to date proven to be a very successful model for the

description of experimental data. The production probability of a pair in this tun-

nelling mechanism is controlled by two free parameters, which have to be determined

by tuning the model to experimental distributions.

As a main advantage over the IF model, the LUND string model conserves all

quantum numbers and it is invariant under Lorentz transformations. It has been im-
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plemented in the JETSET Monte Carlo package [72, 73, 74]. The default parameters

of this model were optimised to describe the high energy data of collider experi-

ments at LEP and HERA. For a satisfactory description of the hadron multiplicities

measured at HERMES they had to be tuned, as described in [75, 76].





Chapter 3

The HERMES experiment

HERMES, the name comes from HERa MEasurement of Spin, [79] is one of the four

experiments at HERA at the DESY laboratory in Hamburg, Germany. HERMES

is designed for precise measurement of the nucleon spin structure. It uses the high

current longitudinally polarised electron beam of HERA with a beam energy of about

27.5 GeV together with polarised and unpolarised gas targets internal to the storage

ring. Scattered electrons and particles produced in the deep-inelastic electron-nucleon

interactions are detected and identified by an open-geometry forward spectrometer

with large momentum and solid angle acceptance.

HERMES is based on two novel techniques: longitudinal electron polarisation in

a high energy storage ring, which is achieved by a system of spin rotator magnets,

and a storage cell target where the polarised atoms from a high intensity polarised

source are present as pure atomic species without dilution from unpolarised target

material.

In this chapter, the components of the HERA accelerator relevant to the HERMES

experiment, the HERMES target, the HERMES spectrometer, the luminosity and the

data acquisition system are described. More detailed information is found in ref. [79]

43
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3.1 The polarised electron beam at HERA

The HERA accelerator provides two beams, one is 920 GeV protons and another one

is 27.5 GeV electrons or positrons. In addition to HERMES, they are used by two

collider experiments ZEUS and H1. The HERMES experiment is operated in the

east hall of the storage ring facility HERA, diametrically opposite to the HERA-B

hall. It is one of two fixed target experiments. The experiments ZEUS and H1 are

investigating nucleon structure functions by means of deep inelastic scattering over

a wide kinematic region in collider mode. The goal of HERA-B experiment was to

study CP-violation in B-meson production in proton-proton collisions.

The HERMES Experiment

A deep–inelastic scattering experiment like HERMES needs three ingredients in order to

measure azimuthal asymmetry moments. These are a high–energy polarised or unpo-

larised lepton beam, a polarised or unpolarised nucleon target, and a spectrometer with

reasonable particle identification and tracking resolution. In the following the various

components used in the HERMES experiment are described.

3.1 The HERA Positron Beam

The HERMES experiment is operated in the East Hall of the storage ring facility HERA, which

is part of the DESY accelerator complex located in Hamburg. In the two HERA rings shar-

ing a tunnel with a circumference of 6.3 km a lepton beam and a proton beam can

HERA–B

HERMES

ZEUS H1

E

W

S N

longitudinal polarimeter

transverse polarimeter

spin rotator

p beam

e+ beam

Figure 3.1.1: Schematic view of the two HERA storage rings with the locations

of the experiments in the configuration since fall 2001. The spin

orientation of the positron beam is indicated by arrows.

Figure 3.1: Location of HERMES at the HERA storage ring. The other experiments

H1, HERA-B and ZEUS, the Spin rotators and polarimeters are superimposed. The

setup of run 2001-2007 is shown. Prior to 2001 there were no rotators at H1 and

ZEUS.

The HERA electron beam has a time structure which allows for up to 220 bunches

along the HERA storage ring’s 6.3 km circumference which have a length of 27 ps and

are separated by 96 ns. This corresponds to a duty factor of 0.3× 10−3. The average

beam current at injection is up to 50 mA and due to residual gas interactions, the

beam current decays nearly exponentially. The average lifetime, which can be derived
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from the decay constant, is between 12 and 14 hours. Usually the beam is dumped

earlier by inserting high density unpolarised gas in the HERMES target cell in order

to obtain large statistics for unpolarised DIS experiments (important for the study of

nuclear effects).

In high-energy storage rings, electron beams can became transversely polarised

through the emission of spin-flip synchrotron radiation [80] in the arcs, the so-called

Sokolov-Ternov mechanism. This process is due to an asymmetry in the synchrotron

radiation cross section. The theoretical limit for polarisation is 92.4%. The real

polarisation reaches typically about 55% approximately 40 minutes after the start of

the fill.

Spin rotators have been installed upstream and downstream of the HERMES

experiment (see Fig. 3.1), since for the measurement of the beam spin asymmetries,

longitudinal polarisation is required in contrast to polarisation in the storage ring

which is in the transverse direction. The spin rotators at H1 and ZEUS were installed

in addition during the shutdown of 2001. The polarisation of the beam is measured

by two laser backscattering polarimeters. The transverse polarimeter is located in the

West Hall and longitudinal polarimeter is inside the spin rotator at the East Hall.

3.2 The internal gas target

A fixed target in a storage ring needs a special setup to preserve a reasonable life

time of the stored beam, without causing significant disruption to the beam lifetime,

requiring a fill to remain for at least 10 hours. This immediately excluded any pos-

sibility of using solid material for the target in HERMES. In fact, the target density

is limited to 1015 atoms/cm2. In order to fulfil the requirement of HERA, a gaseous

target [81] cell intended to sit inline to the storage ring was designed for use in the

experiment.

The HERMES experiment uses an innovative technique for the polarised target,

which is very different from other polarised deep-inelastic scattering experiments, that

is a polarised gas target internal to the HERA storage ring. This technique permits
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Figure 3.2: Diagram of the target chamber. The figure omits to show the asymmetric

design of the target cell, see text for detail. The diagram is not to scale.

essentially background-free measurements from highly polarised nucleons with little

or no dilution of the signal from unpolarised nucleons in the target.

The HERMES experiment uses both polarised and unpolarised targets. The po-

larised target consists of Hydrogen, Deuterium or 3He, whilst the unpolarised gases

are one of H2, D2,
3He, 4He, N2, Ne, Kr, and Xe. A polarised 3He target was used in

1995 but during 1996 - 1997 a longitudinally polarised hydrogen target was used and

in 1998 - 2000 longitudinally polarised deuterium. In 2001, a transversally polarised

target was installed during a HERA upgrade.

The polarised hydrogen(deuterium) beam is produced by means of an atomic beam

source (ABS) [82]. This device consists of dissociator, powerful differential pumping

system, beam forming system, sextuple magnet system and adiabatic high-frequency

transitions.

Molecular hydrogen/deuterium gas is dissociated by a radio frequency of 13.56 MHz

in a pyrex-type tube. The degree of produced dissociation is up to 80 %. Atomic gas

flows through a conical nozzle with an opening of diameter 2 mm, which is cooled to
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100 K. Five sextupole permanent magnets split this beam into hyperfine states. The

particular polarisation state of interest is selected by combination of strong field tran-

sition (SFT), medium field transition (MFT) and weak field transition (WFT). The

polarised atomic beam is injected into target cell with a pressure of about 10−7 mbar.

The target cell is an elliptical tube with open ends which holds the gas at the lepton

beam position. At the end of the target cell two powerful turbo-pumps are installed

in order to protect the ultra high vacuum in the accelerator ring.

For polarised gas, there are two instruments installed for monitoring: a Breit-

Rabi Polarimeter (BRP) and Target Gas Analyser (TGA). The former measures the

polarisation of the gas and the latter gives an estimate of the degree of dissociation.

For unpolarised gas, neither measurement makes sense, so the gas is filled directly

into the target cell.

3.3 The HERMES spectrometer

A schematic side view of the HERMES spectrometer with a dipole magnet is shown

in Fig. 3.3. It is a forward spectrometer that consists of two identically constructed

halves, one above and one below the HERA beam pipes. Both the positron and the

proton beam pass through the central plane of the spectrometer and are shielded from

the HERMES magnetic field by a steel plate. Each spectrometer half consists of a set

of tracking chambers, hodoscopes (trigger) and four particle identification detectors.

A luminosity monitor is installed at the rear of the spectrometer. The acceptance of

the spectrometer extends vertically from 40 to 140 mrad and horizontally to ±170

mrad. The resulting total angular acceptance from 40 to 220 mrad covers a large

kinematic region.

3.3.1 Magnet and tracking detectors

The dipole magnet of the HERMES forward spectrometer, surrounding the electron

and proton beam pipes, provids an integrated field of
∫
Bdl = 1.3 Tm. The magnet

is divided into two identical sections, ”up” and ”down”, by a horizontal septum plate
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Figure 3.3: Side view of the current setup of the HERMES spectrometer

that shields the electron and proton beams from the spectrometer’s magnetic field.

Consequently, the spectrometer is constructed as two identical halves, mounted above

and below the beam pipes. The acceptance of the spectrometer is given by the opening

angle of the spectrometer magnets. And the protection of the electron and proton

beams against strong magnetic field is accomplished by a septum plate which limits

acceptance for small vertical scattering angle to 40 mrad. So the scattered electrons

and hadrons produced in the inelastic reactions can be detected and identified within

an angular acceptance 170 mrad horizontally and 40 − 140 mrad vertically. The

deflection of the charged particles by magnetic field is used for measurement of their

momenta. This is accomplished by measuring the particles’ track in the magnetic field

region of the spectrometer. For tracking in each spectrometer half several tracking

chambers (multiwire proportional chambers and drift chambers) before, inside and

behind the magnet are used. Due to the 40 cm long extended gas target, the tracking

detectors in front of the magnet are needed for the determination of the interaction

vertex, the polar and azimuthal scattering angles of the particles and the initial

trajectory for the determination of the particles momentum.

Tracking detectors measure a full complement of track information for any reg-
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istered particle: the scattering angle (θ), the azimuthal angle (φ) and the vertex

position. The tracking detector system is depicted in Fig. 3.3.

• DVC: The Drift Vertex Chambers have been installed in 1996 and are in use

since the data taking in 1997. They help to increase the redundancy of the

tracking system in the front region and have a larger geometrical acceptance

than the other detectors extending vertically from ±35 mrad to ±270 mrad

and covering ±200 mrad horizontally, mainly to increase the efficiency for the

detection of events from charmed particle decays. The width of the drift cell is

6 mm, the module has 6 planes with the configuration XX′UU′VV′, the total

number of wires is 1088. The non-flammable gas mixture is the same as for

all the other drift chambers: Ar/CO2/CF4 (90/5/5), the spatial resolution per

plane (σ) is 220 µm.

• FC1/2: The Front Chambers [83] provide good spatial resolution immediately

in front of the magnet. They are drift chambers with a cell width of 7 mm,

each module has six planes with a UU′XX′VV′ configuration, resulting in 2304

channels. The measured resolution per plane is 225 µm.

• MC1/3: The magnet chambers MC1 through MC3 [84] are multiwire propor-

tional chambers with a spacing of the readout wires of 2 mm and a corresponding

resolution per plane of 700 µm. They are located in the gap of the magnet and

were originally intended to help resolve multiple tracks in case of high multiplic-

ity events and to improve track reconstruction in case of missing planes in the

front region. Since low background and good performance of the front detec-

tors have made this unnecessary, their primary function is now the momentum

analysis of relatively low energy particles from the decay of Λ hyperons or Ks,

mesons, for example. Each module has three planes of the configuration UXV,

the total number of channels is 11008, and the gas mixture used is Ar/CO2/CF4

(65/30/5).

• BCl-4: The Back Chambers BCl through BC4 [85, 86] are drift chambers with a

cell width of 15 mm. Each of the four modules has six planes with UU′XX′VV′
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configuration. The active areas of the chambers are chosen according to their

z-position and the acceptance of the spectrometer, resulting in 7680 channels.

The measured resolution per plane is in average 275 µm (300 µm) for BC1/2

(BC3/4) with a minimum of about 210 µm (250 µm) in the middle of the drift

cell.

3.3.2 Particle identification detectors

Particle Identification (PID) at HERMES is provided by a dual-radiator Ring Imaging

Čerenkov Detector (RICH) which replaced the threshold Čerenkov Detector from

1998, a Transition Radiation Detector (TRD), a Preshower Detector, and a lead glass

Electromagnetic Calorimeter. Combining the four detectors together, the HERMES

experiment provides an excellent hadron-lepton separation.

Ring-Imaging Čerenkov Detector (RICH)

Semi-inclusive deep inelastic scattering in which a hadron is detected in coincidence

with a lepton scattered from the incident beam is the primary reaction studied in the

HERMES experiment. The detection of an identified coincident hadron provides an

additional dimension for probing experimentally the flavor structure of elementary

particles and related phenomena. For the kinematics characteristic of the HERMES

beam energy of 27.5 GeV, 95% of the hadrons produced are in the momentum range

of 2-15 GeV. In order to achieve reasonable PID over the full range of momenta, a

dual radiator RICH detector [87] which used the clear aerogel in combination with a

heavy gas, C4F10 was developed and installed in 1998, to provide clean separation of

pions, kaons, and protons over most of the acceptance of the HERMES experiment.

The RICH detector consists of two symmetric RICH modules, which are positioned

between the two rear tracking chambers BC1/2 and BC3/4. The upper part is shown

in Fig. 3.4.

The aerogel radiator is a wall of tiles configured to fill the entrance of the detector

with an aerogel thickness of 5 cm, in total 5 × 17 × 5 tiles silica aerogel, each size
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n P π
thresh [GeV] PK

thresh [GeV] P p
thresh [GeV]

Aerogel 1.0304 0.6 2.0 3.8

C4F10 1.00137 2.7 9.4 17.9

Table 3.3.1: Refractive indices and Čerenkov threshold momenta for the two

radiators of the RICH detector.

on a cone with a characteristic opening angle θc given by:

cos θc =
1

βn
, (3.3.1)

where n is the refractive index of the material and β = v
c is the ratio of the velocity v of

the particle and the speed of light in vacuum c. Particles with

β < βthresh =
1

n
or P < Pthresh =

m√
n2 − 1

, (3.3.2)

do not emit Čerenkov light. Until 1998 a threshold Čerenkov counter was installed which

was filled with a radiator gas. The gas consisted of 70 % vol. N2 and 30 % vol. C4F10 and

had a refractive index of n = 1.000629. Eq. (3.3.2) yields the threshold momenta 0.014,

3.8, 13.9, and 26.4 GeV for leptons, pions, kaons, and protons, respectively. Hence, all

leptons traversing the threshold Čerenkov counter radiate as can be seen in Figure 3.3.3.

