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Abstract

This work is dedicated to give a novel explanation for the large positive magnetoresistance

effect in the n-type dilute magnetic semiconductor zinc manganese selenide. This effect has

been observed in experiment in the hopping transport regime. The appearance of hopping

transport is a necessary requirement for this effect to occur, as is the presence and the

amount of magnetic atoms in the material. In literature, no conclusive explanation for this

large positive magnetoresistance effect is known. The nature of the hopping transport requires

a precise knowledge of the energetic position of each donor level, as an thermally activated

electron has to overcome the energy difference from one donor level to another. Another

aspect of the transport mechanism is that each donor-bound electron interacts only with

the manganese atoms in its vicinity. Therefore, our explanation is based on the statistical

distribution of magnetic atoms in the crystal. The random distribution of manganese leads

to fluctuations of the donor levels according to their local manganese contents. Due to the

bowing of the conduction band edge a donor level with a high local manganese content

has a low energy. The fluctuating donor levels are represented by their density of states.

This donor energy distribution is called impurity band and can be described by its width

and its shape. An external magnetic field leads to a downshift of the preferred spin state

of each donor, which is proportional to the Brillouin function and to its local manganese

content. The energetic position inside the impurity band at zero magnetic field and the

magnetic field induced energetic downshift, both depending on the local manganese content,

are relevant. For example, a donor level with a high local manganese content is low in energy

and experiences a large downshift in energy. The combination of these two aspects leads to

an increasing of the width of the impurity band, while its shape remains unaffected in a first

approximation. Using only basic hopping rates, this increasing impurity band-width results

in an increasing resistivity, i.e. a positive magnetoresistance. To quantify this process two

theoretical approaches are presented, i.e. a scaling approach and simulations of the effect.

1



2 CONTENTS



Zusammenfassung

Diese Arbeit ist dazu bestimmt, eine neue Erklärung für den großen positiven Magnetowider-

standseffekt im verdünnt magnetischen n-Typ Halbleiter Zinkmanganselenid zu liefern. Dieser

Effekt wurde im Experiment beobachtet, genauer im Regime des Hopping-Transports. Dabei

ist das Auftreten des Hopping-Transports eine notwendige Voraussetzung für diesen Effekt wie

auch die Anwesenheit und die Menge magnetischer Atome in dem Material. In der Literatur ist

keine schlüssige Erklärung für diesen großen positiven Magnetowiderstandseffekt bekannt. Die

Natur des Hopping- Transports verlangt eine präzise Kenntnis der energetischen Position eines

jeden Donatorniveaus, da ein thermisch aktiviertes Elektron die Energiedifferenz von einem

Donator zum nächsten überwinden muss. Ein weiterer Aspekt des Transportmechanismus

ist, dass jedes donatorgebundene Elektron nur mit den Manganatomen in seiner Umgebung

interagiert. Daher basiert unsere Erklärung auf der statistischen Verteilung der Manganatome

in dem Kristall. Die zufällige Verteilung von Mangan führt zu Fluktuationen der Donator-

niveaus entsprechend ihrer lokalen Mangankonzentrationen. Aufgrund des Durchbiegens der

Leitungsbandkante hat ein Donatorniveau mit hohem lokalem Mangangehalt eine niedrige

Energie. Die fluktuierenden Donatorniveaus sind durch ihre Zustandsdichte dargestellt. Diese

Verteilung der Donatorniveaus wird Störstellenband genannt und kann mittels ihrer Breite

und Form beschrieben werden. Ein externes magnetisches Feld führt zu einer Verschiebung

des bevorzugten Spinzustandes eines jeden Donators hin zu niedrigeren Energien, die pro-

portional zu der Brillouinfunktion und zu seinem lokalen Mangangehalt ist. Die energetische

Position innerhalb des Störstellenbandes ohne Magnetfeld und die magnetfeldinduzierte Ver-

schiebung, beide abhängig von dem lokalen Mangangehalt, sind relevant. Zum Beispiel besitzt

ein Donatorniveau mit einem hohen lokalen Mangangehalt eine niedrige Energie und erfährt

eine große Verschiebung. Die Kombination dieser beiden Aspekte führt zu einer Verbreiterung

des Störstellenbandes, während dessen Gestalt in erster Näherung unverändert bleibt. Nutzt

man nun ausschließlich grundsätzliche Hopping-Raten, so resultiert aus dieser Verbreiterung

des Störstellenbandes eine Zunahme des spezifischen elektrischen Widerstandes und damit ein

positiver Magnetowiderstand. Um diesen Prozess zu quantifizieren werden zwei theoretische

Ansätze vorgestellt, ein Skalierungsansatz und Simulationen des Effekts.
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Chapter 1

Introduction

The material studied in this work is n-type zinc manganese selenide. This material is a dilute

magnetic semiconductor due to the amount of manganese incorporated in the host material.

The host material is the classical II-VI semiconductor zinc selenide. Due to the choice of this

material two different fields are of importance, namely the physics of semiconductors and that

of magnetism. One example for this dualism is the following parameter pair, the carrier con-

centration and the manganese content. An advantage of the material zinc manganese selenide

is the independence of these two parameter. Furthermore high quality crystalline material

can be grown by molecular beam epitaxy as thin films. These circumstances make it an ideal

model system and testing ground to study the interplay of magnetic and semiconducting

properties.

The electrical characterization offers only an indirect access on a number of basic physical

properties. In other words one only measures the result not the origin. Therefore models are

needed to connect the measurements to the underlying processes and mechanisms. As the

main topic of this work is the explanation of the magnetoresistance effect in zinc manganese

selenide, this nature of the indirect connection is our main concern. Even the determination

of the transport mechanism belongs to this group of deduced information.

Zinc manganese selenide is used in model devices for spintronics such as spin-aligners, spin-

LEDs, spin-filters and spin-transistors. These components can be integrated in devices such as

spin computers or can be used for quantum cryptography. Also the design of spin superlattices

is possible. For details refer to section 2.1.3. All these devices use the magnetically enhanced

splitting mainly of the conduction band states which is of course relevant for our study as

well. As all of these functions are only accessible at liquid helium temperature and thus are

very costly not only in terms of money but also in terms of required laboratory equipment

and techniques, no commercial applications are currently envisioned.

For comparison another well-established system is given which uses a magnetoresistance effect

for magnetic field measurements. The most prominent application of this kind is the hard disc

drive. To read information from a hard disc a magnetic field sensor is needed. This sensor works

by the giant positive magnetoresistance effect, which converts the magnetic field direction

into an electrical signal. But this effect occurs only at specially designed interfaces and is

5
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many times larger than the one we discus in a bulk material without interfaces. Obviously this

effect is apparent at room temperature in contrast to our effect. This difference of room and

very low temperature arises from the ferromagnetic and paramagnetic behavior, respectively.

1.1 Motivation

The aim of this work is to motivate, to introduce and to quantify a novel explanation for the

large positive magnetoresistance effect in bulk n-type zinc manganese selenide. This has to

be done while taking into account the special role of the material being a dilute magnetic

semiconductor and thus its enhanced magnetic properties. We share the observation of this

effect with many other authors, cf. section 5.2. Until now no sufficient explanation for this

behavior has been given. Obviously the giant positive magnetoresistance effect occurring at

interfaces is ruled out as the origin. Another effect, namely the wave function shrinkage, is in

no known way able to reproduce the characteristic magnetic field dependence of the measured

curves. In the case of hopping transport via double occupation the shape could be explained

but the temperature dependence, i.e. the transport mechanism, rules out the importance of

this effect. Further information can be found in section 5.1.

We follow a different approach, namely a phenomenon correlated with the density of impurity

states. Until now this has only once been used to interpret the negative magnetoresistance in

general compound materials. We expand this concept to also explain positive magnetoresis-

tance effects. Starting point for our model is the random nature of the spatial distributions

of both manganese and donor atoms. In this point we follow the argumentation of Mycielski

et al. but we introduce a novel feature. We will show that the conduction band bowing, which

is enhanced in dilute magnetic semiconductor, is the main key to expand the argumentation

of Mycielski et al. to positive magnetoresistance effects. The external magnetic field leads not

only to a splitting of the density of impurity states following a Brillouin function behavior

but also to its broadening with a similar dependence. This increasing impurity band-width

leads to the observable large positive magnetoresistance effects.

Thus it is possible to consistently explain the uncommon behavior without needing collective

processes like hopping of bound magnetic polaron or a minority transport mechanism at very

low temperature like double occupation. A detailed discussion is given in section 5.1 and

especially in section 5.1.6.

With this work we provide additional arguments for Mycielski’s magnetoresistance explanation

based on disorder. That gives his concept a further confirmation against another possible

mechanism, namely the hopping of bound magnetic polarons.

This works is structured as follows. First the main underlying concepts and nomenclatures

will be given, with further background to the samples and measurement techniques used. The

transport mechanisms dominant at certain temperature intervals will be determined. The

discussion in the other chapters will be based on this knowledge. Main magnetoresistance

mechanisms known from literature will be presented and discussed. The characteristics of the

measurements will be presented and a fit function is applied on them. The novel model will be

presented in detail splitting at some point into two main theoretical approaches. After these
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considerations, experimental effects near the limits of the applicability of the model are shown.

Additionally measurements under hydrostatic pressure are presented and our argumentations

are applied to these magnetoresistance measurements.
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Zinc manganese selenide crystallizes like zinc selenide in the zincblende structure, cf. left hand

side of figure 2.1. This was verified by Agarwal et al. [3] as well as by Hetterich et al. [24] in

agreement with the previous work of Yoder-Short et al. [68]. Zinc manganese selenide belongs

to the class of so called dilute magnetic semiconductors (DMSs), which will be discussed in

detail in section 2.1.1.

In the literature there are various nomenclatures for zinc manganese selenide in use: mostly the

constitutional formula Zn1−xMnxSe, but also ZnMnSe, (Zn, Mn)Se and Zn(Mn)Se. General

n-type doping for example would be indicated as n-ZnMnSe. To indicate a special dopand,

for example chlorine, one may write ZnMnSe:Cl, beside just adding the prefix Cl-doped.

Agarwal et al. performed optical measurement on a sample with x = 13 % manganese content

and on a reference ZnSe-sample.[2] The authors showed that the effective mass in both

materials increases with increasing carrier concentration. Extrapolating this data to n = 0

they obtain a conduction band effective mass m∗ = (0.093 ± 0.08)me in zinc manganese

selenide, which is lower than the known values of the pure host material zinc selenide, where

m∗ = (0.135 ± 0.005)me[2] and references therein. Similar results are obtained by Hofmann

et al. [25], with a value of m∗ = (0.086 ± 0.004)me also for manganese content of x = 13 %.

According to ~k·~p theory a reduced effective mass may correlate with a reduced bandgap, which

supports the strong bowing, cf. figure 6.1, and thus the starting point of our explanation.

The influence on the relative permittivity of zinc manganese selenide is less pronounced:

εr,∞ = 6.2 ± 0.1 [25] and εr,∞ = 5.99 [2], respectively, in comparison with ǫ∞ = 6.11 [2] for

zinc selenide.

Both quantities, i.e. m∗ and εr,∞, have an influence on the donor in terms of binding energy

and effective Bohr radius, as will be discussed in section 3.1 in more detail.

The incorporation of manganese into n-type zinc selenide has some known effects on the

doping behavior. The main effect is the decreasing carrier concentration as the manganese

Figure 2.2: The carrier concentration n as a function of manganese content x from the

work of Daniel et al. [9]. The carrier concentration in zinc manganese selenide

shows roughly an exponential decrease as a function of the manganese con-

tent. The constant source temperature providing always the same nominal

concentration of chlorine, i.e. donor atoms, should result in a rather constant

carrier concentration. The origin of this discrepancy is unknown, but it could

be related to the chlorine incorporation as well as to carrier traps.
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content increases, while providing the same amount of donor atoms during growth and thus

keeping its nominal concentration constant. This has been shown by Daniel et al. and its

results are presented in figure 2.2.[9] There are two possible explanations. First, manganese

and chlorine in this quaternary compound are no longer on the same lattice sites as in the

ternary compounds, e.g. due to clustering of manganese and chlorine atoms or occupation of

interstitial sites. Second, due to the presence of higher order manganese states like pairs, triplet

and higher clusters electrons, contributing to the transport, could be trapped. In contrast

to the isolated manganese states, which are located above the conduction band edge, these

states extend below the conduction band edge. Daniel et al. suggest a related mechanism, in

detail that these defect complexes act as carrier traps for conduction electrons.[9] Related

to this a reduction of the maximal solubility of active donor atoms is observed, e.g. for

x = 13 % the dopability limit of the carrier concentration is just 1/5 of that in zinc selenide.

Additionally the growth rate is increasing in the presence of manganese atoms, which was

already considered in the discussion above.

The dependence of the direct energy band gap at the Γ-point, in the following referred to

as band gap, on manganese content x in zinc manganese selenide exhibits a special feature.

At low manganese contents it decreases with increasing x and before it starts to increase at

higher manganese contents. In other words as a function of x the band gap, which is expected

to increase linearly, shows a large bowing before it starts to tend towards a linearity. However

in contrast common band gap bowing due to alloy disorder with the strongest effect at about

x = 50 %, the bowing in zinc manganese selenide occurs only below 20 % of manganese. This

topic is again relevant in section 6.1. All the details, including a figure depicting this effect,

will be discussed there.