The peak for the lepton sample at zero photo–electrons is due to detector inefficiencies.

Only hadrons with momenta larger than 3.8 GeV radiate, resulting in a larger peak at

zero for hadrons. With the threshold Čerenkov counter pion identification in a hadron

sample is possible in the momentum range between 3.8 to 13.9 GeV where only pions

emit Čerenkov light.

aluminium box

mirror array

soft steel plate
PMT matrix

aerogel tiles

Figure 3.3.4: The upper half of the RICH detector schematically drawn.

Figure 3.4: A perspective view of the upper RICH detector setup

11 × 11 × 1.0 cm3, which refractive index is 1.0303 and performs PID covering the

lower part of the accepted momentum range. The unoccupied space of the detector

behind the aerogel is filled with the gas radiator, 4000 litre volume C4F10, which

refractive index is 1.00137. A 2× 8 spherical mirror array located at the rear of the

radiator box images the Čerenkov light on a focal surface located above (below) the

active volume. The mirror array is a graphite fiber composite structure with a radius

of curvature of 220 cm. The photon detector is a hexagonal close-packed matrix of

1934 Philips XP1911/uv green enhanced photomultipliers (PMTs) which are read out

by a LeCroy PCOS4 system. These photomultiplier tubes give a pixel size of 23.3

mm and a corresponding single photon angular resolution.

When a charged particle in a material medium moves faster than the speed of light

in that same medium, it emits Čerenkov Radiation on a cone with a characteristic

opening angle θc given by [88].

cos θC =
1

nβ
(3.1)

Where n is the refraction index of the material and β =
v
c is the ratio of the velocity

v of the particle and the speed of light in vacuum c. And the Čerenkov threshold
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Aerogel C4F10

n 1.0304 1.00137

P π
thresh 0.6 GeV 2.7 GeV

P k
thresh 2.0 GeV 9.4 GeV

P p
thresh 3.8 GeV 17.9 GeV

Table 3.1: The Čerenkov light threshold for pions, kaons and protons. The index of

refraction for Aerogel and C4F10 is given at 633 nm.

momentum pthresh for the particle emitting the Čerenkov Radiation in a material

medium is given by

pthresh =
m√

(n2 − 1)
(3.2)

where m is the mass of the particle. The refractive indices of the radiators for the

HERMES dual-radiators RICH and the threshold momenta can be found in Table

3.1.

In the RICH detectors, the Čerenkov cone is focused on the matrix of photon

detectors where a ring pattern is created. The diameter of the ring is proportional to

the Čerenkov angle θC .

The RICH particle identification is based on reconstruction of the Čerenkov angle

and the particle momentum which is estimated by track reconstruction in BC and FC

and deflection radius in the spectrometer magnet. Since the position of the track is

known from the track reconstruction and the Čerenkov photons are detected by the

RICH PMTs which position are also known, the Čerenkov photons angle θC can be

calculated.

At HERMES, hadrons are separated from leptons with the TRD and calorimeter

components of the spectrometer.

For the hadron identification with the RICH, two different concepts are employed:

Indirect Ray-Tracing Method (IRT) and Direct Ray-Tracing Method (DRT)

IRT: For each track, it is assumed that the hit could be coming from the aerogel
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Figure 3.5: Distribution of reconstructed angles in the HERMES RICH. The upper

triplet of curves corresponds to aerogel events, and the lower to gas events. From left

to right the contours in each case are for π, K, and p.

or the gas, and the photon emission point is estimated accordingly. For each radiator

hypothesis, the distribution of angles for hits in an angular range corresponding to

each particle hypothesis (π, K, and p) is reconstructed. The likelihoods for the two

radiators are combined in an overall likelihood. The advantages of this method lie in

its fast and robust calculation.

DRT: The DRT Method calculates a hit probability for each photon-multiplier

of the matrix by a full Monte-Carlo simulation. This is done specifically for the track

configuration of every event under all particle hypotheses possible. The particle type

is deduced from the actual hits and their simulated probabilities. Compared to the

IRT Method, DRT needs orders of magnitude more computering time but for instance

identifies events with more tracks in one detecter half more reliably.

Identification is based on the highest likelihood, L1, consistent with a value of the

quality parameter,

rQp = log10

L1

L2

(3.3)
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greater than a preassigned value.

During the processing of HERMES events, a program, the RICH PID-Scheduler[89],

decides event-wise which method is best to be employed.

The distribution of average reconstructed angles using this decision network for

(π’s, K’s, and p’s) is shown in Fig. 3.5

Transition Radiation Detector (TRD)

The two halves (top and bottom) of the HERMES TRD are located between the two

hodoscopes H1 and H2. Each half consists of six identically constructed models in a

row (shown in Fig. 3.6)

Figure 3.6: Overview of TRD detecter.

A single module contains a 6.35 cm thick matrix of polypropylene/polyethylene

fibres as radiator in front of a 2.54 cm thick Multi-Wire Proportional Chambers

(MWPC). The MWPC is filled with a mixture of 90% Xe and 10% CH4 and detects

the generated transition radiation photons as well as the energy lost by the charged

particle through ionisation. The large active area of 2× 72.4× 325 cm2 of both TRD

halves covers the entire HERMES acceptance.

When a highly relativistic point charge traverses a dielectric boundary, it emits
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In order to improve the hadron identification the threshold Čerenkov counter was re-

placed by a dual–radiator RICH detector
[

Ako02
]

in 1998. Particles with the same mo-

mentum but with different masses emit Čerenkov light in cones with different opening

angles θc. The RICH detector measures the pattern of the Čerenkov photons which per-

mits the reconstruction of the Čerenkov angle θc and thus enables the identification of

pions, kaons, and protons in the hadron sample. Like the threshold Čerenkov counter also

the RICH detector is used for the separation of leptons and hadrons. Figure 3.3.4 shows

the configuration of the upper half of the RICH detector with its two radiator materials.

After entering the detector volume through a thin entrance window foil (not shown in the

sketch) particles pass a first radiator made of 5.5 cm thick aerogel tiles. This is a colloidal

suspension of quartz in air. The second radiator is the heavy C4F10 gas which fills the inte-

rior of the detector. The refractive indices of the radiators and threshold momenta can

be found in Table 3.3.1. The emitted Čerenkov photons are focused by a spherical mirror

array on a photo–multiplier tube (PMT) matrix, consisting of 1934 PMTs in both top and

bottom part of the RICH detector.

As the second PID detector located between the two hodoscopes H1 and H2, also

the TRD serves to distinguish between lepton and hadrons. When a highly relativistic

charged particle crosses a dielectric boundary it emits electromagnetic radiation. This

can be explained by the required continuity of the Coulomb fields at the boundary. Due

to the different dielectric constants, the induced Coulomb fields differ between the two

media at the boundary and do not fulfil the continuity requirement. This gives rise to

an additional field observed as the transition radiation. The total energy of the emitted

radiation for a transition between a medium and vacuum,

E =
2

3
αωpγ , (3.3.3)
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Figure 3.3.5: The upper half of the TRD with a positron and a pion track. The

opening angles of the transition radiation produced by the lepton

are exaggerated.
Figure 3.7: The upper half of the TRD with a positron and a pion track. The opening

angles of the transition radiation produced by the lepton are exaggerated.

electromagnetic radiation. In this case, an electromagnetic wave is emitted. The

photons are usually emitted in the visible part of the spectrum but an X-ray may be

emitted as well. To increase the probability of the emission of X-ray photons in the

Transition Radiation Detector (TRD), a high number of boundaries are introduced.

The ideal case would be a set of thin foils with a narrow uniform separation by

vacuum. Such a construction is technically difficult. In the HERMES TRD it is

replaced by packets of pseudo-randomly arranged polypropylene/polyethylene fibers

with diameters of 17-20µm. The fiber material is held in place with an aluminium

frame and stitched together to maintain the proper density.

Preshower Detector

Located behind the TRD, the hodoscope wall H2 with a 11 mm lead curtain in front is

used as pershower detector. The hodoscope H2 consist of 42 vertical plastic scintillator

paddles with photo-multipliers mounted on the end away from the beam pipe(Fig.

3.8). The thickness of the lead corresponds to two radiation lengths so positrons

have a relatively high probability of starting an electromagnetic shower which can be

detected in the scintillators. The resulting light is captured by the photo-multipliers.

Since the nuclear interaction length is much larger than a radiation length, hadrons
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have a much lower probability of showering than positron. Hadrons will give only a

minimum ionising signal in hodoscope H2 and can be separated from positrons.
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Figure 3.3.6: The preshower detector and the calorimeter setup of the HERMES

experiment.

leave a signal in a cluster of blocks which does not coincide with a track reconstructed

in the HERMES acceptance. By weighting the centroid of each block of a cluster with the

logarithm of the corresponding energy, a position resolution of about 0.5 cm for photons

is achieved
[

Ely01
]

.

3.3.3 The Luminosity Monitor

The measurement of absolute and relative luminosities is necessary for the calculation of

cross sections and cross section asymmetries. In the HERMES experiment the luminosity is

measured by means of a reference scattering process which is the scattering of beam

leptons off shell electrons in the target gas. In case of a positron beam these are the

annihilation and Bhabha scattering processes. For electrons as beam particles Møller

scattering takes place. The luminosity can be obtained from the ratio of the scattering

process rate and its effective cross section. The effective cross section is the theoretical

cross section which is known to high orders in quantum electrodynamics, multiplied by

the efficiency of the luminosity monitor and integrated over its acceptance.

For high energetic beam positrons which scatter off or annihilate with fixed target

shell electrons, the scattering angles of both leptons or the two photons, respectively, are

small. Therefore the luminosity monitor
[

Ben01
]

consists of two small calorimeters located

7.2 m downstream of the target, mounted as close as possible on both sides of the beam

pipe. The calorimeters are built from 12 NaBi(WO4)2 crystals arranged in a 3×4 matrix.

Each crystal is 20 cm long and has a cross section of 2.2×2.2 cm2. At the back side a PMT

is coupled to each crystal for the read out of the signal. The two scattered particles are

detected in coincidence in the two calorimeters. A required energy deposition above

Figure 3.8: Overview of the preshower and the calorimeter.

Calorimeter

The lead glass calorimeter [90] follows downstream of the preshower detector. The

calorimeter serves to separate positrons and electrons from hadrons as well as to detect

energetic photons. The upper and lower half of the calorimeter can be moved 50 cm

away from the beam during injection to avoid radiation damage. Each half consists

of 42 × 10 lead glass blocks of 9 × 9 cm2 (Fig. 3.8). The length of the calorimeter

blocks corresponds to 18 radiation lengths. The light is collected in photo-multiplier

tubes mounted at the rear of each block.

The 18 radiation lengths provided by calorimeter wall make it most likely that a

shower started by a photon or a positron is completely contained in the material. The

hadron-lepton separation in the calorimeter is based on this fact. Hence, for photons,

positrons, and electrons the ratio of deposited energy to momentum (ECALO/p) is

equal to one. Hadrons deposit only a fraction of their energy in the calorimeter

(ECALO/p < 1). Neutral photons are stopped in the calorimeter as well. Since photons

do not produce ionisation along their track in the detector, they are identified as a
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hit in the calorimeter and a corresponding missing hit in the hodoscope system. The

energy resolution of the HERMES calorimeter is

σ(E)

E
[%] =

5.1± 1.1√
E[GeV ]

+ (1.5± 0.5) (3.4)

The selection of leptons from hadrons is done by combining the information from

all PID detectors.

Figure 3.9: Hadrons and leptons separation via PID3 and TRD.

The probability functions Pj
i (p, x) (where the particle i with momentum p causes

a response x in the detector j) are calculated. This is accomplished by compar-

ing detector response to so-called “parent distributions”. The parent distributions

are obtained from data and Monte-Carlo simulations. By combining the probability

functions of the calorimeter and the preshower, a likelihood (rPID3) is obtained:

rPID3 = log10

Pe
Cal · Pe

Čer
· Pe

Pre

Ph
Cal · Ph

Čer
· Ph

Pre

(3.5)

The rPID3 is the logarithmic likelihood that a certain particle has been identified

by the calorimeter and the preshower as a lepton, rather than a hadron. The same
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method is used for the calculation of the value rPID5 in the case of the TRD, where

each module is treated as an independent detector:

rPID5 = log10

Pe
TRD

Ph
TRD

= log10

∏6
i=1Pe

TRDi∏6
i=1Ph

TRDi

(3.6)

The sum of PID parameters, rPID3 +rPID5, is used for hadron selection. The

efficiency of lepton-hadron separation is better than 98% with a contamination of less

than 1%.

3.4 Luminosity monitor

The measurement of absolute and relative luminosities are necessary for the calcu-

lation of cross sections and cross section asymmetries. In the HERMES experiment

the luminosity is measured by means of a reference scattering process which is the

scattering of beam leptons off shell electrons in the target gas. In case of a positron

beam there are the annihilation into photons and the Bhabha scattering process. For

electrons as beam particles Møller scattering takes place. For high energetic beam

positrons which scatter off or annihilate with fixed target shell electrons, the scattering

angles of both leptons or two photons, respectively are small. Therefore the luminos-

ity monitor (LUMI)[91, 92] consists of a pair of small electromagnetic calorimeters

installed 7.21 m downstream the target on the left and right of the positron beam

line. Each calorimeter of the luminosity monitor consists of an array of 3×4 radiation

resistant NaBi(WO4)2 Čerenkov crystals with a size 22× 22× 200 mm3 (Fig. 3.11).

The charged particles of an electromagnetic shower produce Čerenkov light in the

crystals, collected by Hamamatsu R4125Q photomutipliers and read out by LeCroy

ADCs. The LUMI can be moved away from the beam pipe about 20 cm in the

horizontal direction during beam injection, tuning and before dumping to minimise

radiation damages.