2.1.1 Dilute magnetic semiconductor (DMS)

Many properties of dilute magnetic semiconductors, also referred to as semimagnetic semicon-

ductors, exhibit a strong dependence on magnetic fields due to the incorporation of magnetic

ions into the host lattice. Such magnetic ions have a large number of unpaired localized

electron spins in their core shells, examples are Cr, Mn, Fe, Co, Ni, etc. The physics of dilute

magnetic semiconductors is somewhat a cross-discipline of the general field of semiconductors

and the field of magnetism. In semiconductor physics the one-electron approximation in a pe-

riodic crystal is mainly used. While in magnetism many-particle phenomenona are important

due to a variety of interactions. High quality growth of dilute magnetic semiconductor struc-

tures including low dimensional systems like quantum wells (QWs) and quantum dots (QDs)

have in conjunction with the strong spin dependence of the electronic properties resulted in

a new wave of activity in this field and made these materials applicable in modern devices.

A major advantage of the II-VI semiconductor zinc manganese selenide is based on its prop-

erty that the content of the Mn2+-cations xMn ≡ x and donor density Nd can be tuned

independently. Thus it is possible to adjust only the magnetic or only the electrical property

by varying the corresponding quantity. In practice there is an interdependence of n and x

that needs to be taken into account in order to compensate the effect depicted in figure 2.2.

In the dilute magnetic semiconductor gallium manganese arsenide (GaMnAs), for example,
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a homogeneous manganese distribution in space even on a microscopic level, in consequence

a regular arrangement. So one can easily average over all the manganese ions in the crystal

and look at only the mean value with no fluctuations. In chapter 6 we will come to the limits

of this concept.

The mean magnetization M of such a system can be well described by the Brillouin function

BJ(ξ),[23, 50]

M = N0 xeff g µB J BJ(ξ) . (2.1)

Here, xeff is the effective manganese content, N0 is the number of cations per unit volume

and J = 5/2 is the manganese spin. The Landé factor of the 3d electrons in zinc manganese

selenide is g = 2, and µB = 5, 788× 10−5 eV/T is the Bohr magneton. The Brillouin function

gives the measure of the spin polarization, i.e. the degree of manganese spins aligned to the

external magnetic field and is defined as

BJ(ξ) =
2 J + 1

2 J
coth

(

2 J + 1

2 J
ξ

)

− 1

2 J
coth

(

1

2 J
ξ

)

, (2.2)

where ξ is the ratio of the Zeeman energy of the magnetic moment in the external field to the

opposing energies. The energy of the thermal disorder kB T and that of the antiferromagnetic

interaction kB Θ oppose the paramagnetic ordering of the spins in a magnetic field. It is given

by

ξ =
g µB J B

kB (T + Θ)
, (2.3)
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Figure 2.4: The Brillouin function BJ(ξ) and the conduction band splitting ∆Ec as a

function of magnetic field at some exemplary temperatures for the paramag-

netic system zinc manganese selenide. The x-independent spin polarization,

i.e. the degree of spin alignment, BJ(ξ) shows its characteristic saturation,

which occurs at lower magnetic fields for lower temperatures. The conduction

band splitting ∆Ec is the energetic distance between the two spin states for

a given manganese content (2%). As in this case it is proportional to the

Brillouin function, just like the magnetization, all three of them exhibit the

same characteristics.
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where kB is the Boltzmann constant, T is the absolute temperature. The Curie-Weiss-like

temperature Θ is introduced just like xeff to account for residual antiferromagnetic coupling

between manganese neighbours.

A plot of the Brillouin function versus the external magnetic field according to equation (2.2),

is shown in figure 2.4 for various temperatures. The magnetization like the Brillouin func-

tion initially grows with increasing magnetic field, as the magnetic field tends to align the

manganese spins of the atoms. The magnetization saturates when the spins are aligned

along the field direction. On the other hand, increasing the temperature at a fixed magnetic

field decreases the magnetization, because thermal fluctuations reduce the manganese spin

alignment.

The Brillouin function also directly determines the conduction and the valence band splitting

of spin-up and spin-down states as a function of magnetic field and temperature. In a dilute

magnetic semiconductor this effect is called giant Zeeman splitting (GZS). In comparison the

Landau level splitting and normal Zeeman level splitting are negligible at low temperatures,

both effects are more than an order of magnitude smaller.

The giant Zeeman splitting occurs due to s,p-d exchange interaction between the extended

band states of the host material and the localized magnetic moments of the 3d-shells of the

magnetic impurities. The splitting occurs in the conduction band (s-d interaction) as well as

in the valence band (p-d interaction). However, as we are dealing with transport in a n-type

material, only the conduction band splitting ∆Ec, i.e. the energy difference between spin-up

and spin-down states presented in figure 2.6, due to s-d exchange interaction is of relevance

∆Ec = N0 αxeff 〈Jz〉 = N0 αxeff J BJ(ξ), (2.4)

where α and N0 α are the s-d exchange interaction parameter and energy, respectively, N0 is

again the density of cationic sites, and 〈Jz〉 = J BJ is the average spin of a manganese atom

in z-direction, i.e. the direction of the external magnetic field. In figure 2.5 one sees that the

conduction band splitting as well as the magnetization increases for increasing manganese

content x, e.g. for different samples.
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Figure 2.5: The conduction band splitting increases for a given temperature (1.6K) with

increasing manganese content according to equation (2.4) where the effective

manganese content is considered.
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The energy splitting is symmetric. The energy shift of each spin state relative to the energy

in zero field E0 therefore is ∆Ec/2. The splitting affects not only the extended conduction

band states but also the energy of the donor states, as every of these is a superposition of

conduction band states, cf. chapter 3. The magnetic field induced lifting of the degeneracy

of spin-up and spin-down states can be described as the shifts of two corresponding spin

sub-densities of states. Also these facts are schematically illustrated in figure 2.6.

Going beyond this ideal model there are a number of additional aspects which have to be

considered. A random distribution of manganese atoms in space throughout the crystalline

layer is assumed in concordance with theoretical simulations.[16] Statistics tells us that in

this case within specified volumes a certain degree of disorder arises. There will be regions

in the layer where the manganese amount will be higher or lower than average. This local

manganese distribution xeff(r) has not only consequences for the local magnetization and

conduction band splitting but also for the band gap and thus for the energetic position of

the conduction band edge. A detailed analysis of these consequences will be described in

chapter 6.

k(E)k(E)

EE

B

Ec

,
i

)E c

),
i

Figure 2.6: The giant Zeeman splitting leads in absolute energies to the depicted

schematic situation. The preferential spin orientation shifts to lower ener-

gies, while the opposite spin direction shifts to higher energies. This holds

for the conduction band states as well as for the donor states. The difference

between spin-up and spin-down states is the conduction band splitting ∆Ec.

That the density of impurity states does not change its shape, as shown here,

does not hold for zinc manganese selenide as will be presented in figure 6.3.
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2.1.3 Model devices for spintronics

2.1.3.1 Spin-aligner and spin-injector

A strength of zinc manganese selenide is its suitability to provide spin-polarized charge carriers

and to inject them electrically, i.e. voltage driven, into III-V optoelectronic devices at low

temperatures. The alternative is to induce spin polarization by optical means. This is of

course also quite easy but an additional optical pump device like a laser is needed. Thus

polarized light is produced via the optical selection rules for interband transitions yielding

a spin asymmetry of the electrons excited into the conduction band. Therefore the direct

way of electrically providing polarized electrons has a higher energy efficiency and eliminates

the necessity of optical devices. A different commonly used approach is to make use of a

ferromagnetic metal contact and then inject spin polarized electrons into a semiconductor.

Unfortunately this yields only a poor spin polarization, which is attributed to spin flipping

processes at the interface. Because of the reasons given below dilute magnetic semiconductors

are best suited for this purpose.

Zinc manganese selenide on gallium arsenide is a good material combination for various

reasons. First, due to the conduction band offset between ZnSe and GaAs of less than

100 meV, electrons may be injected close to the bottom of the conduction band of gallium

arsenide. Also it is possible to grow these two materials lattice matched on top of one another

with a small amount of beryllium on cation site of zinc selenide.[17] However, spin-injection

also works if there is a small lattice mismatch, i.e the growth is pseudomorphic.[31] So it seems

more important that both materials are semiconductors and that they posses a suitable band

alignment. If this requirement is fulfilled, there seems to occur no measurable spin flipping

at the interface. In addition the spin-dephasing time for electrons in gallium arsenide is long,

so that the preferential spin will have a long diffusion length, accordingly. For these reasons

light-emitting diodes (LEDs) or transistors can be provided with spin polarized carriers.

Speaking of the charge carriers, one should mention that the use of electrons for spintronic

application based on zincblende semiconductors is preferable to that of holes as the effects of

spin-orbit coupling are negligible and thus only two spin bands are present instead of four.

In literature heavily doped n-type zinc manganese selenide layers as well as lightly n-type

doped ones have been used successfully as spin-injectors, both providing spin-polarized charge

carriers.

Material combinations as described above may achieve spin injection efficiencies above 90 %

and near unity. This is evident in circular polarized electroluminescense of spin-LEDs, where

carriers are spin polarized by zinc manganese selenide and injected into the optical active

gallium arsenide.

The spin alignment itself is achieved in the dilute magnetic semiconductor by the giant Zeeman

splitting of the conduction band and impurity states and the redistribution of electrons into

the energetically favorable lower Zeeman level. This redistribution happens on a picosecond

time scale and thus only a thin layer of spin-aligner is needed. The polarization shows the

temperature and magnetic field dependence of the spin splitting according to the Brillouin

function. Unfortunately the saturation of the splitting at easy accessible fields and a low
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thermal disorder is only sufficient at very low temperatures. These circumstances reduce the

practical applicability. Nevertheless such devices are ideal model systems for studying spin

phenomena in semiconductors and provide essential knowledge for future applications.

Until an ideal system of a ferromagnetic semiconductor that is able to inject electrons into

electronics and can operate at room temperature is found, spin electronics remains mainly

an interesting research field with niche applications. Good overviews are given by Oestreich

[46] and by Heimbrodt and Klar [22].

2.1.3.2 Spin-LED

Asshoff et al. gave an example of a spin-LED in their work.[6] Löffler et al. alternatively used

quantum dots to achieve near unity polarization.[38] Oh et al. [47] as well as Kim et al. [33]

also reported near unity spin polarization for cadmium selenide (CdSe) quantum dots in a

zinc manganese selenide matrix.

2.1.3.3 Spin superlattice

Dai et al. showed that it is possible to create spin superlattices of ordered of spin-up and

spin-down states in a desirable design containing zinc manganese selenide.[8]

2.1.3.4 Spin filter

It is proposed that zinc manganese selenide can act as a spin filter. Therefore a layer structure

of ZnSe/ZnMnSe/ZnSe is suitable. In this system the ZnMnSe would be a barrier for one spin

orientation while it would be a well for the other orientation. Thus almost only the desired

spin would pass this structure and one can switch between the certain spin directions. This

concept was suggested and theoretically analyzed by Egues.[15] The experimental proof of

principle of this concept was given by Papp et al. [48] and by Guo et al. [20].

2.1.3.5 Spin-Transistor

A spin-transistor shows the same characteristics as a normal one, but the kind of binary

information is changed from the two states voltage and no-voltage to spin-up and spin-down.

So it would be controlled by the electron spin and is an essential spintronic device that can

be intergrated in spin quantum computers, cf. the work of Imamoglu et al. [27].

2.1.3.6 Quantum cryptography

A way to encode information in a transmitting processes is to use quantum cryptography.

By this pirated information would be useless, because only sender and the intended receiver

will have the original information. To produce such spin- or polarization-encoded information

spintronic devices are needed. A corresponding patent is to be found in the work of Jonker

et al. [31].
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2.1.3.7 Novel evolution

Recently with the works of Thurn et al. the focus has changed to the spin dynamic in such

systems, cf. [64], and the difference between averaging and randomly distributed system, cf.

[63], are of interest.

Also spin dependent transport in the variable range hopping regime is of interest.[55]



Chapter 3

Electronic Impurities

3.1 Shallow donor

In the zinc manganese selenide samples studied chlorine was used as n-type dopant, which

substitutes selenium in the host lattice. Only four of its five outer electrons are needed for the

bonding to the surrounding atoms in the crystal and thus it provides an additional electron.

This spare electron is just loosely bound to the donor atom. The density of chlorine atoms

also denoted as chlorine, donor or doping concentration will be indicated by NCl, while also

Nd or N0 are used in the literature. The donor has an ionization or binding energy Ed, also

ECl or E0, in ZnSe of about 26 meV.[1] This value is not the absolute energetic position

but the energetic distance to the conduction band edge. The absolute energy level is always

situated below the conduction band edge in the otherwise forbidden band gap. Therefore it

is also referred to as donor depth. As in zinc manganese selenide this energy is very small

compared to the band gap energy Eg, the wavefunction of a donor electron spreads out over

many cubic lattice constants. Thus the host lattice acts as an average background medium

only determined by its relative permittivity εr compared to vacuum. The situation can be

described by an effective medium approximation, where an electron is bound to a single

positive charge. As this situation is comparable to a hydrogen atom, such a shallow donor is

referred to as hydrogen-like. So the description of the hydrogen atom and the results of the

calculations are also applicable here with small variations. The static vacuum permittivity ε0

is replaced by the absolute permittivity of the crystal ε = εr ε0, and the free electron mass me

is replaced by the conduction band effective mass m∗. Consistently the Bohr radius a0 is

replaced by the effective Bohr radius aB. In semiconductors the Bohr radius is also referred

to as localization length, depending on the theoretical model used. Thus the absolute energy

of the ground state is Ec + En=1, where En=1 is given by

En=1 = −Ed = −Ry
m∗

ε2r me

(

= −Ry
a0

εr aB

)

, (3.1)

where Ry ≈ 13.6 eV is the Rydberg unit of energy, a0 ≈ 53 pm is the Bohr radius and aB is

the effective Bohr radius given by

aB =
εr me

m∗
a0 . (3.2)

19
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In contrast to the ionization energy Ed relative to the conduction band edge the absolute

energy position of the donor i is referred to as ǫi. The envelop function of the ground state

is given by

φ(r) ∝ 1
√

π a3B
exp

(

− r

aB

)

, (3.3)

where r is the radial distance to the specific donor.