The luminosity measurement is based on the observation of elastic scattering of

the beam positrons off the target gas electrons e+e− → e+e− (Bhabha scattering)

and their annihilation into photon pairs e+e− → γγ. When an electron beam is used,
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when the beam is dumped and the ring refilled. As
a target, a storage cell is used which can be filled
with different polarized and unpolarized gases [10].
Typical target thicknesses range from 7! 1013

nucleons cm"2 for polarized hydrogen up to 1016

nucleons cm"2 for unpolarized gases.
A precise determination of the relative lumi-

nosity is necessary for the measurement of cross-
section asymmetries in DIS with different target
spin states. The absolute luminosity is required for
the measurement of absolute structure functions
or studies of unpolarized semi-inclusive hadron
production. Furthermore, the luminosity is im-
portant for the online monitoring of the experi-
mental performance.

The luminosity measurement is based on the
observation of elastic scattering of the beam posi-
trons off the target gas electrons eþe" ! eþe"

(Bhabha scattering) [11] and their annihilation into
photon pairs eþe" ! gg [12], or on elastic
electron–electron scattering e"e" ! e"e" (M!ller
scattering) [13] when HERA is filled with elec-
trons. The cross-sections are known precisely from
quantum electrodynamics, including radiative cor-
rections [14].

For a beam energy of 27:5 GeV the symmetric
scattering angle is 6:1 mrad. The scattered parti-
cles leave the beam pipe 7:2 m after the center of
the target cell and are detected in coincidence by
two small calorimeters. Due to the size of the beam
pipe, the calorimeters must have a distance of
33 mm to the ideal beam line. On the other hand,
the acceptance at large scattering angles is limited
by the size of the vacuum chamber inside the
septum plate. This results in a horizontal accep-
tance of 4.6–8:9 mrad.

2. Detector design

The luminosity monitor (LUMI) consists of two
calorimeters, each containing 12 $CCerenkov crystals
with a size of 22! 22! 200 mm3 arranged in a
3! 4 matrix. A schematic view is shown in Fig. 1.

The crystals are made of NaBiðWO4Þ2 (NBW)
[15] which is non-hygroscopic and has a very high
radiation hardness of about 7! 105 Gy. This is
necessary because of the high radiation back-

ground in the region very close to the beam. To
further minimize radiation damages, the calori-
meters are mounted on movable tables, which
allow them to be removed from the beam pipe by
& 20 cm in the horizontal direction during beam
injection and tuning and before dumping. The
properties of NBW are summarized in Table 1.

The accuracy of crystal dimensions is 50 mm in
the transverse and 200 mm in the longitudinal
direction. Photomultipliers (PM) of type Hama-
matsu R4125Q with bi-alkali photocathodes and a
diameter of 19 mm are used to detect the $CCerenkov
light. Radiation hard synthetic silica was chosen as
a window material. The PMs were coupled to the
crystals by Rhodorsil optical grease ðn ¼ 1:41Þ.
The crystals and the photomultipliers are situated
in a metal box which serves as a magnetic field and
light shield. To monitor gains, each crystal receives
laser light pulses from the HERMES gain mon-
itoring system via optical fibers.

Fig. 1. Schematic setup of the calorimeters.

Table 1
Important properties of NaBiðWO4Þ2 crystals

Quantity Value

Density 7:57 g=cm3

Refraction index 2.15
Radiation length 1:03 cm
Moli"eere radius 2:38 cm
Critical energy 9:75 MeV
Photon yield ( 20=MeV
Optical transparency 5380 nm
Radiation hardness & 7! 105 Gy

T. Benisch et al. / Nuclear Instruments and Methods in Physics Research A 471 (2001) 314–324 315

Figure 3.10: Overview of luminosity detector

electron-electron elastic scattering e−e− → e−e− (Møller scattering) is measured. The

events selected are quasi symmetric Bhabha and annihilation events where each of

the final state particles hits one of the calorimeters. Background is suppressed by

requiring coincident hits of more than 4.5 GeV in each calorimeter. The rate of these

events is proportional to the luminosity at the HERMES interaction point. Residual

asymmetries from the small spin-dependence of the Bhabha cross section are corrected

in the offline analysis [93]. Furthermore, the influences of beam position and beam

slope drifts on the accepted events have to be taken into account.

Since the cross sections of these processes are calculable using Quantum Electro-

dynamics (QED) techniques and the electron density in the target is the same as the

nucleon density, the luminosity can be extracted from its measurement. By measuring

event rates R, the luminosity L is given as:

L =
R∫

∆Ω
dΩε(dσ/dΩ)

(3.7)

where ε is detection efficiency and the integration is performed over an acceptance

angle ∆Ω. The forward scattered electrons passing an opening in the septum plate

are detected by a luminosity detector [91].
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Because of the coincident trigger condition for each event two impact positions can be reconstructed
and connected with a straight line. Repeating this procedure for an event sample recorded at stable
beam conditions, all lines should intersect at the position of the beam between the two calorimeters
(see Figure 3.1).
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Figure 3.1: View of the front face of the two luminosity monitor calorimeters with several coincident
events, whose reconstructed impact positions are connected by straight lines. These
lines intersect at the position of the beam.

The obtained beam position at the luminosity monitor xrec [yrec] can be plotted against the beam
position measured with the BPMs xLUMI [yLUMI]. In the vertical direction the function yrec(yLUMI)
can be fit linearly. Due to the fact that the impact area becomes smaller on one of the calorimeters, if
the horizontal position of the beam is changed, the function xrec(xLUMI) must be fit quadratically. The
beam is central between the two calorimeters, if xrec = yrec = 0. For this condition (xrec = yrec = 0)
the beam position measured with the BPMs can be extracted out of the parameters of the fit functions.

A test of this method with the HMC shows that the beam position at the luminosity monitor can
be obtained with an uncertainty in the order of a few hundredth mm [2].

3.2 The Second Method: Relative Energy Deposition

Another possibility is to treat the deposited energy fractions in the calorimeters. The deposited energy
in the calorimeters varies with changing beam slope and position at the IP, because the particles reach
the calorimeters under different scattering angles and therefore with different energies. In order to
obtain the horizontal beam position at the luminosity monitor, xLUMI, the deposited energy fractions
for the two calorimeters are calculated:

Eleft

Etotal
(xLUMI) and

Eright

Etotal
(xLUMI) . (3.4)

Both quantities can be fit with quadratic functions versus the horizontal beam position. The inter-
section of these two fit functions is the horizontal beam position at the luminosity monitor measured
with the BPMs x0

LUMI, when the beam is central between the calorimeters.
To obtain the vertical beam position at the luminosity monitor, when the beam is in the center

between the two calorimeters, the upper and lower six crystals of both calorimeter are used:

Eup

Etotal
(yLUMI) and

Edown

Etotal
(yLUMI) . (3.5)

The deposited energy fractions are fit and the intersection leads to the central beam position.
Also the second method has been tested with the HMC. The uncertainty of the central beam

position at the luminosity monitor is in the same region as for the previous method [2].

4

Figure 3.11: Determination of the beam position from the reconstructed impact points

of the coincident events.

Because the beam position has significant influence on the luminosity monitor

acceptance, it is measured by a set of beam position monitors. For physics analyses,

the measured rates are corrected with respect to the beam position at the moment of

the measurement [94].

The large systematic uncertainty of 6% in the measurement of absolute luminosi-

ties due to the dependence of the luminosity monitor acceptance on the beam position

and slope [95] cancels in the calculation of relative luminosities. Their uncertainties

are negligible.

3.5 Triggers and data acquisition

The HERMES experiment is equipped with a variety of first level triggers. Since

second level triggering is not necessary at HERMES, all first level triggers of the

spectrometer lead to a complete readout of the detector. Exceptions are the trigger

logics of the luminosity monitor and the Longitudinal Polarimeter which activate only

the readout of the corresponding components.

In order to keep the overall trigger rate low enough, most non-physics triggers are

prescaled, meaning that only every second, fourth, eighth ... one is recorded. This

prohibits an overload of the data acquisition due to a too high overall trigger rate.
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Further information on the HERMES trigger system can be found in [96].

Trigger 21

The most important trigger at HERMES is Trigger 21, the DIS trigger, which is

defined to optimise the chance of recording an event with a positron from a deep

inelastic reaction. The trigger 21 is based on the following conditions that have to

occur in one detector half in coincidence within the time window defined by a positron

bunch crossing the interaction point:

• Hodoscope H1 and H2 give signals above threshold which is set below minimum

ionising energy, so that also minimum ionising particles are triggered, allowing

for a highly efficient trigger. Photons are suppressed by this condition since

they do not leave signals in the scintillators.

• The Hodoscope H0 is the only trigger detector in front of the regain of the HER-

MES spectrometer. The signal in hodoscope H0 is required also. In addition to

the suppression of photons, this condition reduces the chance of triggers caused

by backward flying shower from protons originating from the proton beam.

• The sum of two adjacent calorimeter columns results in more than Ethresh de-

posited energy. This condition rejects energetic hadrons from photoproduction.

Trigger 21 is not prescaled to collect the largest DIS sample possible. For running

with unpolarised target gas at high densities, the calorimeter threshold Ethresh was

set to 3.5 GeV. For the polarised running the threshold was set to 1.4 GeV to extend

the kinematic coverage of the recorded DIS events to higher values of y.

Trigger 28

The photoproduction Trigger 28 was originally implemented to detect µ+µ− pairs

originating from J/ψ decays [97, 98]. The trigger is designed to detect events with

two tracks: one in the upper and one in the lower detector half. Trigger 28 does

not require an energy deposition in the calorimeter. The following conditions have
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to be fulfilled for Trigger 28: time window defined by a positron bunch crossing the

interaction point:

• Hodoscopes H0, H1 and H2 fire in coincidence for the top and bottom detector.

This ensures two forward going tracks.

• The x-plane of BC1 must have detected a particle for the top and bottom

detector. Thus, short tracks and background in the front region of the detector

are suppressed. Since 1997, the second x-plane of the BC1 is added to trigger

and the allowed time window for the drift chamber signals is increased. These

measures significantly increase the efficiency of the trigger.

• The size of the H0 signal must not exceed the equivalent of eight minimum-

ionising particles. Thus, an implicit cut on the multiplicity seen in the front

detector is imposed. In 1996 this condition was slightly different since, apart

from the condition on h0, additional constraints on the particle multiplicity

were imposed on H1, H2 and the back chamber.

Data Acquisition

The HERMES data acquisition system is based on a Fast-Bus backbone. The LeCroy

1877 Multihit Fast-Bus TDCs (Time-to-Digital Convertor) and LeCroy 1881M Fast-

Bus ADCs (Analog-to-Digital Convertor) perform the readout. The drift chambers

are read out by TDCs. The magnet chambers and RICH are read out by the LeCroy

PCOS IV system that is restricted to a single bit per channel.

The data from the FastBus crates are bundled by event builder modules and sent

over fast optical links to a linux cluster, where they are stored on staging disks and

on data tapes.

So-called slow control data, like information from the luminosity monitor, the

polarimeters, the target, detector temperatures, voltage settings, etc., is recorded in

addition. The slow control data are read out once every ∼ 10 s, independent of

triggers from the spectrometer. All raw data is buffered in EPIO format on hard

disk in the linux cluster and backed up regularly on data tapes. It is transferred to a



3.5. TRIGGERS AND DATA ACQUISITION 63

taping robot at the DESY main site after the end of each HERA positron fill using a

FDDI (fast distributed data interface) link.

From the electronic detector signals, the hit positions, energy depositions, etc. are

determined with the HERMES decoder (HDC) using mapping, geometry and cali-

bration of the individual detectors. All required information is stored in an ADAMO

database, which is an entity-relationship database allowing structured and portable

data storage. In a next step the HERMES reconstruction (HRC) program finds tracks

in the spectrometer. Using a timing signal that is written to the event data and slow

control data streams, both data streams can be synchronised. All synchronised data

which is useful for physics analyses, is stored in data summary tables - the so-called

DST files.

Different time scales are used in the HERMES data. The shortest time interval

is the event containing all reconstructed tracks which are observed when a trigger is

generated. All events recorded within approximately 10 s are grouped into a burst.

This is the time scale on which the slow control information is synchronised to the

event data. In order to split up the raw data into small enough pieces for storage,

bursts are combined into a run with a size of about 450 MB. Dependent on the

luminosity, a run lasts around 10 min. The longest time scale, the fill, is determined

by the 8-12 h storage time of the HERA positron beam.





Chapter 4

Event selection

The analysis presented in this thesis is based on the data set collected with a longi-

tudinal polarised deuterium target in the year 2000.

In order to minimise the systematic uncertainties and to maximise the statistical

precision, the acquired data have to pass a series of selection cuts to ensure it is

suitable for the extraction of double spin asymmetries and multiplicities.

4.1 Run level data quality selection

As explained in Section 3.5, the HERMES DAQ system separates the data collected

within a fill in runs. When an accidental failure of a component of the detector

is recorded, the corresponding runs are marked accordingly in the logbook. The

rejection of these runs is the first step in the data quality selection.

4.2 Burst and record quality

Within a run, the data are subdivided in ”Bursts”, which correspond to approximate

10 seconds of data taking. Each burst contains the complete so called ”slow con-

trol” information of the experimental status (e.g. beam and target polarisation and

luminosity monitor rates) integrated over these 10 seconds.

It is obviously preferable to determine the data quality on a smaller time scale.

65



66 CHAPTER 4. EVENT SELECTION

This is advantageous, since complete runs do not have to be rejected if a detector

problem only affects a few bursts. Hence, most studies of data quality focus on

this subdivision. At burst level, the quality criteria are used to reject data, due to

detector instability. The following selection criteria are applied to both detector halves

simultaneously. A summary of the data quality selection criteria for the analysed data

sets is given in Table 4.1.

The following paragraphs detail the criteria applied for the selection of data suit-

able for the analysis.

Parameter Quality Selection CriteriumCriteria

DAQ:

Initialisation Exclude first bursts

Efficiency 0.7 ≤ TAcc/TGen ≤ 1.0

Record Length 0.0 s ≤ ∆Record ≤ 11.0

Beam:

Current 5.0 mA < IB < 50.0 mA

Polarimeter OK

Polarisation 40% ≤ |PB| ≤ 80%

Target:

Polarisation |PT| ≥ 70%

Detector:

HV Trips Exclude

Calorimeter OK

TRD OK

Čerenkov/RICH OK

Luminosity Rate 5 Hz ≤ Lfit ≤ 50 Hz

Table 4.1: Summary of the data quality cuts applied to the HERMES data.
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4.2.1 Data acquisition conditions

The online data collection is base on the HERMES DAQ and the trigger system.

A trigger is an electronic signal indicating the occurrence of a desired temporal and

spatial correlation in the detector signals: B(beam)
⊗

F(final-state in detector) The

purpose is to select those rare events which are relevant for the derived physics analysis

and to suppress background events, to reduce ’dead time’ of the data acquisition

system by reducing the amount of data taking and to reduce the cost of data storage

and effort the data reduction.

The dead time is the non-sensitive period of the detector, the electronics, or the

readout system.

At the beginning and at the end of each run, the DAQ performs a variety of

initialisation and clean up operations, which affect the information recorded in a burst.

For this reason, the first burst of each run is rejected. To ensure good synchronisation

between the flipping of the target state and the acquired events, the length of a

record is required to be between 0 and 11 seconds. Bursts, where the ratio between

the accepted triggers (TAcc) and the generated triggers (TGen) were below 70% are

excluded.

Both, the burst length and the life time, enter directly in the normalisation of the

experimental count rates.

4.2.2 Beam conditions

A stable beam of high current and precisely measured polarisation is essential for the

analysis. The minimum limitations on the beam current is IB > 5 mA, and the beam

polarisation value is required to exceed 40% (|PB| > 40%).

4.2.3 Target conditions

The burst level selection of the polarisation for the nuclear target was set to PT > 70%

in a well-defined spin state, either parallel or anti-parallel to the beam polarisation

direction. Due to the exceptionally good stability of the HERMES ABS, it is possible
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to use avearage values for the entire data taking period. For the year 2000 data taking

period, the values used for the nuclear target polarisation were 〈Pz+〉 = 0.851 and

〈Pz−〉 = −0.840 [99].

4.2.4 Detector and tracking conditions

All detectors in both spectrometer halves were required to be operational. The proper

functioning of the tracking system in the spectrometer is required, therefore data

acquired during trips of the high voltage of the tracking chambers are rejected.

4.2.5 Luminosity

The rate in the luminosity monitor is sensitive to variations in beam current and

target density. The requirement for the rate to remain within a nominal operating

range (5 Hz ≤ Lfit ≤ 50 Hz) is a test of the stability for the HERA positron beam

and the target density.

4.3 Event selection

Once a data sample has been established by the data quality cuts, events originating

from deep inelastic scattering processes have to be identified out of all recorded events.

The trigger requirements as described in Sect. 3.4 already enhance DIS over other

competing processes. In order to further increase the purity of the DIS events sample

and to discard tracks from the edges of the acceptance, cuts on geometrical and

kinematic track quantities are applied as listed in Table 4.2. They will be briefly

discussed in the following paragraphs.

At event level, each track that belongs to the event is considered separately. Se-

lection criteria take care of particle identification and kinematic quantities in order

to determine the DIS candidates and the semi-inclusive hadrons that are to be used

for evaluation of the asymmetries. Table 4.2 summarises the criteria applied on a

track-by-track level.
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4.3.1 Track selection

The DIS trigger (trigger 21) preselects events that are likely to be deep-inelastic.

Tracks that are part of these events are subjected to further cuts in order to ensure

that they are fully inside of the spectrometer’s acceptance and to identify the DIS

positron and coincident semi-inclusive hadrons. The reconstruction method of the

tracks called ”FC only” requires a partial track in the front detector region by using

front chambers (FC) only, and a back partial track by using the back chambers (BC).

Tracks for which only the front partial track is available (short tracks) were excluded.

4.3.2 Geometry requirements

The geometry selection criteria ensure that the particle originated from an interaction

with the gas inside the cell and passed through all the detectors of the spectrometer.

The particle trajectories were required to be contained within the fiducial volume

of the spectrometer. This condition guarantees a proper track reconstruction and

identification also for those particles whose trajectories are close to the edges of the

acceptance.

Additionally, the position of the particle trajectory at the calorimeter was selected

to be within |xcalo| ≤ 175 cm and 30 cm≤ |ycalo| ≤100 cm. These criteria ensure an op-

timal cluster energy reconstruction and negligible energy loss outside the calorimeter

volume for the selected tracks.

4.3.3 Particle identification

As explained in Section 3.4, the relevant quantities for particle identification are the

expressions PID3 + PID5 for the data sets, which refer to the summed likelihood

parameter from the various PID detectors. For each track, the corrected probability

is derived by subtracting from the value of the flux ratio log10Φ(p, θ) from the PID

term, where momentum p and angle θ are specific for the track. The separation of

leptonic tracks from charged hadronic tracks was performed as follows
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Figure 4.1: The Distribution of the PID variables.

Leptons : 100.0 ≥ PID3 + PID5 − log φ > 0.0; (4.1)

Hadrons : 0.0 ≥ PID3 + PID5 − log φ ≥ −100.0 (4.2)

DIS leptons were further selected in each event by applying the kinematic DIS

criteria to the leptonic track. In coincidence with the DIS lepton, hadrons that passed

the kinematic criteria are selected for the formation of the semi-inclusive asymmetries

for each event. A cut on the quality parameter rQp > 0.0 was applied for RICH

detector.

4.3.4 Kinematic selection criteria for DIS events and semi-

inclusive hadrons

After leptonic tracks have been discriminated from hadronic tracks, the scattered

positrons from the DIS processes were selected applying kinematic criteria that define

the phase-space associated with the deep-inelastic scattering events.

At this point of the selection, no distinction was made between electrons and

positrons, as electrons measure charge-symmetric background in the positron sample

for a positron beam. The electrons and positrons are all taken into accounts, even

if there are more than one lepton that fulfils the DIS cuts. Each lepton is treated
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Track Selection

Trigger pattern T21 fired

Method of reconstruction NOVC

The momentum of Track P > 0.5 GeV

Full tracks only

Geometry requirements

Position at the Calorimeter |xcalo| ≤ 175 cm

30 cm ≤ |ycalo| ≤ 100 cm.

Longitudinal vertex position Lepton : |zvertex| ≤ 18 cm

Hadron :− 20 cm ≤ zvertex ≤ 18 cm

Transverse vertex position Lepton :|dvertex| ≤ 0.75 cm

DIS Selection (lepton)

PID 0.0 < PID3 + PID5 ≤ 100.0

Calorimeter cluster energy ECalo ≥ 3.5 GeV

Momentum transfer Q2 ≥ 1.0 GeV2

Invariant mass W 2 ≥ 10.0 GeV2

Fractional energy transfer y ≤ 0.85

Hadrons Selection

PID -100.0 ≤ PID3 + PID5 ≤ 0.0

Method of reconstruction(RICH) IRT, rQp ≥ 0.

Hadron energy fraction z ≥ 0.1

Feynman variable xF ≥ 0.1

Momentum of hadrons 2.0 GeV ≤ P ≤ 15.0 GeV

Table 4.2: Summary of the kinematic cuts used in this analysis to select the inclusive

and semi-inclusive events.
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as separate event for the determination of the kinematic variables x, y, Q2 and W 2.

These kinematic variables are calculated from the particle momenta and the scattering

angles.

An upper limit of y ≤ 0.85 suppresses radiative corrections to the cross section.

The criterion on the invariant mass of the final hadronic state, W 2 ≥10 GeV2, was

used to select the deep-inelastic region, where the nucleon breaks apart incoherently.

The requirement Q2 ≥1 GeV2 allows the modelling of the events within the pertur-

bative QCD framework, and it also suppresses higher twist effects.

These requirements define a base sample of inclusive DIS candidates. In this

analysis the events are extracted as function of x. The binning in x consists of eight

bins with the limits given in Tab. 4.3. The binning was chosen to approximately

yield the same number of events in each bin.

For the semi-inclusive analysis, the hadrons in the event in coincidence with the

DIS candidate were selected.

x-range < x > < Q2 > < y >

1 0.023 · · · 0.040 0.033 1.222 0.725

2 0.040 · · · 0.055 0.047 1.489 0.609

3 0.055 · · · 0.075 0.065 1.743 0.523

4 0.075 · · · 0.100 0.087 2.013 0.449

5 0.100 · · · 0.140 0.118 2.413 0.396

6 0.140 · · · 0.200 0.166 3.225 0.376

7 0.200 · · · 0.300 0.239 4.519 0.371

8 0.300 · · · 0.700 0.360 7.134 0.381

Table 4.3: Definition of the binning in x. The first column gives the ordinal number

of each bin, with the limits defined in the second column. In the third column the

mean value < x > is given.



Chapter 5

K0
s production in deep inelastic

scattering at HERMES

Due to the short life time of the K0
s of τ = 8.9ns, these particles are identified in the

HERMES spectrometers by their decay produces in the channel K0
s → π+π−.

5.1 The K0
s candidates finding algorithm

In this analysis, theK0
s mesons are reconstructed using the decay channelK0

s → π+π−

which has a branching ratio of about 69% [100]. Tracks of opposite charged are paired

together. Each track had to fulfil the event selection criteria which are introduced in

Chapter 4. After applying this procedure to the hadronic event sample and assigning

the pion mass to both tracks, the mass distribution of the reconstructed K0
s decay is

shown in Fig. 5.1 assuming both tracks to be pions.

At the same time, the parameters c · τ and cos(γ) are calculated as shown below,

which are used to suppress the background which did not come from the decay mode

K0
s → π+π−.
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5.2 K0
s identification and background suppression

In order to get a clear K0
s signal and to enhance the K0

s signal-to-background ratio,

additional cuts have been introduced. The cuts are based on the event topology

shown in Fig. 5.1. The position of the decay vertex and the distance of the closet

approach (DCA) D2 of the pion tracks have been calculated. The tracks of particles

which are produced by the decay of the same parent particle are supposed to come

from the same vertex. This is, in the analysis, expressed for two pion tracks by the

cut D2:

D2(π+π−) < 1cm (5.1)

The next topology cut utilises the knowledge of the mean life time of theK0
s (8.9 ns).

For a K0
s with a momentum of 1 GeV/c, the mean life time corresponds to a flight

distance of approximately 10 cm. In order to estimate the decay length of a potential

K0
s , its track and production vertex has been reconstructed. Then, the distance d12

Figure 5.1: Invariant mass distribution of reconstructed π+π− candidate events. The

topology of reconstructed event.
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is:

d12 = |VD1 − VD2| (5.2)

The following parameter has been introduced to be an important cut:

c · τ =
MK0

s
· d12

PK0
s

(5.3)

The direction of the K0
s track is given by the sum of the two pion’s three-momenta

vectors. The K0
s production vertex has been reconstructed using the assumption that

the K0
s and the beam and scattering positron come from the same production vertex.

There is an angle γ, which is the angle between direction of K0
s momentum and the

direction from vertex D2 to the beam and scattering vertex which has to be close to

zero (D2(π+π−) < 1cm is used in this analysis).

cos γ > 0.99 (5.4)

K0
s selection

mean life time c · τ < 10.0

deviation from beam scattering vertex cos γ > 0.99

Table 5.1: Summary of the cuts used in the selection of K0
s sample

Using these criteria (summarised in Tab. 5.1), the background in the mass region

of the K0
s is reduced and the K0

s signal is shown in Fig. 5.2.

To determine mass and width of the K0
s , the distribution of the π+π− mass spec-

trum was fitted with a Gaussian shape and a polynomial expression for the back-

ground in the region 0.4 to 0.6 GeV (shown in Fig 5.2). The measured K0
s mass value

obtained is (497.3± 0.1)MeV/c2, in reasonable agreement with the world average of

(497.672 ± 0.031)MeV/c2 [100]. The width obtained, σ = (7.0 ± 0.1)MeV/c2, corre-

sponds to our experimental mass resolution. The value of mass and the width of the

signal are well reproduced by the HERMES Monte Carlo simulations. In the signal

region extends from 480 to 515 MeV, total of 5596 K0
s mesons on top of a background
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Figure 5.2: The π+π− invariant mass distribution of reconstructed K0
s candidate

events after selections and cuts. The green line indicates the selected mass interval.

of about 506 π+π−-combinations was obtained. The peak contains 5596 ± 148 K0
s

mesons. All errors are statistical only.



Chapter 6

Double spin asymmetries

6.1 Determination of the double spin asymmetries

partons

σ1/2 ∼ q+(x)
Nucleon

γ∗
partons

Nucleon

γ∗

σ3/2 ∼ q−(x)

Figure 6.1: representation of the orientations of spin

The longitudinal double spin asymmetry A||(x,Q
2) in the laboratory system is

defined as the difference of the cross sections for anti-parallel and parallel alignments

of the beam and target spins, normalised to the sum of these two cross sections.

A||(x,Q
2) =

σ
→⇐ − σ

→⇒

σ
→⇐ + σ

→⇒
(6.1)

The unpolarised cross section σ̄ = (σ
→⇐+σ

→⇒)/2 equals the average of the polarised

cross sections. Using this, the polarised cross sections can be rewritten as

σ
→⇐(

→⇒) = σ̄(x,Q2)[1 ( ±) A||(x,Q
2)] (6.2)

The measured experimental asymmetry Aexp
|| (x,Q2) is proportinal to asymmetry

A||(x,Q
2):

77
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Aexp
|| (x,Q2) = f · PB · PT · A||(x,Q

2) (6.3)

where f is the target dilution factor and PB and PT denotes the beam and target

polarisations, respectively. The target dilution factor f represents the fraction of

nucleons in the target which are polarised. For the polarised pure gas target at

HERMES f = 1, which is unique compared to all other previous experiments on

polarised DIS. Other experiments (SMC [25], E143 [45], etc.) use polarised solid

state targets with dilution factor in the range of f ≈ 0.04 → 0.2, thereby reducing

the size of their measured experimental asymmetries significantly. As the present

analysis only deals with data taken on a polarised deuteron target, f is neglected

from here on.