3.2 Transport mechanisms

The electrons provided by donors can contribute in different ways to the electric transport

depending on the temperature range and the doping concentration, which yields different

transport mechanisms in an n-type material discussed in this section. One has to keep in

mind, that the transport mechanisms applicable in a certain temperature range are present

at all temperatures, but that a measurement is dominated by the one that yields the best

conductivity in this range. So to speak, these mechanisms correspond to a parallel connection

in an equivalent circuit diagram. In this context the temperature dependence of the electrical

resistivity ρ is given by

1

ρ(T )
=

1

ρ1(T )
+

1

ρ2(T )
+

1

ρ3(T )
(3.4)

⇔ ρ−1(T ) = ρ−1
1 exp

(

− ε1
kB T

)

+ ρ−1
2 exp

(

− ε2
kB T

)

+ ρ−1
3 exp

(

− ε3
kB T

)

, (3.5)

where kB is the Boltzmann constant, T is the absolute temperature, ρi are constants and

εi are activation energies. The first summand with ρ1 and ε1 belongs to the band transport
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Figure 3.1: Simulation of an Arrhenius plot with 3 different activation energies εi and

ρi. The nature of this being a parallel connection in an equivalent circuit

leads to the two resulting curves with and without ε2. Typically one conduc-

tion mechanism dominates in a certain temperature-interval, to be seen by

its characteristic slope being proportional to εi. Kinks indicate roughly the

transition from one to the other.
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described in the section below, the second summand with ρ2 and ε2 belongs to transport via

double occupation in section 3.2.2 and the third summand with ρ3 and ε3 belongs to the

hopping transport in section 3.2.3. Typical situations are illustrated in figure 3.1.

As doping of a semiconductor is a statistical process it yields a random distribution of donor

atoms in the host lattice. This will be of importance later.

In the following the transport mechanisms will be explained in order of decreasing temperature

and thus from wider known basics to more specialized cases. The figures shown as well as the

mechanisms themselves will sometimes anticipate knowledge that is presented in detail not

before the following chapters. So some aspects will be better understandable after reading

the whole transport mechanism chapter.

3.2.1 Band transport

Thermally activated transport in the conduction band, also referred to as phonon-assisted

band transport, describes the situation where at high temperatures the dominant transport

mechanism takes place in the conduction band of the n-type semiconductor.

k(E)
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|r |
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Ed

EF

g1

,i {

Figure 3.2: Depicted is the energy of the conduction band edge and of the donor states

as a function of the location along a percolation path (left). This is compared

with the density of states of the conduction band and of the donor states as

a function of energy, which is rotated for that reason (right). No schematic

bandstructure is shown. Electrons are thermally activated into the conduction

band, where they may provide a good electrical conductivity. The Fermi

level lies roughly in the middle between the energy of the conduction band

edge Ec and the average donor energy 〈ǫi〉, reflecting a situation with low

compensation and a high enough thermal energy. Thus the activation energy ε1

posses roughly half the value of the ionization energy Ed, i.e. the donor

depth. The presented band transport needs high enough temperature, i.e. the

thermal energy has to be comparable to the donor depth. As the conductivity

is determined by the activated electrons relative to the bound ones, this

temperature range is called freeze-out region.
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In this case high temperature means that the thermal energy kB T is comparable to the

activation energy εi and thus to the ionization energy of the donor Ed, so that a sufficient

number of donors are ionized, i.e. that their electrons are no longer bound to a chlorine atom

but act as delocalized charge carriers throughout the crystal. Only these carriers contribute to

this branch of conductivity as they move through the crystal and are scattered on their paths.

This situation is called diffusive transport and a schematic illustration is given in figure 3.2.

This circumstance gives rise to the measurable resistivity ρ, which can be analyzed in terms

of the free carrier concentration n and total carrier mobility µ = µtot. The basic dependence,

cf. equation (4.1), is given by

1

ρ
= σ = e nµ , (3.6)

In the following n will be called carrier concentration in accordance with the majority of the

literature, but one has to keep in mind that it indicates the 3D density of the free charge-

carriers. For a n-type semiconductor that are the electrons activated into the conduction

band. Other common notations for this quantity are ne or n0. For the mobility there is to

say that each effect like phonon scattering, scattering by ionized impurities, scattering by

isovalent impurities etc. gives its own temperature-dependent mobility limitation, together

they yield the total mobility of the charge carriers according to Matthiessen’s rule

1

µtot(T )
=

∑

i

1

µi(T )
, (3.7)

where i indicates the different possible scattering mechanisms mentioned above.

Using Maxwell-Boltzmann statistics and thus ignoring the Pauli exclusion, the temperature

dependence of the carrier concentration at low doping concentrations is mainly determined

by the following Boltzmann factor

n(T ) ∝ exp

(

EF − Ec

kB T

)

, (3.8)

where Ec is the energy of the conduction band edge and EF is the Fermi level. The difference

of these two energies is referred to as activation energy ε1 = Ec − EF. In the case of n-type

extrinsic band transport the Fermi level EF lies practically between the energetic position

of the donor level Ed and that of the conduction band edge Ec. The activation energy ε1

therefore resembles half the the ionization energy of the donor (ε1 ≈ Ed/2). Using the

antiproportionality of resistivity and carrier concentration cf. section 4.3, while neglecting

the weaker temperature dependence of the mobility, the resistivity contribution

ρ1(T ) = ρ1 exp

(

ε1
kB T

)

(3.9)

follows. This equation provides the first summand in the equations (3.4) and (3.5) resulting

from the above mentioned simplifications.

There is a rapid increase in resistivity with decreasing temperature due to the recapturing

of the carriers by the donor atoms according to equation (3.8). This is the reason why this

temperature range is also referred to as freeze-out region. The conduction in the impurity

band, which takes place at low temperatures can be very poor. In this case the sample shows

a high resistance and due to measuring device limitations no second and third summand in

the equations (3.4) and (3.5) is observable. This is equivalent to figure 3.1 consisting only of

the green ε1-curve.
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3.2.2 Double occupation

Conductivity via double occupation is an effect which may take place. If this is the case, it

takes place between the temperature ranges of dominating conduction band (ε1) transport

and dominating hopping transport (ε3). This fact explains the nomenclature of this as ε2-

conductivity. The main idea is that like in a hydrogen atom even two electrons can be bound

to one donor atom in the 1s ground state. Of course, this situation is not the energetic ground

state. Energy is needed to create such a double occupied and negatively charged donor. The

nature of the transport is a thermally activated tunneling of electrons from donor to donor,

a hopping transport process.

The amount of energy to put another electron to an already occupied donor is called Hubbard

energy U . This energy is provided by thermal activation and like before the activation

energy ε2 has approximately half its value ε2 ≈ U/2. If an electron has gained the energy U

and occupies such a state, the conductivity through the sample is very high compared to

classical hopping transport. This is a result of the energy level being higher in energy than

the ground state which is accompanied by a larger overlap of the donor wavefunctions in

the almost empty Hubbard band. This band also posseses a larger impurity band-width of

these exited states due to the larger spatial overlap of the corresponding states. The distinct

appearance of this mechanism strongly depends on the Hubbard energy in comparison to

the donor ionization energy. If these two energies are to close, meaning that the difference

between the absolute levels is comparable to the donor depth, this behavior is not observed.

According to Agrinskaya et al. [4] the connected argument is formulated, ε2-conductivity is
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Figure 3.3: In the presence of a Hubbard band the situation depicted in figure 3.2 is ex-

tended by the density of states of double occupied donor sites. If the Hubbard

energy U is small compared to the donor depth and if the thermal energy

is comparable to the activation energy ε2, this mechanism may yield a con-

tribution to the electron transport. The Fermi level then lies between the

distributions of single and double occupied states. The electron transport is

due to hopping from a single or double occupied donor site to an empty or

single occupied one.



24 CHAPTER 3. ELECTRONIC IMPURITIES

important when U is close to ε3, which is the case near the metal–insulator transition. And

like in the case of variable range hopping, cf. section 3.2.3.2, double occupation may not be

the origin of minor effects in the temperature dependence.

Double occupation has some consequences. For example a spin flip may be needed to fulfill

the Pauli principle. This is relevant at low temperatures as the conduction electrons in zinc

manganese selenide show a large spin polarization even at low external magnetic fields.

3.2.3 Hopping transport

As already mentioned this transport in the impurity band must not significantly contribute to

the electrical conductivity. The criterion for this to occur is the concentration of donor atoms,

in our case NCl, to be above a certain magnitude. Below it the wave functions of different

donor atoms would be very far apart and thus be isolated, i.e. they have no significant overlap

and cannot secure carrier propagation throughout the crystal.

Only above this concentration of donor atoms, also depending on the measurement equipment,

hopping transport can be observed.1 This means electrons move through the crystal by a

multitude of hopping events each from one donor site to the next possible donor site. So the

macroscopic conduction effect is only recognizable, if percolation paths extend through the

entire sample. An example is given in figure 3.4. As this form of transport is different from

the classical picture of a free electron gas, also the interpretation of the Hall-measurements

in terms of deducing quantities n and µ fails. This is in contrast to the cases of band and

metallic-like transport, where this interpretation of measurements in terms of n and µ is

applicable.

1Only samples, which show conduction inside the impurity band, are presented in this work.
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Figure 3.4: In hopping transport charge carriers move along so called percolation paths.

To ilustrate this, a simulated 2D random pattern of donor sites with some

resulting percolation paths though it is shown. One can see that there are

not only isolated paths from the left edge to the right one, but that there are

connections between paths, parallel segments as well as dead ends.
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The impurity band, where hopping transport takes place, is not an actual band, like the

conduction or valence band that are the consequence of a periodically ordered crystal. But it

denotes the density of states (DOS) of all impurity levels {ǫi}, which consists of the energetic

position of randomly distributed interacting donor atoms. The energy spread of the impurity

band due to level repulsion of the donor energies is very small at low concentrations as every

level does not interact with its neighbors and thus is supposed to have the same donor depth.

The impurity band becomes wider the more donor atoms are present. This is due to level

repulsion as the donor wave functions begin to overlap although we do not have exactly the

same situation as for band-formation out of atomic states in a periodic crystal. Furthermore

in ternary systems there is also an initial width of the impurity band {ǫi, 0} resulting from

slightly different energetic positions of the conduction band edge due to chemical shifts, i.e.

local variations in the stoichiometry, cf. section 6.1.

Hopping itself is a combined process of thermal activation to gain energy and a tunnel-

probability to travel a distance through a barrier. Thermal activation means to absorb a

phonon of the amount of energy that is needed to fulfill energy conservation. Miller and

Abrahams described the hopping rate exhibiting both contributions for a single hopping

event from one site to another by [5, 41]

Γi,i′ = ν0 exp

(

−2
ri,i′

aB

)







exp
(

−∆ǫi,i′

kB T

)

when ∆ǫi,i′ > 0

1 when ∆ǫi,i′ ≤ 0
, (3.10)
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Figure 3.5: The complexity and interconnection of percolation paths, cf. figure 3.4, has

to be abandoned to illustrate the following point. Along a simplified 1D

percolation path every donor can be described by the distance to its neighbors

and its energy. Not only the sites are randomly located, which leads to random

distances ri,i′ , but also every donor energy ǫi has a random value inside

the density of states ̺(E) (right) leading to random energy distances ∆ǫi,i′ .

Hopping transport occurs only alongside a multitude of such paths where

for the time being an electron can only hop to its direct neighbors. So the

conductivity is mainly determined by the limiting steps, the highest ∆ǫi,i′

and largest ri,i′ .
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where ν0 is the attempt-to-escape frequency. The hopping rate Γi,i′ from a site i to a site i′

depends exponentially on the distance ri,i′ = |ri′ − ri| between them and on the difference of

their energies ∆ǫi,i′ , which is given by

∆ǫi,i′ = ǫi′ − ǫi − eE · (ri′ − ri) , (3.11)

where E denotes the external electric field and ri and ǫi are the position and energy of donor

site i, respectively. The hopping rates apply for every individual hopping event contributing

to the electric current. This scenario is depicted in figure 3.5.

A few implications of equation (3.10) should be pointed out. The exponential dependence

on the distance between two sites results from the exponential term in the envelop function

in equation (3.3) and the corresponding dependence of the overlap between two donor wave-

functions. For hopping to occur there have to be vacant donor sites as well as occupied ones.

Otherwise with all the states occupied an electron would be unable to move to another site

and thus to move at all. To provide empty sites partial compensation is needed. The degree

of compensation is denoted by K. As the resistivity ρ is determined by the hopping rates Γi,i′

both depend on ν0, aB, NCl (and consequently also on the position of every single donor

atom ri), K, the donor density of states {ǫi(B, T )} and T . All of the parameters are constant

for a given sample, except for the last two as we will see in the following.

Correlation between hopping sites may also affect hopping transport. In this context corre-

lation means that two neighboring hopping sites share a certain part of their environment.

In our case the characterizing element will be the manganese atoms in the direct vicinity.