The total number of the events measured per spin state, N
→⇐(

→⇒)(x,Q2), is related

to the unpolarised cross section σ̄(x,Q2) and the asymmetry A||(x,Q
2) by

N
→⇐(

→⇒)(x,Q2) = σ̄(x,Q2)

∫
→⇐(

→⇒)

Γ(t, x,Q2) · E(t, x,Q2) · L(t)[1± PBPTA||(x,Q
2)]dt

' σ̄(x,Q2)Γ(t, x,Q2) · Erec(t, x,Q
2)

∫
→⇐(

→⇒)

EDAQ(t, x,Q2) · L(t)[1± PBPTA||(x,Q
2)]dt

(6.4)

Where the integration is performed over time periods with anti-parallel (parallel) spin

states. L denotes the luminosity delivered per spin state and the beam and target

polarisations account for dilution of the experimental asymmetry Aexp
|| as given in Eq.

6.3 .

Γ(t, x,Q2) ' Γ(x,Q2) in Eq. 6.4 represents the geometrical acceptance function,

which is independent of the relative orientation of the beam and target spins. Fur-

thermore, it is assumed to be nearly independent of the time t. This assumption is

justified by the fact that the experimental setup is essentially left unchanged during

one year of data taking. The quantity E(t, x,Q2) in Eq. 6.4 is the detection efficiency,

which is the product of the reconstruction efficiency Erec(x,Q
2), which may vary over

the geometrical acceptance of the spectrometer, and the trigger efficiency EDAQ(x,Q2)
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may vary on the time scale of the burst and is related to the fractional dead time

δDead, defined in equation,

δDead = 1− Naccepted

Ngenerated

=
Nrejected

Ngenerated

(6.5)

by EDAQ(t) = 1 − δDead. Time dependent variations of the reconstruction efficiency

Erec are small and happen on a time scale which is much longer than the duration of

one target spin cycle. In [101] the effect of these small variations on the extracted

inclusive proton asymmetry was investigated and found to be negligible. The trigger

efficiency EDAQ is totally uncorrelated to the kinematics of the scattering process and

hence is independent of x and Q2.

Rewriting the integrals over the luminosity for a given burst i as

`
→⇐(

→⇒)
i =

∫
→⇐(

→⇒)i

EDAQ(t)L(t)dt (6.6)

`pi
i
→⇐(

→⇒) =

∫
→⇐(

→⇒)i

EDAQ(t)L(t)PBPTdt (6.7)

the number of events n
→⇐(

→⇒)
i (x,Q2) in this burst can be expressed as

n
→⇐(

→⇒)
i (x,Q2) = σ̄(x,Q2)Γx,Q2E(x,Q2)

(
`
→⇐(

→⇒)
i ± `

→⇐(
→⇒)

pi
A||(x,Q

2)
)

(6.8)

When summing over all bursts and using the following definitions

N
→⇐(

→⇒) =
∑

i

n
→⇐(

→⇒)
i (6.9)

L
→⇐(

→⇒) =
∑

i

`
→⇐(

→⇒)
i (6.10)

L
→⇐(

→⇒)
p =

∑
i

`
→⇐(

→⇒)
pi

(6.11)

the time averaged asymmetry A|| can be related to the total event numbers N
→⇐(

→⇒)

in each state by
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A|| =
N

→⇐L
→⇒ −N

→⇒L
→⇐

N
→⇐L

→⇒
p +N

→⇒L
→⇐
p

(6.12)

where the unpolarised cross section σ̄(x,Q2) and the efficiences Γ(x,Q2) and Erec(x,Q
2)

cancel out. The explicit dependence of A|| and N
→⇐(

→⇒) on the kinematic quatities x

and Q2 has been omitted in these expressions.

The measured inclusive double spin asymmetry Ae
|| derived from the equation 6.13

Ae
||(x) =

N e
→⇐(x)L

→⇒ −N e
→⇒(x)L

→⇐

N e
→⇐(x)L

→⇒
p +N e

→⇒(x)L
→⇐
p

(6.13)

is shown in Fig. 6.2 and the relative kinematic factors are shown in Tab. 6.1.

And the measured semi-inclusive double spin asymmetry A
K0

s

|| derived from the

equation 6.14

A
K0

s

|| (x) =
NK0

s
→⇐(x)L

→⇒ −NK0
s
→⇒(x)L

→⇐

NK0
s
→⇐(x)L

→⇒
p +NK0

s
→⇒(x)L

→⇐
p

(6.14)

is shown in Fig. 6.3 and the relative kinematic factors are shown in Tab. 6.2.

6.2 The corrections to double spin asymmetries

Assuming the correction factors are same to the parallel (
→⇒) and anti-parallel (

→⇐

), the corrections to the double spin asymmetries cancel according to the formula.

Therefor no corrections were applied to the DSA. This assumption is justified by the

fact that a previous analysis result for charged kaons with the same data set [102]

show very small correction compared with the statistical errors and the systematic

uncertainty.
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Figure 6.2: Double spin asymmetries of inclusive DIS.
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Figure 6.3: Double spin asymmetries of semi-inclusive K0
s production.
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< x > η γ D R δR

1 0.033 0.024 0.056 0.720 0.379 0.028

2 0.047 0.042 0.074 0.593 0.358 0.025

3 0.065 0.062 0.095 0.504 0.335 0.022

4 0.087 0.086 0.120 0.432 0.309 0.019

5 0.118 0.114 0.150 0.384 0.275 0.015

6 0.165 0.139 0.181 0.376 0.222 0.011

7 0.239 0.166 0.216 0.386 0.159 0.008

8 0.360 0.194 0.257 0.415 0.100 0.006

Table 6.1: The kinematic factors extracted from HERMES 2000 polarised deuteron

data set are used to evaluate the virtual photon asymmetries.

< x > η γ D R δR

1 0.033 0.024 0.056 0.728 0.378 0.028

2 0.047 0.037 0.071 0.639 0.354 0.024

3 0.065 0.048 0.086 0.611 0.320 0.021

4 0.087 0.061 0.103 0.589 0.278 0.017

5 0.118 0.075 0.123 0.583 0.228 0.014

6 0.166 0.093 0.148 0.580 0.172 0.010

7 0.238 0.119 0.182 0.558 0.125 0.008

8 0.352 0.149 0.224 0.557 0.083 0.006

Table 6.2: The kinematic factors extracted from the HERMES 2000 polarised

deuteron data set used to evaluate the semi-inclusive K0
s asymmetries.

6.3 The photon-nucleon asymmetries

The asymmetry of interest in the analysis is photon-nucleon asymmetry A1 . It is

related to measured asymmetry A|| which are extracted from 2000 polarised deuteron

data with all kinematic factors in last few sections:
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A1 =
A||

D(1 + ηγ)
− ηγ(1 + γ2)

1 + ηγ

g2

F1

g2=0
'

A||

D(1 + ηγ)
(6.15)

as

A1 =
1

(1 + ηγ)
· N

→⇐L
→⇒ −N

→⇒L
→⇐

N
→⇐L

→⇒D
→⇒ +N

→⇒L
→⇐D

→⇐
(6.16)

where the kinematic factors, η, γ, and D, are defined as

D =
1− (1− y)ε

1 + εR
(6.17)

η =
εγy

1− (1− y)ε
(6.18)

ξ =

√
2ε

1 + ε
(6.19)

γ2 =
Q2

ν2
=

4M2x2

Q2
(6.20)

D counts for the depolarisation of the virtual photon with respect to the polar-

isation of the positron beam. R = σL/σT is the ratio of the longitudinal to the

transverse polarisation of the virtual photon. To account for slightly different values

for the depolarisation factor D in the different spin states due to binning effects, D

is evaluated for each target spin state separately.

The photon-nucleon asymmetries, Ad
1 and A

K0
s

1 , are presented in Fig. 6.4 and Fig.

6.5. These asymmetries will be used in the chapter 8 to extract the strange and the

non strange polarisation.

The statistical uncertainty δA1 on the asymmetry A1 is obtained from the statis-

tical uncertainties δN =
√
N on the event numbers as

δA1 =

√(
∂A1

∂N
→⇒
δN

→⇒
)2

+

(
∂A1

∂N
→⇐
δN

→⇐
)2

(6.21)

=
1

(1 + ηγ)
·

L
→⇐L

→⇒
p D

→⇒ + L
→⇒L

→⇐
p D

→⇐(
N

→⇐L
→⇒D

→⇒ +N
→⇒L

→⇐D
→⇐
)2

√(
N

→⇒
)2

N
→⇐ +

(
N

→⇐
)2

N
→⇒
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Figure 6.4: The photon-nucleon spin asymmetries of DIS
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This expression is valid under the assumption of a Poisson distribution for the

number of scattering events and for experimental asymmetries which are not too

close to one.

The semi-inclusive asymmetries Ah
1 are extracted in complete analogy to the pro-

cedure for the inclusive asymmetry A1. In case of the semi-inclusive asymmetries,

the event number in the above expressions have to be substituted by N
→⇐(

→⇒)
h , which

denote the number of events with hadron of type h in coincidence with positron. More

specifically, if more than one hadron passes the selection cuts explained in Chapter

4, the event is counted multiply, once for each hadron passing the cuts.

6.4 Systematic uncertainty

The contributions to the systematic uncertainty in A
(h)
1 have different sources and

are outlined in this section. The errors related to the HERMES experiment com-

prise the systematic uncertainties in the beam and target polarisation measurements.

Additional systematic uncertainties in A
(h)
1 are related to external contributions such

as the uncertainties in the measurements of the cross section ratio R and the spin

structure function g2. In the following, the formulae of the individual contributions

to the systematic uncertainty on the inclusive and semi-inclusive asymmetries will

be discussed, and explicitly stated, they hold in the same way for both inclusive and

semi-inclusive asymmetries.

The error in each contributing term was added in quadrature to evaluate the total

systematic uncertainty in the final asymmetry measurement.

6.4.1 Beam polarisation uncertainty

Measurements from the longitudinal polarimeter were used instead for the 2000 data.

The associated fractional uncertainties are [δPB/PB](2000) = 1.9%. The systematic

uncertainty in the asymmetry A1 from this contribution is given by
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[δA1]pB
=

√(
∂A1

∂PB

)2

(δPB)2 =

∣∣∣∣A1 ·
δPB

PB

∣∣∣∣ (6.22)

6.4.2 Target polarisation uncertainty

The associated systematic uncertainties in the measurement of the target polarisa-

tion for the 2000 data set are [δPT/PT ]2000 = 4.0%. For this year the systematic

uncertainty in the asymmetries was calculated according to

[δA1]pT
=

√(
∂A1

∂PT

)2

(δPT )2 =

∣∣∣∣A1 ·
δPT

PT

∣∣∣∣ (6.23)

6.4.3 Model for the spin structure function g2

In the derivation of Eq.6.15, the structure function g2(x) was assumed to be zero

which leads to A
(h)
1 = g

(h)
1 /F

(h)
1 . For a non-vanishing spin structure function g

(h)
2 (x)

this relation breaks up and the resulting expressions become

A
(h)
1 =

A
(h)
||

D(1 + ηγ)
− ηγ(1 + γ2)

1 + ηγ

g
(h)
2

F
(h)
1

(6.24)

The spin structure functions g2(x) has been measured for the proton [45, 24] and

for the neutron [22] in a range of x and Q2 similar to the HERMES experiment. The

data are consist with g2(x) = 0 within statistical uncertainties.

In order to estimate the systematic uncertainty on the asymmetry A1 due to the

assumption g2(x) = 0, a simple limiting parametrisation was chosen:

xgp
2(x) = ±0.055 · (1− x)0.7 (6.25)

xgd
2(x) = ±0.065 · (1− x)0.98 (6.26)

xgn
2 (x) = ±0.110 · (1− x)0.98 (6.27)

For x → 1 these parametrisations follow the behaviour of the twist-2 Wanzura-

Wilczek term xgWW
2 (x) which approaches zero in this limit.
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Using this parametrisation, the systematic unceratinty on the asymmetry A1 6.24

can be expressed as:

[δA1]g2 =

∣∣∣∣ηγ(1 + γ2)

1 + ηγ

(
g2

F1

)∣∣∣∣ (6.28)

for deuteron asymmetries. The semi-inclusive asymmetries are assumed to have

the same systematic uncertainty as the measured uncertainty in the inclusive case.

6.4.4 Uncertainty in the parametrisation of R

The ratio R = σL/σT of the longitudinal (σL) and transverse (σT ) photon absorption

cross sections enters the asymmetry calculation through the depolarisation factor D

(see Eq. 6.18). The uncertainty, δR, of the world-averaged parametrisation of R is

presented in Ref. [26] and contributes to the measured asymmetries as

[δA1]R =
ε

1 + εR
A1δR (6.29)

6.4.5 Smearing and radiative corrections uncertainties

Based on the Eq. 6.12, and the fact that the previous analysis results of charged

kaons showed almost no corrections for smearing and radiative effects, as discussed in

section 6.2, these corrections for double spin asymmetries are neglected in this work.

This neglections results in an uncertainty in the photo-nucleon asymmetries which is

estimated to be of the same size as the corrections which have been applied in the

analysis of the charged kaon asymmetries [102]

[δA1]Ksmear = |∆A1|Ksmear (6.30)

The correction to Ad
1 is from 0.004 to 0.008, the maximum correction value is 0.008.

And the corrections to A
K0

s
1 is from 0.009 to 0.086, the maximum value is 0.086.

Where the last two x-bins corrections are large due to the lower statistic. Most of

x-bins corrections are lower than 0.01.
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6.4.6 Total systematic uncertainty

The total systematic uncertainty assigned to the asymmetries comprises all the con-

tributions described in the previous sections. Each systematic uncertainty was added

in quadrature to give the total systematic uncertainty for each x-bin,

δAtot
1 (x) =

√∑
i

([δA1(x)]i)2 (6.31)

For the data obtained in the year 2000 the uncertainty assigned to g2 is the most

important component. The uncertainty associated with the spin structure function

g2 is strongly dependent on kinematics and becomes the dominant contribution to

the bins at highest x.