So every pair of donor atoms shares the manganese atoms between them. So the number of

manganese atoms near each single donor is not totally random, but somewhat correlated. In
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Figure 3.6: Hopping transport takes place only inside the impurity band along percolation

paths, cf. figures 3.4 and 3.5. The density of states of the impurity band results

from the random donor energies. In the case of a half filled impurity band,

i.e. a degree of compensation of 0.5, the Fermi level lies in the middle of its

density of states. The thermal energy has to be comparable to ε3 and thus

to the limiting steps. The width of the impurity band relative to the donor

depth is depicted larger than it usually is for presentation reasons.
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our case the result is that the absolute donor energy levels are no longer entirely statistical dis-

tributed but depend on one another. This correlation is of course strongest, if the two donors

are close in space in terms of the Bohr radius, and the correlation decreases with increasing

distance between donors. As in hopping transport the limiting steps are those between rather

distant distinct donors that still contribute to a percolation path, their correlation will be

small.

3.2.3.1 Nearest neighbor hopping (NNH)

The following describes the case of the so called nearest neighbor hopping. Meaning that

the temperature is high enough to activate an electron from its donor to the nearest donor,

which therefore has to be empty. The probability for this activation is not limited by the

energy position of the empty donor. Thus the majority of the hopping events occurs, as the

name says, between donors closest to one another. Like for the former mechanisms hopping

transport is depicted schematically in figure 3.6

Like in the band transport regime, a Boltzmann factor is prominent in the formula for hopping

transport, meaning that we have thermally activated transport again.

ρ3(T ) = ρ3 exp

(

ε3
kB T

)

, (3.12)

where the activation energy ε3 is comparable to the limiting ∆ǫi,i′ .

The Fermi-Dirac distribution on the left of figure 3.7 holds for the occupation of these

states. The Fermi level EF lies inside the impurity band itself between the occupied and
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Figure 3.7: left: The Fermi-Dirac distribution for different temperatures gives the prob-

ability p to find a Fermion, e.g. an electron, at a certain energy E. The

distribution is symmetric around the Fermi level EF. Applying this on a den-

sity of impurity states with K = 0.5 yields the thermal occupation inside the

impurity band. For low temperatures, i.e. low thermal energy kT = kB T , the

Fermi edge becomes clearer. For lower or higher degrees of compensation K

the Fermi level changes inside the impurity band.
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the unoccupied impurity states. The occupation itself is determined by the density of states

̺(E), the Fermi-Dirac distribution, the compensation and the temperature as illustrated in

figure 3.7.

3.2.3.2 Variable range hopping

At very low temperatures the character of the hopping mechanism may change from nearest

neighbor hopping to variable range hopping. In this case the thermal energy needs to be

considerably smaller than the impurity band-width. Basis is that the hopping rates are high

for a 4-dimensional closeness of the donor sites involved, i.e. close in energy ǫi ≈ ǫi′ and close

in space xi ≈ xi′ , yi ≈ yi′ and zi ≈ zi′ . This closeness can be reduced to a 2-dimensional one

by reducing the 3 spacial coordinates to 1, the distance ri,i′ = |ri′ − ri|. The other dimension

left stays just like it is, the energy difference ∆ǫi,i′ . So for hopping to be likely a closeness

in space and energy is needed. If the temperature and thus the thermal energy for a phonon

assisted hop is very low, not all the donor energies are accessible. In this situation the nearest

neighbor donor may have a energy which is to high and in total the next nearest neighbor

is preferred due to its closeness in energy despite the longer distance. In other words, the

next nearest neighbor is closer in the above mentioned 4-dimensions. Because of this fact the

name variable range hopping has been established.

The temperature dependence of the resistivity is theoretically predicted to follow

ρ(T ) = ρ0 exp

[(

T0

T

)a]

, (3.13)

where in three dimensions a = 1/4 for the Mott type and a = 1/2 for the Efros-Shklovskii

type. They differ in the assumption about the density of states near the Fermi level. Mott

assumed the density of states to be constant and T0 ∝ 1/̺(E). In the Efros-Shklovskii type

on the other hand it is assumed that the density of states vanishes at the Fermi level which

equals a soft Coulomb gap. Also intermediate cases are proposed. The Coulomb gap classically

results from electron-electron interaction, i.e. level repulsion, but also a polaron shift may be

its origin.

According to Michel et al. a broad distribution as well as a band tail would yield to a

non-Arrhenius temperature dependence of the resistivity.[40] This could easily be misinter-

preted as variable range hopping. A similar result for a different situation was presented by

Shchamkhalova and Tkach who calculated a non-Arrhenius temperature dependence in the

case of low compensations.[53] Before judging the type of hopping conduction one should

consider the ratio of thermal energy to impurity band-width.

3.2.4 Metallic transport

Like in the case of hopping transport the donor concentration plays a critical role for entering

the regime of so called metal-like transport in the impurity band. This threshold was first

described by Mott and is called metal–insulator transition (MIT). The Mott criterion is given

by [12, 59]

N
1/3
crit. aB ≈ 0.25 , (3.14)
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where Nc is the critical donor concentration or Mott concentration.

At this critical donor concentration Nc a transition occurs which distinguishes the two trans-

port mechanisms. With increasing donor concentration Nd transport turns at Nc from a

thermally activated one to a degenerate one. The overlap of the donor wave functions be-

comes so large that they not only undergo a level repulsion and the impurity band broadens,

they also form a degenerate band which may even overlap with the extended conduction band

states. Thus carriers are no longer bound to specific donor atoms but are delocalized over a

large number of donors. The Fermi level lies inside the impurity band. These two facts bring

up the similarity to the electrical conduction in metals, which is why it is called metal-like

transport regime. Section 3.2 still holds for this transport regime. As the delocalization is

represented in form of the activation energy ε3, it becomes equal to zero in this case. The

vanishing of ε3 can be observed experimentally at the metal–insulator transition. Therefore

equation (3.12) becomes temperature independent and the third summand in section 3.2 is

reduced to a constant. Due to the local disorder of donor atoms, i.e. the randomness of donor

sites, the metal–insulator transition is a percolation threshold. This means, that it is the limit

between non-existence and existence of paths throughout the sample fulfilling the condition

of overlapping donor sites each contributing to delocalization.

Still the conduction of this band itself is poor compared to the conduction band, but as the

latter freezes out which the metal-like does not, it dominates at low temperatures.

3.3 Experimental transport mechanisms

The temperature dependence of the magnetoresistance of all samples, cf. table A.1, is depicted

in form of Arrhenius plots in figure 3.8. The ordering of the hopping samples is done according

to their increasing manganese content x (samples a, b and c). The ordering of the high

manganese content samples (numbers 1–6 with x ≈ 6 %) is done according to their increasing

carrier concentration at room temperature and thereby roughly by their resistivity. As one

can see all curves can be divided into two general groups. The origin of this difference and

separation is the metal–insulator transition and the samples 3–6 exhibit metallic transport.

Both groups exhibit activated band transport in the high temperature regime. The influence

of this mechanism on the overall conduction decreases with increasing carrier concentration

as the competing impurity band transport becomes more and more dominant.

The samples with high carrier concentrations have constant resistivities below a certain

threshold temperature. These samples show metallic conduction which is explained in detail

in section 3.2.4. At low enough temperatures this conduction mechanism is dominant. The

impurity band is degenerate meaning that the electrons are not bound to their donor atoms

but delocalized over a large number of donors. Thus they do not need to be activated by

temperature in any form to contribute to the electric transport. This point is important

because this behavior is accompanied by the fact that the contribution of these electrons to

the transport is no longer sensitive to the shape of the impurity band.

For the samples with low carrier concentration a thermal activation clearly can be seen at low
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temperatures, which is one possible evidence for hopping transport according to section 3.2.3.

Thereby the impurity band and more precisely its actual shape has a significant influence

on the transport behavior of these samples. This is the reason why only samples which show

hopping transport exhibit such a strong magnetic field dependence in this temperature range.

Throughout this work the nearest neighbor hopping (NNH or also called Miller-Abrahams

hopping) yielded the best description of the data, though for very low temperatures the

different types of variable range hopping (VRH) cannot be excluded entirely, as temperatures

below 1.5 K could not be accessed with the present setup. In the temperature range between

activated band transport and hopping transport there sometimes seems to exist another

mechanism. This could be either the ε2-conductivity or a non-Arrhenius behavior due to its

impurity band shape according to Michel et al. [40].

Another observation worth mentioning is the fact that the slope, which corresponds to the

activation energy ε3, is increasing with increasing manganese content. Again this indicates

the dependence of the resistivity not only on the presence of manganese but also on its actual

content x.
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Figure 3.8: Temperature dependence of the resistivity for all samples in form of an Ar-

rhenius plot. The separation into two groups can clearly be seen, the samples

which show hopping transport and those showing metallic conduction, re-

spectively. The threshold between these two conduction mechanisms is the

metal–insulator transition, which occurs around n ≈ 1× 1018 cm−3. At high

temperatures the activated conduction band transport is apparent. For some

hopping samples an ε2-conductivity seems possible at an intermediate tem-

perature range. For increasing manganese contents the activation energy ε3

tends to increase.
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Experimental Setup

4.1 Sample growth and sample parameters

The chlorine-doped zinc manganese selenide samples in this work were bulk-like epitaxial layers.

They were grown by molecular beam epitaxy (MBE) on semi-insulating (001) gallium arsenide

(GaAs) substrates by the group of M. Hetterich at the Karlsruhe Institute of Technology

(KIT). Elemental zinc, selenium and manganese were used as sources for the growth of the

zinc manganese selenide. A zinc dichloride (ZnCl2) compound was used as a precursor for

the n-type doping of the samples. All these sources were provided by thermal effusion cells.

Before growth the substrates were cleaned in two steps. First they were treated by a wet

chemical etching process and then transferred to the growth chamber. There their surfaces

were deoxidated at a temperature of 580 ◦C for 4.5 minutes.

During the growth under selenium rich conditions the substrate temperature was fixed at

280 ◦C. Optimized growth parameters for doped zinc selenide were adapted for the zinc

manganese selenide. The beam equivalent pressures of manganese and chlorine sources were

varied to adjust the desired concentrations while the partial pressures of zinc and selenium

were kept constant. For example the temperature of the zinc chloride compound source was

varied between 180 ◦C and 240 ◦C, which led to low or high doping concentrations, respectively.

The thickness d of the layers varies between 880 and 1050 nm, which was determined optically.

The accurate determination of the manganese content x in each sample was done by two

independent methods: energy dispersive x-ray analysis (EDX) and x-ray diffraction (XRD).

The results from these methods were in good agreement and define the uncertainty of every

value for the manganese content x, which is about 1 %. Besides the above mentioned quanti-

ties, the growers determined the free carrier concentration n and mobility µ, for each sample

by room temperature Hall and conductivity measurements in van der Pauw configuration in

a magnetic field of 0.9 T. Cloverleaf shaped structures were fabricated out of the epitaxial

films by lithographic microstructuring and etching. Indium dots on the edges of the clover-

leaf structures were exposed to an annealing process at a temperature of about 190 ◦C for

4.5 minutes and afterwards contacted using gold wires. For even more detailed information

and further reading concerning the growth and the parameter determination see the work
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of Daniel et al. [9]. The corresponding parameters of the samples studied can be found in

table A.1 of appendix A.

4.2 Preparation, geometry, setup and measurements

The measurements of the samples were performed in van der Pauw geometry. This method

requires four contacts which have to be placed at the edge of an arbitrarily shaped sample.

The layer thickness has to be constant and the material has to be homogeneous in terms of a

locally constant resistivity. Furthermore the layer must be one area without any openings. In

order to achieve low uncertainties the contacts should be small compared to the length scale

of the sample and the distances between the contacts.

The measured samples were rectangular pieces cleaved out of wafers. Typical sizes were

5× 5 mm2. For incorporation into the pressure cell the samples had to be even smaller, about

3 × 3 mm2. Indium dots were put on the 4 corners of a sample. For metallization every

sample was tempered afterwards at 190 ◦C under a constant flow of argon gas as a protective

atmosphere. The tempering was performed for a period of 40 minutes, followed by a certain

time still under argon flow until the temperature was reduced to about 60 ◦C. Fine copper

wires were contacted to the indium dots using a soldering iron.

The measurements were performed in an automated mode by a computer program. The

software program was written in LabVIEW by a former member of staff. There are two basic

modes of measurement, one at constant magnetic field and a stepwise changing of temperature

and the other at a constant temperature where the magnetic field was varied. To control the

magnetic field and the temperature the program uses a magnet power supply MPS120 and

temperature control unit ITC4 both from Oxford Instruments. The cryostat itself is a system

from Oxford Instruments, a super-isolated vacuum shielded dewar with a superconducting

magnet coil able to generate magnetic field strengths up to 10 T. The coil is cooled by liquid

helium to be in a superconducting state. The liquid helium is also used for cooling the sample

which is in direct contact with the cold gas. The gas flow is provided by a vacuum pump

and regulated by the admittance through a needle valve. In this setup sample temperatures

as low as 1.6 K may be achieved. For higher temperatures, the temperature control provides

heat by warming the helium gas to a desired value. As the regulation of the temperature

occurs directly at the inlet of the helium gas and the sample temperature may be slightly

different especially when adjusting a new setpoint, an additional sensor is used to monitor

the accurate sample temperature. Also the sensitivity of this sensor is much higher.

Van der Pauw measurements allow one to obtain the resistivity and the Hall-resistance (in

case of diffusive transport the carrier concentration and the carrier mobility) by using only

four contacts. In order to switch between the different contact configurations for current

and voltage measurements required to extract resistivity and Hall-resistance a switch card is

employed, in this setup a Keithley Switch System 7001. The two electrical devices needed for a

measurement are a Keithley programmable current source 220 and a Keithley nanovoltmeter

2182. To gain even higher accuracy especially for low conducting samples the current is

measured separately using a Keithley picoammeter 6485. To rule out thermal voltage effects
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which can lead to errors in the measurement and to provide a higher accuracy both current

directions are used as well as positive and negative magnetic field orientations. For each data

point the measurement was performed several times and an average value was calculated.