The shaded band in Fig. 6.6 and 6.7 shows the total systematic uncertainty of

the photon-nucleon asymmetry.
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Figure 6.6: The inclusive Born level photon-nucleon asymmetries on the deuteron.

The error bars give the statistical uncertainties, and the shaded bands indicate the

systematic uncertainty.
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Figure 6.7: The Semi-inclusive K0
s Born level photon-nucleon asymmetries on the

deuteron. The error bars give the statistical uncertainties, and the shaded bands

indicate the systematic uncertainty.





Chapter 7

The Multiplicity of K0
s and the

integral fragmentation functions

7.1 Determination of multiplicity of K0
s

The Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section for hadron pro-

duction at a given x, normalised to corresponding inclusive cross section, is

dσh(x, z)/dxdz

dσdis(x)/dx
=

dNh(x, z)/dxdz

dNdis(x)/dx
=

∑
f e

2
fqf (x,Q

2)Dh
f (z)∑

f e
2
fqf (x,Q

2)
(7.1)

Integrating over the measured z range and assuming only charge conjugation

invariance, i.e.

DK0
s

u = D
K0

s
ū , D

K0
s

d = D
K0

s

d̄
, DK0

s
s = D

K0
s

s̄ (7.2)

and supposing isospin invariance of quarks u and d in deuteron,

up(x) = dn(x), dp(x) = un(x) (7.3)

Eq. 7.1 becomes for SIDIS K0
s production on the deuteron.

dNK0
s (x)/dx

dNdis(x)/dx
=
Q(x)

∫
D

K0
s

non−strange(z)dz + S(x)
∫
D

K0
s

strange(z)dz

5Q(x) + 2S(x)
(7.4)
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Where Q(x), S(x),
∫
D

K0
s

non−strange(z)dz and
∫
D

K0
s

strange(z)dz are defined as:

Q(x) = d(x) + u(x) + d̄(x) + ū(x)

S(x) = s(x) + s̄(x)

∫
D

K0
s

non−strange(z)dz = 4

∫
DK0

s
u (z)dz +

∫
D

K0
s

d (z)dz

∫
D

K0
s

strange(z)dz = 2

∫
DK0

s
s (z)dz (7.5)

In order to extract the number of K0
s and thus to determine the K0

s cross section,

it is necessary to estimate the amount of the background under the signal peak and

to correct for the detection efficiency. For this purpose, fits similar to those described

in chapter 5 (see Fig. 5.2) are performed in different x bins. The signal is divided

into 8 bins in the range 0.02 → 0.7 see Tab. 4.3. No significant K0
s signal is observed

outside this range 0.02 → 0.7.

10
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-1 xBj
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IS
(x

)/
dx

Figure 7.1: The raw multiplicity of K0
s versus xBj

To determine the number of the K0
s per x bin, the entries in the mass range from

480 MeV/c2 to 520 MeV/c2 are summed up and the background obtained from the
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fitted polynomial function is subtracted. Fig. 7.1 shows the raw multiplicity from K0
s

of the 2000 data set of HERMES.

7.2 The corrections for the multiplicity

Charge symmetric background

Process like π0 decay to two photons or high energy Bremsstrahlung photons con-

stitute a source of e+e− pair production. The produced positron may fulfil the deep

inelastic scattering kinematic cuts. It will increase the inclusive scattered positron

counts. To subtract these faked inclusive scattered positrons, one event has to be

removed from the data sample each time when an electron passes the deep inelastic

scattering kinematic cuts.

Figure 7.2: Fraction of background events found in each x-bin with respect to the

number of DIS candidates after background subtraction.

7.2.1 Smearing, acceptance and radiative corrections

A correction method of the hadron multiplicity for detector smearing, radiative ef-

fects and acceptance is described in [103]. For simplicity, these corrections will be

called ”smearing unfolding”. The smearing unfolding is described by the following

expression:
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XDIS(K0
s )(i) = LDIS(K0

s )k(i)

nB∑
j=0

SDIS(K0
s )(i, j)BDIS(K0

s )(j) (7.6)

where,

• XDIS(K0
s )(i) denotes the experimental DIS(kaon) yield as function of the exper-

imental kinematic bin i.

• BDIS(K0
s )(j) denotes the unkown Born DIS(kaon) yield as function of the Born

kinematic bin j.

• k(i) is the unknown integrated luminosity including the unsimulated detector

inefficiences.

• LDIS(K0
s ) are the luminosities. Here LDIS and LK are equal since the kaon yield

is a subsample of the DIS yield.

• SDIS(K0
s )(i, j) is the smearing matrix defined by:

SDIS(K0
s )(i, j) =

σX(i)

σB(j)
=
nDIS(K0

s )(i, j)

nB
DIS(K0

s )(j)
(7.7)

The matrix nDIS(K0
s )(i, j) represents the number of inclusive positron (K0

s ) where

the experimental kinematic falls in bin i = 1, ..., nX and the Born kinematic falls

in bin j = 1, ..., nB. The extra bin j = 0 holds the events characterised by the

experimental kinematics being inside the HERMES DIS/SIDIS cuts and geometry

acceptance (mentioned in section 4, Data selection and cuts) while the corresponding

Born kinematics (Q2,W 2, ...) being outside the HERMES acceptance.

Two sets of Monte Carlo files are used to extract the smearing matrices S. In

the first set, Born DIS events are generated in 4π without inclusion of any radiative

processes and detector simulation. This set is used to calculate the vectors nB
DIS(K0

s )(j).

The second Monte Carlo set includes all the effects mentioned above and is used to

extract the matrices nDIS(K0
s )(i, j). The DIS and charge kaons matrices nDIS(K0

s )(i, j)

obtained are ploted in Fig. 7.3

The unknown factor k(i) is extracted from Eq. 7.6:
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Figure 7.3: The smearing matrices of inclusive positron and K0
s which are used to

unfold the multiplicity for radiative effects.

k(i) =
XDIS(i)

L
∑nB

j=0 SDIS(i, j)BDIS(j)
(7.8)

and plugged into the experimental kaon yield:

XK0
s
(i) =

XDIS(i)
∑nB

j=0 SDIS(i, j)BDIS(j)∑nB

j=0 SDIS(i, j)BDIS(j)
(7.9)

It is evident that the term in the denominator is simply the number of the

experimental DIS events extracted from the Monte Carlo nX
DIS(i). By inverting

the matrix and rearranging terms in the above equation, the K0
s Born multiplicity

RB(j) = BDIS(j)/n
B
DIS(j) is obtained.

RB(j) =
1

nB
DIS(j)

nX∑
i=1

[S ′DIS]
−1(i, j)[RX(i)nX

DIS − nDIS(i, 0)] (7.10)

The error propagation through the smearing unfolding is accomplished via the

radiative dilution matrix D(j, i) defined by:

D(j, i) =
RB(j)

RX(i)
=

[S ′DIS]
−1(j, i)nX

DIS(i)

nB
DIS(j)

(7.11)
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and the error on the Born kaon multiplicity is

δ(RB(j)) =

nX∑
i=1

D2(j, i)(RX(i)) (7.12)

7.3 BORN multiplicity of K0
s

Fig. 7.4 shows the final K0
s multiplicity obtained after applying all the corrections

discussed above.
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Figure 7.4: The final K0
s BORN multiplicity distributions versus x including all

corrections.

In Eq. 7.4 the integral strange and non-strange fragmentation functions can be

extracted by fitting the x dependence of this ratio together with parton distributions

taken from the CTEQ6 compilation.
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7.4 Extraction of the integral strange and non-

strange K0
s fragmentation functions

In this section, the procedure used to extract the strange and the non strange kaon

fragmentation functions from HERMES data is presented. As mentioned before, the

relation between theK0
s multiplicity obtained in the last section and

∫
Dnon−strange(z)dz,∫

Dstrange(z)dz and the parton distribution functions is expressed by the following

equation:

dNK(x)/dx

dNDIS(x)/dx
=
Q(x)

∫
DK

non−strange(z)dz + S(x)
∫
DK

strange(z)dz

5Q(x) + 2S(x)
(7.13)

Where the expression of Q(x) ≡ u(x)+ ū(x)+ d(x)+ d̄(x) and S(x) ≡ s(x)+ s̄(x)

are given in section 7.1. In a matrix form, the above equation becomes:

~M = Q~D (7.14)

Where the vector ~M contains the K0
s multiplicities measured using 8 xBj bins.

The vector ~D holds the two unknown K0
s integral fragmentation functions and Q is

a 8 x 2 matrix holding the strange and the non-strange CTEQ6 parton distribution

function at the different 8 xBj bins:

Qij =


Q(xi) if j = 1

S(xi) if j = 2

(7.15)
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It is clear that we are dealing with an over determined system of equations since

the number of available equations exceeds by large the number of unknowns and a

solution to the problem is to find a ~D that minimises χ2:

χ2 = ( ~M −Q~D)T ( ~M −Q~D) (7.16)

The K0
s multiplicity obtained from these values combined with the CTEQ6 parton

distribution is shown in Fig. 7.5. The CTEQ6 is a well know parametrizations for

parton distribution functions, it assumes s = s̄ = 0.2(ū + d̄) [107]. A comparison of

fragmentation functions parametrizations from B. A. Kniehl, G. Kramer and B. Pötter

(KKP) [104] and HERMES data is shown in Tab. 7.1. There are three well known

groups [104, 105, 106] who are working on the parametrizations of fragmentation func-

tions by fitting the world available data. Only KKP gives the fragmentation functions

parametrizations for K0
s currently by assuming D

K0
s /K̄0

s
u,d,s,c,b,g(x,Q

2) = DK±

d,u,s,c,b,g(x,Q
2)

[104]. These results provide useful constraints on available parameterizations which

are based on e+e− collider data at much higher center-of-mass energies.

The fit in Fig. 7.5 is not perfect. The shape of the fit function, which is determined

by the functional form of the CTEQ6 parameterization is not quite able to reproduce

the experimental results. There might be several reasons for it:

• There may be remaining uncertainties in the experimental data due to possible

problems in the Monte Carlo simulation of the kaon distributions which were

used for the unfolding corrections of the multiplicities.

• The world fits of s(x) from CTEQ6 have remaining uncertainties and are possi-

bly biased by the functional form that was used in the fits. There are no precise

data that determine the shape of the unpolarised strange distribution functions

in our x and Q2 range.

• There are possibly limitations in the validity of the factorisation assumption

between the hard scattering and the fragmentation process which is required

for this analysis. However, from all studies which have been done, there is no

indication of a break-down of factorisation in our kinematical range.
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The results of the integrated fragmentation functions as shown in table 7.1 come

out very different than expected from the analysis of e+e− data by KKP. The very

small fragmentation function for the production of K0
s from unpolarised quarks and

the very large contribution from strange quarks is surprising, however these results

agree with a previously done similar analysis of charged kaons [102].

This work KKP∫
D

K0
s

non−strange(z)dz 0.16 ± 0.06 1.111∫
D

K0
s

strange(z)dz 3.2 ± 0.6 0.15

Table 7.1: The integral non-strange and strange fragmentation functions with statis-

tical errors which are extracted from HERMES polarised deuteron of 2000 data set.

And a comparison of fragmentation functions from KKP is also shown here.
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Figure 7.5: The final K0
s BORN multiplicity distributions versus x including all

corrections (blue triangle points). And the red line shows the fit results combined

with the leading order CTEQ6 parameterizations of parton distribution functions.

The fit results are shown in Tab. 7.1.





Chapter 8

Extraction of polarisation of

strange quarks with isoscalar

method

8.1 Isoscalar method formalism

Following the parton model as applied in [108] in leading order the semi-inclusive

longitudinal double spin asymmetry for production of hadron h can be written in

terms of the quark helicity distributions ∆q(x,Q2) and the fragmentation function

Dh
q (x,Q2) as

Ah
1(x,Q

2, z) =

∑
q e

2
q∆q(x,Q

2)Dh
q (z,Q2)∑

q′ e
2
q′q

′(x,Q2)Dh
q′(z,Q

2)
(8.1)

where Dh
q is a measure of the probability that a quark of flavour q will fragment into

a hadron of type h. Using the purity formalism Eq. 8.1 can be rewritten as

Ah
1(x,Q

2, z) =
∑

q

Ph
q (x,Q2, z)

∆q(x,Q2)

q(x,Q2)
(8.2)

where the purity is given by

101
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Ph
q (x,Q2, z) =

e2qq(x,Q
2)Dh

q (z,Q2)∑
q′ e

2
q′q

′(x,Q2)Dh
q′(z,Q

2)
(8.3)

This formalism can be applied to an analysis of the inclusive asymmetryA1,D(x,Q2)

and the isoscalar K0
s asymmetry A

K0
s

1,D(x,Q2) for an isoscalar deuteron target. One

assumes only charge conjugation invariance in the evaluation of the purities. The

result is a simple linear relationship between the two measured spin asymmetries and

the total non-strange and the total strange quark polarisations, [∆Q(x)/Q(x)] and

[∆S(x)/S(x)], which is given by the matrix equation

 Ae
1,d(x)

A
K0

s
1,d (x)

 = CR

 Pe
Q(x) Pe

S(x)

PK0
s

Q (x) PK0
s

S (x)


 ∆Q(x)/Q(x)

∆S(x)/S(x)

 (8.4)

Both Q(x) ≡ u(x) + ū(x) + d(x) + d̄(x) and S(x) ≡ s(x) + s̄(x) are isoscalar. The

inclusive purities given in terms of parton distributions have the simple form

Pe
Q(x) =

5Q(x)

5Q(x) + 2S(x)
, Pe

S(x) =
2S(x)

5Q(x) + 2S(x)
(8.5)

The purities for the K0
s asymmetries include factors given by the appropriate frag-

mentation functions integrated over the measured range of values of z = Eh/ν

PK0
s

Q (x) =
Q(x)

∫
D

K0
s

non−strange(z)dz

Q(x)
∫
D

K0
s

non−strange(z)dz + S(x)
∫
D

K0
s

strange(z)dz

PK0
s

S (x) =
S(x)

∫
D

K0
s

strange(z)dz

Q(x)
∫
D

K0
s

non−strange(z)dz + S(x)
∫
D

K0
s

strange(z)dz

(8.6)

The strange and non-strange fragmentation functions of Eq. 8.6 are simple func-

tions of the familiar fragmentation functions measured in collider experiments [105]:

∫
D

K0
s

non−strange(z)dz = 4

∫
D(z)K0

s
u dz +

∫
D(z)

K0
s

d dz∫
D

K0
s

strange(z)dz = 2

∫
D(z)K0

s
s dz

(8.7)

The factor CR ≡ (1 + R)/(1 + γ2) in Eq. 8.4 connects the usual compiled parton

distributions with those needed here to describe the longitudinal spin asymmetries.
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< x > < Q > PQ(x) PS(x) P
K0

s
Q P

K0
s

S

1 0.033 1.222 0.9750 0.0250 0.4341 0.5659

2 0.047 1.489 0.9751 0.0249 0.4344 0.5656

3 0.065 1.743 0.9770 0.0230 0.4544 0.5456

4 0.087 2.013 0.9798 0.0202 0.4875 0.5125

5 0.118 2.413 0.9834 0.0166 0.5381 0.4619

6 0.166 3.225 0.9880 0.0120 0.6169 0.3831

7 0.239 4.591 0.9993 0.0007 0.9640 0.0360

8 0.360 7.134 0.9997 0.0003 0.9848 0.0152

Table 8.1: The element value of Purity matrix P(x) calculated as a function of x

from both the parameterisation CTEQ6LO and the integral fragmentation functions

which are obtained from the fitting to HERMES K0
s multiplicities.