The van der Pauw method defines how the resistivity is calculated from the basic current

and voltage measurements for given contact configurations. The only additional parameter

needed is the thickness of the layer. In the other van der Pauw contact configurations making

use of the Hall effect the Hall-resistance is determined. In case of diffusive transport the

Hall-resistance allows a determination of the carrier concentration and the knowledge of both

quantities leads to the carrier mobility.

4.3 Physical quantities

The physical quantities that we determine are the electrical resistivity ρ, i.e. the inverse value

the electrical conductivity σ = σe. This is possible because our samples can be described as

classical 3D-volume crystals with high impurity densities so that they obey Ohm’s law. In

the more specific case of an electron gas, it is possible to assign the conductivity to the two

quantities carrier concentration n and mobility µ in the following form:

σe = 1/ρ = e nµ . (4.1)

We are interested in their dependence on temperature T , magnetic field B and pressure p.

The temperature dependence of the resistivity for instance yields the activation energies. Its

magnetic field dependence results in the so called magnetoresistivity ρ(B). Often just the rela-

tive value compared to zero field one is considered, which is called relative magnetoresistance

often abbreviated as MR or R and given by

R =
ρ(B) − ρ(0)

ρ(0)
=

∆ρ

ρ(0)
=

ρ(B)

ρ(0)
− 1 =

R(B)

R(0)
− 1 . (4.2)

Due to the linearity between resistance R and resistivity ρ the relative magnetoresistance is

the same for both quantities.
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Chapter 5

Magnetotransport

5.1 Magnetoresistance mechanisms

Only magnetoresistance mechanisms that occur in homogeneous materials in the regime of

hopping transport are presented in this chapter. Other effects that are apparent at interfaces

or in the regime of metal like impurity band or conduction band transport are not specified.

5.1.1 Wave function shrinkage

A well known magnetoresistance effect is based on the magnetic-field induced wave function

shrinkage. The shrinkage was first described by Yafet et al. [67]. According to their theoretical

description the magnetic field leads to a spatial distortion of the electron wave function of

a hydrogen-like shallow donor. To be precise the wave function shrinks in all directions

but by a different amount, i.e. less shrinkage along the magnetic field direction and more

perpendicular to it. The wave function changes from the normal spherical shape to an elliptical

one.1 Suprapto and Butcher used this effect to explain the magnetoresistance behavior in

the variable range hopping regime.[60] They also observed that this leads to a magnetic field

dependence of the thermal activation energy, ε3(B). The theoretical calculations for this and

for nearest neighbor hopping can be found in the book by Shklovskii and Efros.[54] In high

fields these yield a linear dependence of T0 on external fields or a exponential magnetic field

dependence of ρ, respectively. As this effect is by the above description anisotropic this also

holds for the magnetoresistance in terms of perpendicular and parallel magnetoresistance

values. In detail this is hard to predict for a given sample as the current paths are random due

to the percolation nature of the hopping conductivity. Thus also the parallel magnetoresistance

may posses some perpendicular path sections and vice versa. But the general observation is

that the perpendicular magnetoresistance is always larger than the parallel one, just the ratio

may be different.

According to Kurobe also a negative magnetoresistance is possible in this picture due to the

inverse effect of wave function enlargement.[34] The author studied the Anderson localized

1The wave-function shrinkage is accompanied by a larger ionization energy of the donor.
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regime with variable range hopping and stated that an increase of the localization length

yields a negative magnetoresistance. This effect of positive and negative magnetoresistance

due to changes of the wave function is also reported by Finlayson et al. [18]. According to

Raikh et al. the low field magnetoresistance has a quadratic dependence on the magnetic

field.[51]

Related to the wave-function shrinkage it is possible to undergo a metal–insulator transition,

cf. to the work of Wojtowicz et al. [66]. This could occur when the carrier concentration

at zero ambient magnetic field is slightly larger than the Mott critical concentration. With

increasing external magnetic field the Mott critical density will increase as the Bohr radius is

reduced. This may result in a change of the conduction mechanism from metallic to thermally

activated and thus result in a huge positive magnetoresistance effect.

5.1.2 Impurity band related effects

Concerning the magnetoresistance there are two impurity band correlated effects known:

First, the direct influence of the impurity band-width on the magnetoresistance and, second,

the relative change of the Fermi level position inside the impurity band.

For the first one there is a very good description given by Raikh et al. [51]. The starting point

is the already known effect of magnetic field induced wave function shrinkage, cf. section 5.1.1.

Simultaneously with the shrinkage a reduction of the overlap of the donor wave functions

occurs. In binary semiconductor materials the impurity band-width results only from the

Coulomb level repulsion. If now the overlap decreases so does the Coulomb interaction. Thus

the donor levels approach each other yielding a reduced impurity band-width. The decreasing

impurity band-width is often connected with the fact that the density of states increases.

This band narrowing is also accompanied by an absolute shift of the Fermi level. At this

stage it is important to understand that the Fermi level shifts only in terms of its absolute

position, but that its relative position in the impurity band stays constant. For nearest

neighbor hopping the decreasing impurity band-width is important, because it means that

the average activation energy is reduced. This leads to a decreasing resistivity, i.e. a negative

magnetoresistance contribution. It is obvious that this effect is in direct opposition to the wave

function shrinkage, which yields a positive magnetoresistance. The authors showed that at

certain magnetic field ranges either one or the other of these two mechanisms is dominant. The

negative magnetoresistance determines the low field region while the positive one determines

the high field region. As the origin of this effect, i.e. the wave function shrinkage, is anisotropic

this also holds for these magnetoresistance mechanisms.

The second effect correlated with the impurity band is the relative change of the Fermi level

with respect to the density of states, which is theoretically described by Shchamkhalova

and Tkach.[53] The driving force of this mechanism is the normal Zeeman splitting of the

donor ground state, more precisely the splitting of the density of states for the two spin

directions. As one sees at this point only basic semiconductor materials are considered. Due

to the spitting a redistribution of the donor-bound electrons occurs. The analysis is done

for low levels of compensation. In this case the Fermi level is located in the high energy tail

of the donor density of states. If a magnetic field is applied Zeeman splitting occurs and
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the electrons will redistribute until the thermal equilibrium is reached. This yields a higher

number of electrons in the energetically favored spin-down states than in the spin-up states.

This difference from the former equal occupation has the consequence of the Fermi level being

localized at a higher energy relative to the spin density of states for the energetically preferred

states and lower relative to the not preferred states. Furthermore the authors assume that

spin flips are not relevant. In this framework the hopping transport has two contributions

due to the two spin directions. The lower distribution of them having a lower conductivity

and the higher distribution a higher conductivity. They performed calculations that show

a large negative magnetoresistance resulting from these assumptions. As the Zeeman effect

is the origin of this mechanism and it is isotropic, this fact also results in an isotropic

magnetoresistance contribution. The presented argumentation contradicts our understanding

of hopping transport as the occupation of a donor state with an electron is relevant not its

spin.

5.1.3 Hopping of bound magnetic polarons

A bound magnetic polaron (BMP) describes the situation where an donor-bound electron

couples to the manganese atoms in its surrounding. The random spin of such an electron

leads via exchange interaction to a certain degree of magnetization of the manganese atoms

in its vicinity. The coupling of each electron-manganese spin-pair is such that they tend to

align. Due to the interaction of the many manganese and the one electron spin orientation

at some point one spin direction, however it is randomly orientated, is preferred after the

partial aligning of magnetic moments. Thus the formation of a bound magnetic polaron lifts

the degeneracy of the donor ground state and leads to a lowering energy of this preferred

spin state. The energy difference to the degenerate state is called polaron shift.

The bound magnetic polaron occurs even when no external magnetic field is present. So each

hopping event has to bring up the energy difference of the donor states plus the polaron

shift. If one applies a magnetic field all the manganese spins will start to align along the

field direction.2 Thus the polaron shift will be decreasing and will become zero when all the

free manganese spins are aligned. The polaron shift and its decreasing and vanishing in a

magnetic field is directly observable in the magnetic field dependence of the Stokes shift of

the photoluminescence.[11] The observed spectra differ from the theoretical conduction band

splitting according to the Brillouin function in the low field region, e.g. at zero field the energy

is not zero as predicted but has the value twice of the polaron shift.

The main transport characteristic of the bound magnetic polaron hopping is a negative

magnetoresistance. Which saturates as the magnetization saturates due to the vanishing

of the polaron shift, which acted as a reduction of the total activation energy. However, as

Dietl et al. demonstrated, there may also occur a positive magnetoresistance in the low field

region. The reason for this is the decrease of thermodynamical fluctuations of magnetization

at small fields and a corresponding increase of resonant donor sites.[13] One should mention

that hopping of bound magnetic polarons gives an isotropic magnetoresistance contribution.

2This only holds for the isolated manganese spins and the exception are the antiferromagnetically aligned

nearest neighbor manganese pairs, which do not contribute because their total magnetic moment is zero.
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Like our proposed model of the positive magnetoresistance in a dilute magnetic semiconductor

the main idea is to correlate the magnetization with the resistivity change in the region of

hopping transport. But the bound magnetic polaron model alone is not sufficient to explain

the positive magnetoresistance behavior in zinc manganese selenide.

5.1.4 Double occupation effects

One long known magnetoresistance effect is attributed to double occupation of donor sites.

Many authors present the following explanation.[4, 32, 34, 39] A semiconductor where hopping

takes place and where the contributing donor states cannot only be singly occupied but also

doubly occupied is considered. In this case the situation with no external magnetic field

applied can be the following. Hopping takes place in every energy state that is close to the

Fermi level irrespective of it being a ground or a doubly occupied state. In other words some

states are in resonance with one another. If now an external magnetic field is applied the singly

occupied states start to split while the doubly occupied ones stay constant. This changes the

situation and the energy states are no longer in resonance. In other words the mechanism

of both types of states contributing to conductivity is suppressed. This on the other hand

results in a positive magnetoresistance. This effect like the Zeeman splitting shows a isotropic

magnetoresistance. The effect of the suppression of double occupation in the hopping process

is sometimes referred to as electron-electron interaction. Caution needs to be taken because

this term is also used in metallic or conduction band transport.
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Figure 5.1: Situation for the magnetoresistance due to double occupation is determined

by the shifting apart from the single and the double occupied density of states

and thus the increase of ε2.



5.2. MEASUREMENTS IN LITERATURE 39

5.1.5 Interference effects

Another magnetoresistance mechanism is the effect of magnetic field induced interference in

hopping transport. For the case of variable range hopping this is given by Sivan et al. [56]

and a good derivation for nearest neighbor and variable range hopping is given by Raikh et

al. [51]. In hopping transport there will always be a situation where more than one path from

the initial to the final donor will exist. In this case the electron in its nature as a wave reaches

the final donor site by not one path but by a mixture of all. The different paths surround

an area between the donors involved. If now the magnetic flux through this area changes by

applying a magnetic field the interference of the paths changes. More specifically the phase

relationship of both paths changes. Also the time reversal invariance is lifted. The combination

of both effects leads to a reduced back scattering and thus to a negative magnetoresistance.

As the magnetic flux perpendicular to the area is decisive the effect yields an anisotropic

magnetoresistance contribution.

5.1.6 Evaluation of possible explanations

The situation we observe in the magnetoresistance measurements in zinc manganese selenide

with low manganese content is hard to explain in the light of the existing explanations. The

effect of wave-function shrinkage explains the positive magnetoresistance but the observed

saturation of the magnetoresistance is not consistent with it. The interference argumentation

is limited to a small magnetoresistance effect only. Such a weak effect is then supposed to

result in a negative magnetoresistance. As we focus on low manganese contents where only

small negative contributions are seen, this mechanism cannot be relevant. The hopping of

bound magnetic polarons takes into account the semi-magnetic nature of the material. For

the magnetoresistance it predicts a possible positive contribution before the main negative

characteristic dominates at high magnetic fields. As this mechanism takes place in our material

and has the same origin, the spin alignment, one can only conclude, that both take place

at the same time. As the positive effect dominates, the bound magnetic polaron influence

must be weaker compared to the strong positive one. Double occupation is hard to prove

even as the transport mechanism itself. The evidence we have contradicts this process in

the low temperature region where only nearest neighbor hopping is apparent. Nonetheless

it is hard to totally rule out this mechanism as it would show the same dependence on the

magnetization. And as it is likely that this effect would lead to a positive magnetoresistance,

it is still possible. The strongest argument against it, is the very low thermal energy compared

to the suggested much larger Hubbard energy U .

5.2 Measurements in literature

We are not the only ones who have observed a large positive magnetoresistance in a dilute

magnetic semiconductor. So at this point these observation made by other groups will be

presented as an additional motivation for our research.

Shapira [52] examined Cd1−xMnxTe with different manganese contents x and different carrier
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concentrations n. Some of the samples exhibited hopping conductivity at low temperatures.

The most important graph for our purposes is one where a sample with the lowest manganese

content (x = 0.01) was examined. The sample was low doped and thus exhibited hopping

conduction. The magnetoresistance showed a Brillouin-like behavior just like our samples

of zinc manganese selenide for low manganese contents. The relative magnetoresistance had

its maximal value at about 2.5, while it was in saturation. For the samples with higher

manganese contents (x = 0.05 and x = 0.1) an intermixed behavior of positive and negative

magnetoresistance was observed. However, the magnetoresistance always had positive values.

One sample with x = 0.05 and rather close to the metal–insulator transition showed the same

temperature and magnetic field dependence as our sample with x = 0.06. First a positive

then a negative contribution. The magnetic field value of the peak decreases as a function of

decreasing temperature, while the peak itself increases. The authors connected this behavior

with the magnetization and the Brillouin function. The discussion was not detailed enough

on the magnetoresistance processes in hopping transport and so no sufficient explanation for

this behavior was given.

Leighton [36] examined persistent photo-conductivity (ppc) in Cd0.83Mn0.17Te. The presented

temperature dependence proved the mechanism of nearest neighbor hopping conduction in

the sample at every density of free carriers. The range of the magnetic field used for the

magnetoresistance measurements was only between −0.75 T and +0.75 T. Still at 3.9 K a

clear positive relative magnetoresistance was observed with values up to 0.5. The authors also

observed a decrease of this value with increasing temperature. And the graphs were analyzed

in a scaling manner, details in chapter 7. However the origin of this behavior was unclear

to the authors as they discussed possible well-established magnetoresistance mechanisms,

consistent with our evaluation in section 5.1.6.

Smorchkova [57] examined a 2-dimensional electron gas (2DEG) of a quantum well (QW)

consisting of a paramagnetic digital alloy of (Zn0.8Cd0.2Se)m−f (MnSe)f . The system is also

a persistent photoconductor (ppc). The transport mechansims could be identified as variable

range hopping, which is typical in the studied temperature range between 300 mK and 1.6 K. A

positive giant magnetoresistance (GMR) was observed. The dependence is somewhat familiar

in terms of an increasing resistivity at low magnetic fields, a peak and followed by a decrease.

Despite this positive and negative contribution the values of the relative magnetoresistance

are positive in the entire range of the magnetic fields. The maximal value of the peak was

700 %, which was determined at the lowest temperature. The peak position again shifts to

lower magnetic field values as the temperature decreases. The authors reduced the number

of measurement to a single one using a variable range hopping scaling approach, cf. [39] and

chapter 7. By referring to this publication they also followed the argumentation that the

conductance was provided by double occupation. In this framework the connection between

the magnetoresistance and the magnetization, the Brillouin function and the conduction band

splitting was made.

In the above mentioned articles similar magnetoresistance effects were discovered like the

ones in this work. In one paper a lot of mechanisms are presented, but none of them can be

motivated, in another the lack of an explanation is formulated and a third one provides an

explanation which contradicts the different energy scales of variable range hopping and double
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occupation. Our proposed magnetoresistance mechanism provides a consistent explanation

for all these works. The fact that these measurements were done in different material systems,

e.g. CdMnTe and ZnCdMnSe, supports the statement that this mechanism might be also of

importance in other dilute magnetic semiconductor than zinc manganese selenide.

5.3 Magnetoresistance results

This work is dedicated to the explanation of the magnetoresistance curves seen in figure 5.2.

In the following I would like to point out the similarities to the Brillouin function as well as to

discuss the influence of carrier concentration and manganese content on the magnetoresistance

curves.

For a dilute magnetic semiconductor the magnetic field dependence of the magnetization

and of the conduction band splitting according to the Brillouin function are well known,

cf. section 2.1.2. At this point one recognizes the similarities between the shape of the

magnetoresistance curves and that of the Brillouin function for example, cf. figure 2.4. The

reason for this similarity of magnetic field dependence of the magnetization, the splitting

of electron states and the resistivity is not obvious. Every donor site can only be occupied

by one electron, without changing the entire energetic situation due to double occupation.

In a magnetic field one spin direction will be energetically preferred, which results in spin

polarization. But still there is only one electron contributing to the transport and no significant

conductance change is expected. None of the state-of-the-art magnetoresistance explanations
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Figure 5.2: Typical measurements of the relative magnetoresistance for a zinc manganese

selenide samples with a low manganese content, in this case x = 2% for sam-

ple c, at different temperatures is shown. (Sample b is similar, cf. figure 5.9.)

One recognizes the characteristic large positive magnetoresistance effect. The

effect is largest at the lowest temperature, but the values are always positive.

The shape of the curves itself as well as their temperature behavior resemble a

lot the Brillouin function and their connected magnetization and conduction

band splitting, cf. figure 2.4. This work is dedicated to present the connection

of the magnetoresistance and the Brillouin function.
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described in section 5.1 may fully explain the behavior observed. So the question arises: How

does the Brillouin function influence the resistivity? Before we can answer this question some

other aspects need to be considered.

Figure 5.3 illustrates that the magnetoresistance in binary zinc selenide without manganese

(sample a) is very different from that of the dilute magnetic semiconductor samples, which

evidences that the positive magnetoresistance considered in the current report is due to the

presence of manganese, as suggested in our work.[43] Moreover, in the range of manganese

contents x studied, the positive magnetoresistance effects increase with increasing x for

comparable donor concentrations.

Looking at the two figures 5.2 and 5.4 one observes that the magnetoresistance is higher

for sample 1 with a higher manganese content than for sample c with the lower manganese

content. This observation is a general one. The value of the maximal magnetoresistance as a

function of manganese content is depicted in figure 5.5, i.e. for different samples. This graph

shows that with increasing manganese content also the maximal relative magnetoresistance

increases. So not only the presence of manganese atoms has an effect on the resistance but

it also scales with its actual content. This is another strong indication that manganese is

somehow responsible for this effect and its origin.

The magnitude of the magnetoresistance effect as well as the shape of the curve seen in

figures 5.4 and 5.6 are very different for the same manganese content. At doping concentrations

above the metal–insulator transition (cf. figure 3.8) as well as for the pure host material in

0 2 4 6 8 10

-20

-15

-10

-5

0

ZnSe (x = 0 % Mn, sample a)

10 K

286 K

1.6 K

re
la

ti
ve

 m
a
g
n
e
to

re
si

st
a
n
ce

 (
ρ

B
-ρ

0
)/

ρ
0
 /

 %

magnetic field B / T

increasing Temp.

Figure 5.3: Measurements of the relative magnetoresistance for the zinc selenide refer-

ence, sample a, without manganese at different temperatures. Both samples a

and c show hopping transport and are therefore somewhat comparable. The

difference to the zinc manganese selenide sample is that the amplitude of the

relative magnetoresistance effect is one order of magnitude smaller and that

the sign is different, i.e. we are dealing with a negative magnetoresistance

effect except for the highest temperatures. What sample a and c have in com-

mon is the fact that both effects are more pronounced at lower temperatures.

For low temperatures even a positive contribution at high magnetic fields is

observed.
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Figure 5.4: A typical measurement of the relative magnetoresistance for a zinc manganese

selenide samples with a high manganese content, in this case x = 7.1%

for sample 1, at different temperatures is shown. (Sample 2 is similar.) In

contrast to the samples with low manganese content an additional negative

contribution is visible. This is most likely due to the more complex behavior

of the conduction band edge as a function of x, cf. chapter 9.
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Figure 5.5: The dependence of the maximal relative magnetoresistance is shown as a

function of the manganese content, i.e. for the different hopping samples, at

different temperatures. As the samples have slightly different carrier concen-

trations at room temperature these are also indicated. For all temperatures

increasing values are to be seen for increasing manganese content. The in-

crease is uniformly continuous and more than linear, but one has to be careful

because only four samples are presented and because the carrier concentra-

tion has also an influence, which will be shown in the following. However,

the shown behavior is an indicator for the direct influence of the magnetic

ions on the carrier transport. Later a theoretical prediction will be given, to

compare this experimental result with our model, cf. figure 8.4.
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figure 5.3 the effect vanishes. So again it is clear that the presence of manganese atoms

somehow leads to this behavior only in the regime of hopping transport. Again a simple

comparison of all samples can be done. The maximal magnetoresistance as a function of

carrier concentration is depicted in figure 5.7. At high carrier concentration there is only a

very small magnetoresistance effect to be seen in order of a few percent. But below a certain

threshold of about 1 × 1018 cm−3 the values are much higher. Section 3.2 tells us that the

metal–insulator transition is this threshold. As the effect, which is to be investigated, is

again clearly below the metal–insulator transition this gives reason for a detailed look at the

mechanisms happening in the regime of hopping transport.
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Figure 5.6: A typical measurement of the relative magnetoresistance in zinc man-

ganese selenide samples with a high carrier concentration, in this case

n = 7.1 × 1018 cm−3 for sample 4, at roughly the same manganese content

x ≈ (6.4± 1)% and at different temperatures is shown. (Samples 5 and 6

have a similar appearance.) Positive and negative contributions are to be

seen. However, most important is the fact that the presented effects for metal-

lic conduction are almost three orders of magnitude smaller compared to the

samples which show hopping transport.
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Figure 5.7: The dependence of the maximal relative magnetoresistance as a function of

the room-temperature carrier concentration, i.e. for the samples with roughly

the same manganese content x on both sides of the metal–insulator transition,

at different temperatures. While the hopping samples show a large magne-

toresistance effect, the metallic ones only posses values of about a few percent.

Sample 3 shows intermediate values and may be closest to the metal–insulator

transition. As the manganese content itself has also an influence on the values,

the correlation of n and x has to be taken into account.
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5.4 Empirical description

The solid lines in the figure 5.8 and 5.9 show the resistivity as a function of the magnetic field

for the two samples b and c with manganese contents x = 2 % and x = 0.75 %, respectively.

Both samples3 show somewhat similar magnetoresistance curves. The curves are dominated by

a pronounced positive magnetoresistance contribution, which increases rapidly at low magnetic

fields and then saturates at high magnetic fields. Additionally a smaller negative contribution

sets in at high fields, which will be ignored for the time being and possible explanations will

be presented in chapter 9. For sample c with x = 2 % the relative magnetoresistance is about

200 % at saturation, for the sample b with x = 0.75 % slightly lower. The saturation field

increases with increasing temperature.

One first recognizes the similarities between the magnetoresistivity curves and curves of the

Brillouin function (figure 2.4) and thus with the linked magnetization. This is not only true

for the initial increase and the saturation but also holds for the temperature dependence.

As the resistivity can be described by a ε3-hopping conductivity, the explanation of the

magnetoresistance effect must originate from a hopping effect. From literature there are

three basic magnetic field dependent mechanisms in this regime known, the change of the

activation energy, the wave-function shrinkage and the bound magnetic polaron effect. All

of them were presented in the sections 5.1.1 to 5.1.3, respectively. For the reasons given in

3We chose these two samples of low manganese content because in contrast to high manganese contents

no additional negative contribution to the magnetoresistance occurs. The latter is explained in more detail in

chapter 9.
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Figure 5.8: Applying the fitting function from equation (5.1) on the resistivity measure-

ments of sample c one obtains good results. This supports our main idea of

the resistivity having an exponential dependence on the magnetization. Also

this function provides an easy approach to fit resistivity curves of the same

form in other dilute magnetic semiconductors.
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the corresponding chapters the magnetic field dependence of the activation energy seems

most likely to dominate the magnetoresistance behavior. The exponential dependence of the

ε3 hopping conductivity make it tempting to fit the resistivity with an exponential expression.

This works rather well if one assumes a linear dependence of the activation energy on the

magnetization. This leads to a fitting function of the form

ρ(B, T ) = ρ0 exp [bM(B, T )] . (5.1)

Only taking the magnetic field dependence at fixed temperatures this function gives a good fit

to the individual magnetoresistivity curves as shown by the dashed lines in the two figures 5.8

and 5.9. The fitting parameters ρ0 and b were treated independently for each temperature.

This resemblance and the agreement of the fit support our magnetoresistance mechanism due

to a variation of the disorder-induced impurity band-width and consequently the widening

of the energetic donor distribution.
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Figure 5.9: Applying the fitting function from equation (5.1) on the resistivity measure-

ments of sample b (with x = 0.75% and 4.3×1017 cm−3) one also obtains

good results. The temperatures of the measurements are lower and closer

together, but still the fit works well.
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Chapter 6

Disordered Crystal

The starting point of our explanation of the magnetoresistance effect in zinc manganese

selenide is compositional disorder. By this there is meant the random replacement of the

zinc cations by manganese cations. Averaging over this random distribution in space yields

the manganese content x. However, if one looks on the microscopic scale there is of course

a different number of manganese atoms at different places, i.e. in different characteristic

mesoscopic volumes. So not only the mean value of the manganese content x is of interest but

also its statistic deviation ∆x. For us such a mesoscopic volume is characterized as the local

environment of a donor atom and its length scale is the effective Bohr radius aB. Important for

the further considerations is that each donor possesses its own local manganese environment.

The choice of the effective Bohr radius as the decisive length scale is clear as every electron

bound to a certain donor undergoes an exchange interaction with the manganese atoms inside

its envelope wave function. When this number differs for different donors so will the strength

of the exchange interaction and thus, for example, the conduction band splitting or the donor

state splitting. Also the chemical shift of its initial energy at zero field, i.e. the conduction

band edge, will be affected. The details of these two effects will be discussed in section 6.2

and section 6.1, respectively.

6.1 Chemical shift

To determine the formula of the chemical shift of the energetic position of a single donor, we

have to know the x-dependence of the band gap or better conduction band edge, and of the

donor energy.

The compositional variation of the band gap dEg/dx for zinc manganese selenide is well

established in literature.[7, 19, 26, 58, 61] The most recent and by this best publication for

our purposes might be the one by Hwang et al. which is depicted in figure 6.1 [26]. However,

all of them clearly show a bowing of the band gap at low manganese contents. This means

that due to compositional variation the band gap decreases at low x, before it starts to rise

linearly as predicted by virtual-crystal approximation (VCA) at higher x-values.