8.2 Extraction of ∆S(x)/S(x) and ∆Q(x)/Q(x)

Results obtained in the previous sections are used to extract (∆s(x)+∆s̄(x))/(s(x)+

s̄(x)) and ∆Q(x)/Q(x). These quantities are related to the measured inclusive asym-

metry A1,D(x) and to the K0
s asymmetries A

K0
s

1,D(x) through the purity matrix P(x)

in equation 8.4. The elements of the purity matrix P(x) are defined in equation 8.5

and 8.6. They are evaluated using the strange and the non-strange K0
s fragmentation

functions obtained in section 7.4 and using the CTEQ6LO quark distribution func-

tion. The definition of the CR factor is also given in section 8.1. The solution of the

system of equation 8.4 allows the determination of (∆s(x) + ∆s̄(x))/(∆s(x) + s̄(x))

and x(∆s(x) + ∆s̄(x)):

∆Q(x)

Q(x)
=

1

CR

PK0
s

S AD(x)− PSA
K0

s
D (x)

PK0
s

S PQ − PSPK0
s

Q

(8.8)

∆S(x)

S(x)
=

1

CR

PQA
K0

s
D (x)− PK0

s
Q AD(x)

PK0
s

S PQ − PSPK0
s

Q

(8.9)

The results are shown in Fig.8.1 and Fig.8.2
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Figure 8.1: The non-strange quark polarisations, ∆Q(x)/Q(x), is shown as a function

of x, as extracted from the HERMES inclusive and semi-inclusive asymmetries. The

error bars are the statistical uncertainties. The band represents the total systematic

uncertainty.
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Figure 8.2: The strange quark polarisations, ∆S(x)/S(x), is shown as a function of

x, as extracted from the HERMES inclusive and semi-inclusive asymmetries. The

error bars are the statistical uncertainties. The band represents the total systematic

uncertainty.
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8.3 The systematic errors

The systematic uncertainty of the strange and non-strange quark polarisation comes

mainly from three aspects. The first contribution, comes from the systematic uncer-

tainty of the spin asymmetries which is extracted from inclusive and semi-inclusive

data. The second part, comes from the systematic uncertainty from the determina-

tion of the fragmentation functions which are used to calculate the purity matrice P .

The third part, comes from the factor CR that connects the usual compiled parton

distributions which describes the longitudinal spin asymmetries.

The systematic uncertainty of the strange quarks polarisation are extracted in

complete analogy to the non-strange quarks polarisation.

Here, only the strange quarks polarisation systematic uncertainty formula will be

presented in detail.

8.3.1 The errors from asymmetries

There are several different systematic uncertainty is from the determination of the

inclusive asymmetries and semi-inclusive asymmetries that contribute to the total

systematic uncertainty of inclusive asymmetries and semi-inclusive asymmetries as

described in chapter 6.4:

• Target polarisation systematic uncertainty.

• Beam polarisation systematic uncertainty.

• The photon absorption cross section ratio parametrisation R(x,Q2) = σL/σT .

• Model of proton polarisation structure function g2(x,Q
2).

• Smearing and radiative corrections uncertainties.

The δA
K0

s
D (x) and δAD(x) systematic uncertainty from above systematic uncer-

tainty contribution will be propagated to the systematic uncertainty of the strange

quarks polarisation.



106
CHAPTER 8. EXTRACTION OF POLARISATION OF STRANGE QUARKS

WITH ISOSCALAR METHOD

The contribution to the total strange quarks polarisation systematic uncertainty

can be expressed as:

δ

[
∆S(x)

S(x)

]
A

=

√√√√(∂(∆S(x)/S(x))

∂A
K0

s
D (x)

δA
K0

s
D (x)

)2

+

(
∂(∆S(x)/S(x))

∂AD(x)
δAD(x)

)2

(8.10)

8.3.2 The errors from the purity P matrix

The systematic uncertainty associated to the determination of the fragmentation

functions which are used to calculate the purity matrix P can be writen as:

δ

[
∆S(x)

S(x)

]
P

=

√√√√(∂(∆S(x)/S(x))

∂PK0
s

Q (x)
δPK0

s
Q (x)

)2

+

(
∂(∆S(x)/S(x))

∂PK0
s

S (x)
δPK0

s
S (x)

)2

(8.11)

where the systematic uncertainty δPK0
s

Q (x) and δPK0
s

S are calculated from equation

8.6

8.3.3 The errors from factor CR(x,Q2)

The systematic uncertainty associated with the factor CR(x,Q2), which related to

the parametrisation of the photon absorption ration R(x,Q2):

δCR(x,Q2) =
1

1 + γ2
δR(x,Q2) (8.12)

the contribution to the total systematic uncertainty of the strange quarks polari-

sation from CR(x,Q2) is:

δ

[
∆S(x)

S(x)

]
CR

=

√(
∂(∆S(x)/S(x))

∂CR

δCR

)2

(8.13)
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8.3.4 The total errors

The total systematic uncertainty of the strange quarks polarisation is the quadratic

sum of the different partial systematic uncertainties discussed above.

δ

[
∆S(x)

S(x)

]
=

√√√√(δ [∆S(x)

S(x)

]
A

)2

+

(
δ

[
∆S(x)

S(x)

]
P

)2

+

(
δ

[
∆S(x)

S(x)

]
CR

)2

(8.14)

δ

[
∆Q(x)

Q(x)

]
=

√√√√(δ [∆Q(x)

Q(x)

]
A

)2

+

(
δ

[
∆Q(x)

Q(x)

]
P

)2

+

(
δ

[
∆Q(x)

Q(x)

]
CR

)2

(8.15)

The remaining uncertainties coming from uncertainties in the used Monte Carlo,

from the factorisation assumption and from uncertainties in the parton distributions

functions have not been included in this quantitative error estimate.
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Figure 8.3: The quark helicity distributions x · ∆Q(x) shown as a function of x.

The dashed line is the GRSV2000 parameterisation (LO, standard) [109] and dashed-

dotted line is AAC parameterisation (LO,2000) [110].The error bars are the statistical

uncertainties. The band represents the total systematic uncertainty.
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Figure 8.4: The quark helicity distributions x · ∆S(x) shown as a function of x.

The dashed line is the GRSV2000 parameterisation (LO, standard) [109] and dashed-

dotted line is AAC parameterisation (LO,2000) [110] .The error bars are the statistical

uncertainties. The band represents the total systematic uncertainty.
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8.4 First moment

The nth moment of the polarised parton distribution ∆qf (Q
2) is given by:

∆(n)qf (Q
2) =

∫ 1

0

dx · xn−1∆q(x,Q2) (8.16)

The first moment (n = 1) of the strange and non-strange polarised parton distribu-

tions, in the measured x-region (0.2 < x < 0.7), are obtained from the measurement

presented above by applying the following formula:

∆Q =

∫ 0.7

0.02

dx∆Q(x,Q2) =
∑

i

∆Q

Q
(xi)

∫ xi+1

xi

Q(x,Q2)dx (8.17)

∆S =

∫ 0.7

0.02

dx∆S(x,Q2) =
∑

i

∆S

S
(xi)

∫ xi+1

xi

S(x,Q2)dx (8.18)

where the strange and the non-strange quark polarisations were assumed to be con-

stant with each [xi, xi+1] bin and Q2-independent. The parametrisation of the un-

polarisaed quark distributions are taken from the CTEQ6LO at each Q2 and are

integrated over each [xi, xi+1] bin.

The first moment and their statistic errors and systematic uncertainties are given

in Tab. 8.2.

First moments statistic error systematic uncertainty

∆Q 0.371 ± 0.029 ± 0.013

∆S 0.010 ± 0.066 ± 0.004

Table 8.2: The first moment of the non-strange and the strange polarised quark

distributions in the range 0.2 < x < 0.7.
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A comparison with other analysis results is shown in Tab. 8.3. This work gives the

results from analysis of K0
s and the ”analysis 1” shows the results from the analysis

of charged kaons [102], both of them use ”isoscalar method”. The ”analysis 2” is the

results which are extracted with ”purity methods” [108].

This work Analysis 1 [102] Analysis 2 [108]

∆Q 0.371 ± 0.029 ± 0.013 0.286 ± 0.026 ± 0.011 0.319 ± 0.043 ± 0.052

∆S 0.010 ± 0.066 ± 0.004 0.006 ± 0.029 ± 0.007 0.028 ± 0.033 ± 0.009

Table 8.3: The first moment of the non-strange and the strange polarised quark

distributions. The errors shown in the table are statistic errors and systematic uncer-

tainties respectively. The Analysis 1 and Analysis 2 are the results from the methods

of isoscalar and purity used by HERMES collaboration.





Chapter 9

Conclusion

The study of the nucleon structure via inclusive deep-inelastic scattering has played

and still plays an important role in the establishment of the Quark-Parton Model in

the composition of hadrons and subsequently of QCD as the theory of strong interac-

tions. With polarised DIS the spin observables of the nucleon become accessible. A

unique insight into the nucleon spin structure is provided by the semi-inclusive DIS

process where both the scattered lepton and hadrons produced from the struck quark

are detected.

In this thesis, inclusive DIS lepton and semi-inclusive K0
s double-spin asymmetries

have been extracted from data collected by the HERMES experiment by using deep-

inelastic scattering of a longitudinally polarised positron beam of 27.5 GeV from a

longitudinal polarised deuteron gas target.

The same data set is used to extract two integral strange and non-strange fragmen-

tation functions of K0
s . These two values are used to determine a purity matrix which

in turn allows the direct extraction of the strange and non-strange quark polarisation.

The value of the strange quark polarisation ∆S = 0.010±0.066(stat)±0.004(syst)

is obtained.

The value is compatible to zero. Consequently, the conclusion is the strange

quark polarisation is compatible to zero within the experimental uncertainty over the

measured x kinematic range.

This result is in contrast to the result obtained by inclusive data and the assump-
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tion of the validity of SU(3) flavour symmetry, but it agrees with previous direct

measurements of HERMES from the analysis of semi-inclusive data. It confirms the

previous finding of a unpolarised strange sea in a statistically and systematically

independent way.
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thank the Europäisches Graduiertenkolleg for providing a lot of interest talks and

also providing me many chances to visit other institutes during the Ph.D. work.

Also I send my thanks to many other people, too numerous to mention, who

helped in their own little way throughout this work.

Last, but not least, I want to take this opportunity to thank my parents for

providing me a sustained understanding and encouragement. I am forever grateful

to my beloved wife Y. Han for her personal care and support. I sincerely appreciate

and thank her for her love and also delicious dinner everyday.



Bibliography

[1] B. W. Filippone and Xiang-Dong Ji. The spin structure of the nucleon.

Adv. Nucl. Phys. 26, 1 (2001).

[2] Murray Gell-Mann. A schematic model of baryons and mesons. Phys. Lett.

8, 214–215 (1964).

[3] G. Zweig. An su(3) model for strong interaction symmetry and its breaking.

In Lichtenberg, D. B. ( Ed.), Rosen, S. P. ( Ed.): Developments In The Quark

Theory Of Hadrons, Vol. 1, 22- 101 and CERN Geneva - TH. 401 (REC.JAN.

64) 24p.

[4] Richard P. Feynman. Very high-energy collisions of hadrons. Phys. Rev.

Lett. 23, 1415–1417 (1969).

[5] D. H. Perkins. Neutrino interactions. In Chicago 1972, Proceedings, High

Energy Physics Conference, Vol. 4, Batavia 1973, 189-247.

[6] J. J. Aubert et al.. A detailed study of the nucleon structure functions in

deep elastic muon scattering in iron. Nucl. Phys. B272, 158 (1986).

[7] D. J. Gross and Frank Wilczek. Asymptotically free gauge theories. 1.

Phys. Rev. D8, 3633–3652 (1973).

[8] H. David Politzer. Reliable perturbative results for strong interactions?

Phys. Rev. Lett. 30, 1346–1349 (1973).

[9] H. Fritzsch, Murray Gell-Mann, and H. Leutwyler. Advantages of

the color octet gluon picture. Phys. Lett. B47, 365–368 (1973).

117



118 BIBLIOGRAPHY

[10] Jerome I. Friedman and Henry W. Kendall. Deep inelastic electron

scattering. Ann. Rev. Nucl. Part. Sci. 22, 203–254 (1972).

[11] J. D. Bjorken. Asymptotic sum rules at infinite momentum. Phys. Rev. 179,

1547–1553 (1969).

[12] Jr. Callan, Curtis G. and David J. Gross. High-energy electroproduc-

tion and the constitution of the electric current. Phys. Rev. Lett. 22, 156–159

(1969).

[13] B. H. Wiik. First results from petra. In Bergen 1979, Proceedings, Neutrino

’79, Vol.1, 113- 154.(See Conference Index).