From the band gap dependence it is possible to make conclusions about the conduction band

49
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Figure 6.1: The strongest emission peak (I2) as a function of manganese content x from

the work of Hwang et al. [26]. This peak was observed in a photoluminescence

setup and according to the authors it is attributed to a donor-bound exciton.

Important is that it represents the absolute energy change of the donor level

as a function of x and also the bowing of the conduction band edge.

edge dependence, and thus also about the donor energy dependence. According to Mycielski

et al. in II-VI compound systems the two are almost equal to one another (dEg/dx ≈
dEc/dx).[42] And as we know from section 3.1 the donor binding energy is at a fixed energy

distance Ed from the conduction band edge. Therefore we denote the absolute energetic

position of the donor i at zero magnetic field by ǫi,0 in concordance with section 3.2.3 and we

can assume the same dependence on the manganese content (dǫi/dx = dEc/dx ≈ dEg/dx).

The decreasing of the absolute donor energy with increasing manganese content can be

approximated by a linear function ǫ(x) ∝ −x. This is justified as the values for the local

manganese content xi due to statistic fluctuations in the vicinity of the donor i will be close

to the average x.

To evaluate the zero-field value of the energetic position ǫi,0 of the i-th donor due to the

chemical shift we have to sum over all manganese atoms m. Every position rm is weighted by

the envelope function φi of the specific donor bound electron, cf. equation (3.3). The value is

given by

ǫi,0 = y
∑

m

|φi(rm)|2 , (6.1)

where y is a coefficient fulfilling the proportionality. It is clear that due to the weighting

the manganese atoms in the direct vicinity are most relevant although the sum contains

every manganese atom. The formula shows explicitly that the donor energy depends on the

manganese content: ǫi,0(xi). The possibility of antiferromagnetic coupling is not considered

in our theoretical descriptions, as we are dealing with very low manganese contents. In the

scaling theory this simplification is only overcome by the use of the effective manganese

content xeff . To extend this in the simulation approach in future one would have to imply a

step after the simulation of the lattice, in which every neighboring pair of manganese atoms

will not be considered for the effective content of paramagnetic manganese ions.

This situation is schematically illustrated in figure 6.2. The manganese fluctuation and its
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Figure 6.2: Schematic diagram of the origin of the impurity band-width in zinc man-

ganese selenide. Our model attributes to every donor i its own manganese

environment xi, represented by its interaction strength. The distribution {xi}

is located around the average value x̂. According to the bowing, cf. figure 6.1,

every xi has its own value of the conduction band edge. So the spatial fluctua-

tions of xi result in fluctuations of Ec and thus in the fluctuations of the donor

energy positions {ǫi}. So in consequence the apparent impurity band-width

results from the random placement of manganese atoms in the crystal. It is

to mention that a donor with rather low local manganese content has a high

position inside the impurity band and vice versa.

effect on the energy position of every donor ǫi is shown. This energy fluctuation results in the

density of states ̺(E) of donor levels, which resembles that of the manganese distribution.
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6.2 Splitting of a single donor level

To determine the splitting of a single donor level due to exchange interaction we start from the

standard s-d spin Hamiltonian. In other words we have to consider the exchange interaction V̂ex

between the spin si (sz,i = sz = ±1/2) of the s-like electron on the i-th donor and the total

angular momentum Jm of the d-shell of the m-th manganese atom:

V̂ex = α |φi(rm)|2 si · Jm , (6.2)

where α is the material-dependent exchange constant. Summation over all manganese atoms m

results in a spin-dependent correction ǫi,ex to every donor energy level, which is given by

ǫi,ex = sz
∑

m

α |φi(rm)|2 Jm . (6.3)

Averaging over all orientations of the angular momenta yields to

ǫi,ex(xi, sz, B, T ) = α sz 〈Jz〉
∑

m

|φi(rm)|2 , (6.4)

where 〈Jz〉 = J BJ(B, T ), where BJ is the Brillouin function given by equation (2.2). In

this step the sum over every single angular momentum of an individual manganese atom

was replaced by the average value of all of them. This step of a mean-field approximation

is a simplification that requires some justification. For the sample parameters in this work,

there is always a sufficiently large number of manganese atoms inside the envelop function

of each donor according to basic statistical considerations. Therefore such an approximation

is reasonable. With this step we eliminate thermal fluctuations of the manganese spins from

our further considerations.

One should mention that the exchange contribution to the donor energy is zero when no

external magnetic field is applied: ǫi,ex(B = 0) = 0. But the most important part of this

equation is that it provides us with the magnetic-field dependence of the donor energy and

thus with that of the distribution or density of states of the donor energies.

In section 2.1.2 we considered the conduction band splitting ∆Ec, cf. equation (2.4), in the

mean field approach. The mesoscopic conduction band splitting in a magnetic field and hence

the energy-splitting of a single donor state is given by

∆ǫi =ǫi,ex(sz = +1/2) − ǫi,ex(sz = −1/2) (6.5)

=α 〈Jz〉
∑

m

|φi(rm)|2 . (6.6)

6.3 Impurity band formation

The different donor energies ǫ̃i,0 in a binary material, in our case that would be our host

material zinc selenide, occur due to level repulsion of the donor energy states. As this effect

is also present in the ternary system, we have to consider it too.

In sum the three contributions due to level repulsion, chemical shift and exchange splitting

yield a realistic energy ǫi of the donor i on the absolute energy scale and its magnetic field
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dependence. Some of them are magnetic field dependent, and thereby spin degenerate in

zero-field, and some are not (indicated by the digit 0). In total the energy of a donor is given

by

ǫi = ǫ̃i,0 + ǫi,0(xi) + ǫi,ex(xi, sz, B, T, ) . (6.7)

The splitting of the energy is still given by equation (6.5) as the other two contributions are

independent on the magnetic field.

The density of impurity states {ǫi} also called the impurity band arises from all the donor

energies combined. Here we see that some mechanisms contribute to the impurity band-width

(IBW) of zinc manganese selenide and that some of them show a dependence on manganese

content, on spin orientation, on magnetic field and on temperature.

Already at this stage it is clear that the lower spin-impurity band broadens with increasing

magnetic field. This is a consequence of the ǫi,0 being lower for a higher local manganese

content xi and these ǫi exhibit a larger splitting. This situation is illustrated in figure 6.3.
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Figure 6.3: The zero-field impurity band, resulting from figure 6.2 and equation (6.1),

splits into the spin-up and the spin-down impurity band. Three representative

energies ǫ1–ǫ3 are given. The highest energy ǫ1 having the lowest manganese

content in its vicinity splits therefore only by a small amount, for the lowest

energy ǫ3 it is the other way round, cf. equation (6.4). Due to this the lower

spin-band broadens while the upper one narrows. As electrons prefer the lower

spin state only the increase of this impurity band-width is of importance.
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Chapter 7

Scaling Approach

Scaling is well known from literature. Here are some examples for the use on electronic

transport. The basic step of reducing the temperature and the magnetic field dependence in

a Zeeman situation to just one variable holds for all the following authors. Ivanova et al. [28]

used this method to point out the dependence on the ratio H/(T + Θ). The use was to reduce

the temperature and magnetic field dependent magnetoresistance to a single curve. Matveev

[39] used this scaling argument in the case of variable range hopping. But both authors

were interested in the description of non-magnetic semiconductor, where normal Zeeman

splitting takes place. The description of variable range hopping alters the ratio of x = B/T

to a more complex expression. Additionally the authors introduce the function F(x) in their

theory to explain the magnetic field dependence. This step is similar to the one we use in the

second step of the scaling approach. Terry also describes variable range hopping. First only the

temperature dependence is scaled [62], but later he also uses the ratio B/T . His argumentation

is based on the dependence of the relative permittivity and of the magnetoresistance on this

new variable. But the important facts are that this argumentation was used to describe

a dilute magnetic semiconductor and that the use of this new variable was related to the

susceptibility χ. The working group around Leighton has done some studies on a permanent

photo current (ppc) dilute magnetic semiconductor.[35, 36] In the second publication they

used the dependence of the magnetoresistance on the ratio B/(T + Θ) in the hopping regime

to reduce all curves to a single one, just like we do.

Before the actual discussion of the scaling approach, some additional considerations are

required:

i) The normal Zeeman splitting may be neglected, as its energy sz g µB B is about an

order of magnitude smaller than the Giant Zeeman splitting in these sample and at the

magnetic field and temperature values of the measurements (T < 10 K and B < 10 T),

cf. section 2.1.2.

ii) Transport is only modeled in the lowest of the two impurity spin-bands {ǫi(sz = −1/2)}.

The justifying arguments are the following. Every electron bound to a donor has two

possible spin configuration. Even at low magnetic fields one of them is energetically

preferred. We extend this argument to zero field, as we consider no other spin-related

55
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effects, such as special mechanisms or energies for a spin flip, to occur. Essential is that a

donor site is empty so that an electron may hop there and may do this preferentially to

the spin state lower in energy. The only relevant reason for this is the assumption that

an electron preferentially is to be found in or hops to the lower energy level, independent

of the fact that it has to flip its spin or not. The supporting argument for this point of

view is that the time scale of our measurements is orders of magnitude larger than the

spin-flip dephasing time, so that in equilibrium always the state at every site with the

lowest energy is occupied. So we start our calculations with spin-polarized electrons even

at zero field.

iii) Of course there are limits to this approach. As long as the thermal energy is comparable

to the conduction band splitting there will be no near unity spin-polarization of electrons.

But on the one hand, at 10 K and x = 2 % the magnetic field for ∆Ec > kB T is

approximately 0.8 T. For even lower temperatures this critical field strength is even

further decreased. So at least our approach is justified above this threshold of B and x.

However there are no other spin requirements established in literature, that contradict

our assumption that only the energy levels and not the spins themselves are relevant.

Therefore without other relevant spin-flip mechanisms or energies our description for

spin-polarized electrons equals that of unpolarized ones. So there should be no difference

in hopping rates and thus in resistivity.

Because of these reasons we state that only the energy of the lowest of the two impurity

spin bands {ǫi(sz = −1/2)} contributes to the hopping transport and that not spin flips

are not decisive, but only the energy levels of the donor states.

iv) For applicability of the scaling approach it is necessary to assume: Θ = 0 in order to

simplify the expression for ξ given in equation (2.3) to

ξ =
g µB J B

kB T
∝ B

T
. (7.1)

This assumption is based on the demand that the manganese content is low, so that also

the antiferromagnetic interaction is weak. This step is needed to simplify the dependence

of the Brillouin function only on the ratio of B/T .

v) We do not consider hopping of bound magnetic polarons as at low manganese contents

no significant negative contribution to the magnetoresistance arises which could be

originated due to this effect. Therefore, it will not be the dominating magnetoresistance

mechanism. The qualitative analysis of this simplification and its limits will be presented

in the corresponding next chapters.

vi) Another assumption is that the effective Bohr radius is unaffected by the magnetic field,

as the energy position of the conduction band edge and that of the donor shift at the

same rate, i.e. that the donor depth remains constant. From the experimental point of

view the temperature dependence should give reason for a change of the activation energy

or that of the Bohr radius.

vii) A change of the Fermi level inside the impurity band is also neglected, because for this

to happen there has to be a magnetic-field induced change of compensation. As no such

process is known, we excluded this possible effect.
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7.1 Gaussian distribution

Inserting equation (6.1) and equation (6.4) into equation (6.7) the energy of a spin-down

state of a donor bound electron is given by

ǫi(sz = −1/2) = ǫ̃i,0 + ǫi,0 + ǫi,ex

= ǫ̃i,0 +

(

y − 1

2
α 〈Jz〉

)

∑

m

|φi(rm)|2 (7.2)

= ǫ̃i,0 +

(

y − 1

2
αJ BJ

)

∑

m

|φi(rm)|2 . (7.3)

An important and characteristic simplification for the scaling approach is now to assume that

all the distributions due to level repulsion {ǫ̃i,0}, due to chemical shift {ǫi,0} and due to the

exchange interaction {ǫi,ex} are described by Gaussian distributions and the first and the later

two are not correlated. From this assumption follows that the distribution of the sum also

will be Gaussian. The variance σ2 of this combined spin sub-band impurity distribution {ǫi}
is given by

σ2 = Var(ǫ̃i,0) +

(

y − 1

2
αJ BJ

)2

Var(Σ) ,with (7.4)

Σ =
∑

m

|φi(rm)|2 . (7.5)

This means that the variance has a quadratic dependence on the Brillouin function BJ (B/T ).

Hence also the standard deviation is dependent on the ratio of magnetic field to temperature:

σ(B/T ). For our purposes the relative value, i.e. the ratio of the B/T -dependent width to

the zero-field value, is relevant. The calculation given in appendix A.2 leads to

σ(B/T )

σ0

=

√

1 − γ2
1 + [γ1 + γ2 BJ(B/T )]

2
, (7.6)

where γ1 and γ2 are dimensionless parameters defined as

γ1 = −y

√

Var(Σ)

Var(ǫ̃i,0) + y2 Var(Σ)
(7.7)

γ2 =
1

2
αJ

√

Var(Σ)

Var(ǫ̃i,0) + y2 Var(Σ)
(7.8)

In the assumption of Gaussian distributions the width σ of the donor level distribution {ǫi} in

the presence of manganese atoms depends only on the ratio of magnetic field to temperature:

σ(B/T ). Our estimations show further that the donor level distribution broadens in a magnetic

field, due to the field dependence of the magnetization of the manganese spins and due to

the bowing of the conduction band edge. This situation is illustrated in figure 7.1.