[14] M. J. Alguard et al.. Deep inelastic scattering of polarized electrons by

polarized protons. Phys. Rev. Lett. 37, 1261 (1976).

[15] M. J. Alguard et al.. Deep inelastic e p asymmetry measurements and

comparison with the bjorken sum rule and models of the proton spin structure.

Phys. Rev. Lett. 41, 70 (1978).

[16] Guenter Baum et al.. A new measurement of deep inelastic e p asymmetries.

Phys. Rev. Lett. 51, 1135 (1983).

[17] J. Ashman et al.. A measurement of the spin asymmetry and determination

of the structure function g1 in deep inelastic muon proton scattering. Phys.

Lett. B206, 364 (1988).

[18] P. L. Anthony et al.. Determination of the neutron spin structure function.

Phys. Rev. Lett. 71, 959–962 (1993).

[19] K. Abe et al.. Precision measurement of the proton spin structure function

g1(p). Phys. Rev. Lett. 74, 346–350 (1995).

[20] K. Abe et al.. Precision measurement of the deuteron spin structure function

g1(d). Phys. Rev. Lett. 75, 25–28 (1995).



BIBLIOGRAPHY 119

[21] K. Abe et al.. Precision determination of the neutron spin structure function

g1(n). Phys. Rev. Lett. 79, 26–30 (1997).

[22] K. Abe et al.. Measurement of the neutron spin structure function g2(n) and

asymmetry A2(n). Phys. Lett. B404, 377–382 (1997).

[23] P. L. Anthony et al.. Measurement of the deuteron spin structure function

g1(d)(x) for 1(GeV/c)2 < Q2 < 40(GeV/c)2. Phys. Lett. B463, 339–345 (1999).

[24] P. L. Anthony et al.. Measurement of the proton and deuteron spin struc-

ture functions g2 and asymmetry A(2). Phys. Lett. B458, 529–535 (1999).

[25] D. Adams et al.. Spin structure of the proton from polarized inclusive deep-

inelastic muon proton scattering. Phys. Rev. D56, 5330–5358 (1997).

[26] E. S. Ageev et al.. Measurement of the spin structure of the deuteron in

the dis region. Phys. Lett. B612, 154–164 (2005).

[27] R. G. Roberts. The structure of the proton: Deep inelastic scattering. Cam-

bridge, UK: Univ. Pr. (1990) 182 p. (Cambridge monographs on mathematical

physics).

[28] E. Leader. Spin in particle physics. Camb. Monogr. Part. Phys. Nucl. Phys.

Cosmol. 15, 1 (2001).

[29] E. Leader and E. Predazzi. An introduction to gauge theories and the

’new physics.’. Cambridge, Uk: Univ. Pr. ( 1982) 498p.

[30] M. Anselmino, A. Efremov, and E. Leader. The theory and phenomenol-

ogy of polarized deep inelastic scattering. Phys. Rept. 261, 1–124 (1995).

[31] David J. Griffiths. Introduction to elementary particles. NEW YORK,

USA: WILEY (1987) 392p.

[32] Vincenzo Barone, Alessandro Drago, and Philip G. Ratcliffe.

Transverse polarisation of quarks in hadrons. Phys. Rept. 359, 1–168 (2002).



120 BIBLIOGRAPHY

[33] M. Dueren. The HERMES experiment: From the design to the first results.

Hamburg DESY - Int.Rep.HERMES-95-02 (95/07,rec.Aug.) 234 p.

[34] S. D. Drell and J. D. Walecka. Electrodynamic processes with nuclear

targets. Ann. Phys. 28, 18–33 (1964).

[35] A. C. Benvenuti et al.. A high statistics measurement of the proton struc-

ture functions F2(x,Q
2) and r from deep inelastic muon scattering at high Q2.

Phys. Lett. B223, 485 (1989).

[36] M. R. Adams et al.. Proton and deuteron structure functions in muon

scattering at 470 GeV. Phys. Rev. D54, 3006–3056 (1996).

[37] M. Arneodo et al.. Measurement of the proton and deuteron structure

functions, F2(p) and F2(d), and of the ratio σ(L)/σ(T ). Nucl. Phys. B483,

3–43 (1997).

[38] L. W. Whitlow, E. M. Riordan, S. Dasu, Stephen Rock, and

A. Bodek. Precise measurements of the proton and deuteron structure func-

tions from a global analysis of the slac deep inelastic electron scattering cross-

sections. Phys. Lett. B282, 475–482 (1992).

[39] S. Chekanov et al.. Measurement of the neutral current cross section and

F2 structure function for deep inelastic e+ p scattering at hera. Eur. Phys. J.

C21, 443–471 (2001).

[40] C. Adloff et al.. Deep-inelastic inclusive e p scattering at low x and a

determination of alpha(s). Eur. Phys. J. C21, 33–61 (2001).

[41] W.-M. Yao et al.. Review of particle physics. Journal of Physics G 33, 1+

(2006).

[42] K. Abe et al.. Measurements of R = σ(L)/σ(T) for 0.03 < x < 0.1 and fit

to world data. Phys. Lett. B452, 194–200 (1999).



BIBLIOGRAPHY 121

[43] J. Ashman et al.. An investigation of the spin structure of the proton in

deep inelastic scattering of polarized muons on polarized protons. Nucl. Phys.

B328, 1 (1989).

[44] P. L. Anthony et al.. Deep inelastic scattering of polarized electrons by

polarized 3He and the study of the neutron spin structure. Phys. Rev. D54,

6620–6650 (1996).

[45] K. Abe et al.. Measurements of the proton and deuteron spin structure

functions g1 and g2. Phys. Rev. D58, 112003 (1998).

[46] B. Adeva et al.. A next-to-leading order qcd analysis of the spin structure

function g1. Phys. Rev. D58, 112002 (1998).

[47] A. Airapetian et al.. Measurement of the proton spin structure function

g1(p) with a pure hydrogen target. Phys. Lett. B442, 484–492 (1998).

[48] P. L. Anthony et al.. Measurements of the Q2 dependence of the proton

and neutron spin structure functions g1(p) and g1(n). Phys. Lett. B493, 19–28

(2000).

[49] K. Ackerstaff et al.. Measurement of the neutron spin structure function

g1(n) with a polarized 3He internal target. Phys. Lett. B404, 383–389 (1997).

[50] J. D. Bjorken and Emmanuel A. Paschos. Inelastic electron proton and

gamma proton scattering, and the structure of the nucleon. Phys. Rev. 185,

1975–1982 (1969).

[51] R. P. Feynman. Photon-hadron interactions. Reading 1972, 282p.

[52] G. Zweig. An SU(3) model for strong interaction symmetry and its breaking.

CERN-TH-412.

[53] M. Arneodo et al.. A reevaluation of the Gottfried sum. Phys. Rev. D50,

1–3 (1994).



122 BIBLIOGRAPHY

[54] Guido Altarelli and G. Parisi. Asymptotic freedom in parton language.

Nucl. Phys. B126, 298 (1977).

[55] Marc Virchaux and Alain Milsztajn. A measurement of alpha-s and

higher twists from a QCD analysis of high statistics F2 data on hydrogen and

deuterium targets. Phys. Lett. B274, 221–229 (1992).

[56] Michael E. Peskin and D. V. Schroeder. An introduction to quantum

field theory. Reading, USA: Addison-Wesley (1995) 842 p.

[57] Kenneth G. Wilson. Nonlagrangian models of current algebra. Phys. Rev.

179, 1499–1512 (1969).

[58] Wolfhart Zimmermann. Normal products and the short distance expansion

in the perturbation theory of renormalizable interactions. Ann. Phys. 77, 570–

601 (1973).

[59] Kurt Gottfried. Sum rule for high-energy electron - proton scattering. Phys.

Rev. Lett. 18, 1174 (1967).

[60] D. A. Ross and Christopher T. Sachrajda. Flavor symmetry breaking

in anti-quark distributions. Nucl. Phys. B149, 497 (1979).

[61] P. Amaudruz et al.. The Gottfried sum from the ratio F2(n)/F2(p). Phys.

Rev. Lett. 66, 2712–2715 (1991).

[62] S. A. Larin. The next-to-leading QCD approximation to the Ellis-Jaffe sum

rule. Phys. Lett. B334, 192–198 (1994).

[63] F. E. Close and R. G. Roberts. Consistent analysis of the spin content of

the nucleon. Phys. Lett. B316, 165–171 (1993).

[64] R. Michael Barnett et al.. Review of particle physics. particle data group.

Phys. Rev. D54, 1–720 (1996).

[65] Philip G. Ratcliffe. SU(3) breaking in hyperon beta decays: A prediction

for Ξ0 → Σ+eν̄. Phys. Rev. D59, 014038 (1999).



BIBLIOGRAPHY 123

[66] J. D. Bjorken. Applications of the chiral U(6)
⊗

U(6) algebra of current

densities. Phys. Rev. 148, 1467–1478 (1966).

[67] C. Caso et al.. Review of particle physics. Eur. Phys. J. C3, 1–794 (1998).

[68] John R. Ellis and Robert L. Jaffe. A sum rule for deep inelastic elec-

troproduction from polarized protons. Phys. Rev. D9, 1444 (1974).

[69] C. Adloff et al.. Measurement of event shape variables in deep inelastic e

p scattering. Phys. Lett. B406, 256–270 (1997).

[70] J. Breitweg et al.. Measurement of multiplicity and momentum spectra in

the current and target regions of the breit frame in deep inelastic scattering at

hera. Eur. Phys. J. C11, 251–270 (1999).

[71] B. R. Webber. Hadronization. (1994).

[72] Torbjorn Sjostrand. High-energy physics event generation with pythia 5.7

and jetset 7.4. Comput. Phys. Commun. 82, 74–90 (1994).

[73] Torbjorn Sjostrand et al.. High-energy-physics event generation with

pythia 6.1. Comput. Phys. Commun. 135, 238–259 (2001).

[74] Torbjorn Sjostrand, Stephen Mrenna, and Peter Skands. Pythia

6.4 physics and manual. JHEP 05, 026 (2006).

[75] Philipp Geiger. Measurement of fragmentation functions at HERMES.

DESY-HERMES-98-05.

[76] Hugh A. M. Tallini. A measurement of the quark spin distributions of the

nucleon at HERMES. DESY-HERMES-98-24.

[77] R. D. Field and R. P. Feynman. A parametrization of the properties of

quark jets. Nucl. Phys. B136, 1 (1978).

[78] Bo Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand. Par-

ton fragmentation and string dynamics. Phys. Rept. 97, 31 (1983).



124 BIBLIOGRAPHY

[79] K. Ackerstaff et al.. HERMES spectrometer. Nucl. Instrum. Meth. A417,

230–265 (1998).

[80] A. A. Sokolov and I. M. Ternov. On polarization and spin effects in the

theory of synchrotron radiation. Phys. Dokl. 8, 1203–1205 (1964).

[81] A. Airapetian et al.. The HERMES polarized hydrogen and deuterium gas

target in the hera electron storage ring. Nucl. Instrum. Meth. A540, 68–101

(2005).

[82] A. Nass et al.. The HERMES polarized atomic beam source. Nucl. Instrum.

Meth. A505, 633–644 (2003).

[83] J. T. Brack et al.. The HERMES forward tracking chambers: Construction,

operation, and aging effects. Nucl. Instrum. Meth. A469, 47–54 (2001).

[84] A. Andreev et al.. Multiwire proportional chambers in the HERMES ex-

periment. Nucl. Instrum. Meth. A465, 482–497 (2001).

[85] S. Bernreuther et al.. Design and performance of the large HERMES drift

chambers. Nucl. Instrum. Meth. A367, 96–99 (1995).

[86] S. Bernreuther et al.. The HERMES back drift chambers. Nucl. Instrum.

Meth. A416, 45–58 (1998).

[87] N. Akopov et al.. The HERMES dual-radiator ring imaging cerenkov de-

tector. Nucl. Instrum. Meth. A479, 511–530 (2002).

[88] W. R. Leo. Techniques for nuclear and particle physics experiments: A how

to approach. Berlin, Germany: Springer (1987) 368 p.

[89] A. T. Maas. Particle identification with rich detectors: Algorithms and their

optimization. a case study on the experiments ceres and HERMES. DESY-

THESIS-2000-051.

[90] H. Avakian et al.. Performance of the electromagnetic calorimeter of the

HERMES experiment. Nucl. Instrum. Meth. A417, 69–78 (1998).



BIBLIOGRAPHY 125

[91] T. Benisch et al.. The luminosity monitor of the HERMES experiment at

desy. Nucl. Instrum. Meth. A471, 314–324 (2001).

[92] Thomas Benisch. Polarized bhabha scattering and luminosity measurement

at the HERMES experiment. (in german). DESY-HERMES-98-45.

[93] C. Weiskopf. Untersuchung der bhabha-asymmetrien mit dem HERMES-

luminositaetsmonitor. DESY-HERMES-1998-042.

[94] U. Elschenbroich. Analysis of luminosity monitor data for different years.

page 13pp (2002). DESY-HERMES-02-013.

[95] U. Elschenbroich. Bhabha-streuung and luminositaetsmessung in

HERMES-experiment. (2001). DESY-HERMES-01-044.

[96] G. Schnell. Longitudinal polarization of the lambda in deep inelastic scat-

tering of polarized positrons from nucleons. DESY-HERMES-1999-037.

[97] F. Meißner et al.. Photoproduction trigger at HERMES. DESY-HERMES-

1996-026.

[98] F. Meißner. Measurement of the j/ψ cross section and double spin asym-

metries in vector meson production in polarized lepton-nucleon scattering at

HERMES. DESY-HERMES-2000-014.

[99] The HERMES target group. The polarization of HERMES target and its

error for the deuterium running in 2000. DESY-HERMES-2002-010.

[100] K. Hagiwara et al.. Review of particle physics. Phys. Rev. D66, 010001

(2002).

[101] Wolfgang Andreas Lachnit. The rear HERMES drift chambers and their

influence on systematic errors of asymmetry measurements. (in german). DESY-

HERMES-98-41.

[102] Ahmed El Alaoui. La contribution du quark étrange au spin du proton.
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