7.2 Resistivity scaling

The resistivity ρ depends on the attempt-to-escape frequency ν0, on the Bohr radius aB, on the

concentrations of donors NCl, on the compensation K, on the width σ of the distribution of

donor energies and on the temperature T . All these parameters, except σ and T , are constant
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Figure 7.1: Schematic of the basic idea: The donors with a low local manganese content

posses high energies in the impurity band and vice versa. These high energy

states split less, because of their low xi. The low energy states split more

than everage, because of their high xi. In consequence an external magnetic

field yields due to the alignment of manganese spins an increasing Gaussian

impurity band-width σ for the preferred spin band and thus to decreasing

hopping rates (indicated by the arrows) and a higher resistivity. The origin

of this effect is the local disorder of manganese atoms.

for a given sample. Therefore, the magnetoresistance at a given temperature is dominated by

the magnetic-field induced change of the width σ: ρ = ρ(σ, T ). As described in the previous

section the cause of changing σ in magnetic field is due to the exchange interaction between

the electrons bound to donors and magnetic impurities. The magnetization of the manganese

atoms is controlled by the external magnetic field.

To determine the resistivity we first have to take a look at the hopping rate. The expression

for hopping rates in equation (3.10) itself possesses a remarkable feature: when the energies

ǫi′ and ǫi, the temperature T and the electric field E are scaled by some factor λ, the rate

remains unchanged:

Γi,i′(λǫi, λT, λE) = Γi,i′(ǫi, T,E) . (7.9)

If we now go from the hopping rate between two sites to the percolation current paths

throughout the entire sample one aspects some changes. We have to correlate the energy

difference of two sites with the width σ of the impurity band. Concomitantly the current

density j remains unchanged:

j(λσ, λT, λE) = j(σ, T,E) . (7.10)

Expressing the current density j via the resistivity ρ,

j(σ, T,E) = E/ρ(σ, T ) , (7.11)

According to Ambegaokar et al. another aspect is essential in this context, namely that the

ratio ρ/T is a function of one variable only, the ratio σ/T .[5] Let us denote this function as

f̃ :

ρ(σ, T )

T
= f̃

( σ

T

)

. (7.12)
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Implicit that means that ρ/T remains unchanged when σ and T are scaled simultaneously:

ρ

T
(λσ, λT ) =

ρ

T
(σ, T ) . (7.13)

For studying the magnetoresistance, it is convenient to define a new function f as

f

(

σ

σ0 T

)

= f̃
( σ

T

)

, (7.14)

where σ0 is the width of the energy-level distribution at zero magnetic field. A combination

of the equations (7.12) and (7.14) yields

ρ

T
= f

(

σ

σ0 T

)

. (7.15)

Equation (7.15) is the key relation of our scaling approach. It will be used below to extract

the magnetic-field dependence of the width σ from the experimental data. This will be done

in two steps: (i) extracting the function f , and (ii) determining the ratio σ/σ0 as a function

of magnetic field B and temperature T .

The function f can be derived from the temperature dependence of the resistivity. Since

σ = σ0 at B = 0, one obtains from equation (7.15)

ρ

T
= f

(

1

T

)

at B = 0 . (7.16)

Plotting ρ/T versus 1/T , one obtains the function f (see inset on the left side of figure 7.2a).1

With known f and using equation (7.15), we can restore the ratio σ(B, T )/σ0 from experi-

mental data for ρ(B, T ),

σ(B, T )

σ0

= T f−1

(

ρ(B, T )

T

)

. (7.17)

7.3 Experimental data

First we determined the function f in equation (7.16) from the temperature dependence of

the zero field resistivity. The result is depicted in the inset on the left side of figure 7.2.

Then we used the inverse function f−1 the extract the relative impurity band-width from

the magnetic field and temperature dependent resistivity according to equation (7.17). The

result is given on the left side of figure 7.2.

The most remarkable feature of σ/σ0 is the similarity of the magnetic field-dependence at

different T values. In order to make this more evident, on the right side of figure 7.2 we

plot the same data as functions of the ratio B/T . One can see that the dependences σ(B/T )

for all temperatures are almost identical. One can see that the resemblance for values below

0.6 is very good, but that for higher ratios a discrepancy between theory and experiment

occurs. The real impurity band-width saturates faster than the model predicts. There may be

a negative contribution to σ, that we do not consider and which increases with increasing x,

1The extrapolation of the function f in the region 0.6K−1 < 1/T < 1.5K−1 in the inset on the left side

of figure 7.2 is used for processing the magnetoresistance data at T = 1.6K only.
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corresponding experimental data. This is done in figure 7.3. In general they are in good

agreement, but a certain discrepancy can be seen originating from the one on the right side

of figure 7.2.
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Chapter 8

Simulation

In the simulation approach we will not be using the simplification of the former scaling

chapter. The manganese correlated energy distributions, which contribute to the total donor

energy distribution, are no longer regarded as Gaussian. Instead they will be determined by

numerical calculations. Thus the accuracy and the resembling of theory and the real lattice

will be much higher. Afterwards it is possible to compare the two approaches and estimate

possible errors.

In the following step the hopping conductivity will be numerically simulated in a random

network of donors. Each of them is related to a local environment of manganese atoms and thus

for every donor the energetic position and its magnetic field and temperature dependence are

known. Again this yields a even better representation of the real physical transport properties

than a simplified view in terms of general statements for an assumed Gaussian distribution.

To achieve this we will avoid the averaging steps yielding to the commonly known results of

mean-value and deviation only in which all random disorder is considered. Starting with the

exchange energy contribution according to equation (6.4)

ǫi,ex = α sz 〈Jz〉
∑

m

|φi(rm)|2 ,

and replacing φi(rm) by the strength of the envelop function of the i-th donor on the site of

the m-th manganese atom according to equation (3.3)

φi(ri,m) ∝ 1
√

π a3B
exp

(

−ri,m
aB

)

,

leads to

ǫi,ex = α sz 〈Jz〉
1

π a3B

∑

m

exp

(

−2
ri,m
aB

)

. (8.1)

Handling the chemical shift from equation (6.1) in the same fashion yields:

ǫi,0 =
y

π a3B

∑

m

exp

(

−2
ri,m
aB

)

. (8.2)

The absolute site energy of the spin-down state evolves from equation (7.3) to

ǫi(sz = −1/2) = ǫ̃i,0 +

(

y − 1

2
αJ BJ

)

1

π a3B

∑

m

exp

(

−2
ri,m
aB

)

. (8.3)
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In order to determine the distribution of exchange energies {ǫi,ex} and the energies of the

chemical shift {ǫi,0}, the distribution of the value of the sums in equations (8.1) to (8.3)

w =
∑

m

exp

(

−2
ri,m
aB

)

, (8.4)

must be evaluated. Every sum is a measure of the individual s-d interaction strength of the

donor i with all the manganese atoms m in its vicinity. Thus the density of this interaction

strength of all donors g(w) represents the density of impurity states by performing the

transitions w → −ǫ and g(w) → ̺(E), cf. equation (8.2). To calculate the sum is the first

step in the simulation process. The distributions were obtained numerically, by evaluating

equation (8.4) for randomly created systems. Each of these systems contained one chlorine

donor surrounded by zinc atoms on a face-centered cubic lattice, where each zinc atom was

replaced by manganese with a probability x.

The results of the simulation processes are given as histograms shown in figure 8.1. As one

can see there is a certain degree of fluctuation around the mean value for the interaction of

randomly distributed donors with randomly distributed manganese atoms. First there is to

mention, that the calculated distribution is fairly close to a Gaussian one of the same variance

derived, for the manganese contents and Bohr radii of the samples. However, there are small
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Figure 8.1: Results of the simulation are presented in form of the density of this interaction

strength of all donors g(w) as a function of the individual s-d interaction

strength w. This is done for different manganese contents. The sum w is a

measure of the individual s-d interaction strength of the donor i with all the

manganese atoms m in its vicinity. In particular g(w) represents the density

of impurity states. This is compared to a Gaussian distribution (doted line).

These two approaches are similar but differences between them are to be seen

at both edges of the impurity band. For very small manganese contents and a

small Bohr radius the appearance changes drastically and the discrete nature

of the lattice is recognizable (inset).
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deviations between the two that might be important. Always the calculated histograms are

asymmetric, steeper at smaller values of w and more extended at larger ones. This asymmetry

becomes less important with increasing manganese content and thus the approximation by

the Gaussian distribution approaches the precise calculations at higher x. But even though

a Gaussian distribution might be a good approximation of the actual interaction strength,

the results may be very different for these two approaches. This depends on the position of

the Fermi level inside the impurity band. If it is close to one of the edges, i.e. for very high

or very low compensation, this will have a major impact, as the donor energy levels close to

the Fermi level contribute most to the hopping transport. At very low manganese contents

and at small Bohr radii, i.e. comparable to the lattice constant, a Gaussian distribution is no

longer justified. This can be seen in the inset of figure 8.1 where the origin of the shape with

multiple peaks is the discrete nature of the crystal lattice.

As g(w) represents the density of impurity states, figure 6.3 has to be modified accordingly

as we now have a better knowledge of the density of states ̺(E). The non-Gaussian shape of

̺(E) is preserved under magnetic field influence, cf. figure 8.2.
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Figure 8.2: Schematic of the simulated density of impurity states at zero-field and its

splitting according to equations (8.1) and (8.2), respectively. Thus the lower

and the higher spin-band arise, with electrons preferentially occupying the

lower one. This lower spin-band broadens while keeping the same shape. The

dashed line at the center can be interpreted as the Fermi level of a roughly

half filled impurity band at 0K.
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8.1 Hopping transport simulation

In the following hopping transport is simulated in a system where the site energy of each

donor is determined according to equation (8.3), with ǫ̃i,0 chosen from a Gaussian distribution.

Again the hopping only takes place in the spin-down sub-distribution of donor states, which

are never doubly occupied.

The simulated system contains 253 randomly placed donors. The corresponding sum of the

individual interaction w is derived for randomly placed manganese atoms in the system

by equation (8.4). For the hopping rates between the donors, Miller-Abrahams rates Γi,i′

according to equation (3.10) are used. From the site energies and hopping rates in the system,

the steady-state occupation probabilities pi for all donors {i} are determined by solving a

set of non-linear balance equations.[29, 30, 49, 69] In the steady state, the electron flow into

each site equals the electron flow out:

∑

i′ 6=i

pi Γi,i′ (1 − pi′) =
∑

i′ 6=i

pi′ Γi′,i (1 − pi) . (8.5)

This set of equations, one for each site i, is solved using Newton’s method. From the occupation

probabilities the current density in the system is determined,

j =
e

V

∑

i,i′ 6=i

pi Γi,i′ (1 − pi′)
E

|E| · (ri′ − ri) , (8.6)

where e is the electron charge, V is the volume of the simulated system, E is the external

electric field, and ri is the position of hopping site i. Periodic boundary conditions are applied

in all directions.

It is worth mentioning that the simulation approach presented here takes correlation effects

of neighboring donors implicitly into account. So no model conceptions are needed and no

assumption have to be made to include these effects.

Results of the simulated resistivity for zinc manganese selenide with x = 0.75 % as a function of

magnetic field B for different temperatures are presented as dashed lines in figure 8.3 together

with their measured counterparts as solid lines (which were already plotted in figure 5.8).

The calculated curves show a good agreement with experimental data. Both the shape and

the values of magnetoresistivity match well. The small deviations will be discussed later on

the basis of the parameter choice and fitting procedure described below.

Values for the model parameters used in the simulation of the magnetoresistivity are the fol-

lowing. All these values for natural reasons were fixed before the start of the actual simulation.

The density of cationic sites N0 in zinc selenide and the s-d exchange integral N0 α, which

are known from literature, are set to N0 = 2.19 × 1022 cm−3 and N0 α = 260 meV.[23] From

the growth and measurements the manganese content x is known and because of the small

value it is directly used as the approximate value x = 0.75 % without considering its effective

one. For the chlorine (donor) concentration NCl the situation is harder. As we cannot be

certain about the degree of compensation, from section 2.1 we know that K increases with

increasing manganese content, but no reliable data of the precise value is at hand. So at this

stage we simply use the carrier concentration at room temperature, n = 1.86 × 1017 cm−3,

knowing that this can be a lower limit only.
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The following values were determined during the simulation process. The relative importance

of the two disorder terms {ǫi,0} and {ǫ̃i,0} is not clear a priori. We find, that in order to

obtain a good fit to the low-magnetic-field part of the magnetoresistance curves, the {ǫi,0}
term is decisive. This is obvious as the influence of the zero-field width of the impurity

band is strongest in this field range. Nonetheless one has to keep in mind that affecting its

width cannot be done without changing the exchange part too. The simulation values for the

intrinsic impurity band-width of {ǫ̃i,0} were always close to zero. Therefore and to reduce

the number of fitting parameters, for simplicity {ǫ̃i,0} is set to 0, meaning that all energetic

disorder is related to the presence of manganese atoms. This is consistent with the findings

in chapter 7 and our work.[43]

The values of the other model parameters were adjusted so as to mimic the experimental

magnetoresistivity best: the attempt-to-escape frequency in the Miller-Abrahams hopping

rates takes ν0 = 1.94 × 1013 s−1, 20 % of the donors are compensated (i.e. empty), the

Bohr radius of the donor sites takes aB = 4.0 nm and the interaction integral N0 γ is set to

−650 meV.

The fitting value of N0 γ = −650 meV corresponds to the slope of the conduction band edge

dEc/dx at low manganese contents (x < 5 %). A negative value is reasonable as the variation

of the band gap Eg with x shows bowing for x < 10 % with a minimum near x = 5 %, cf.

figure 6.1.[7, 23, 26] The fitting value of the effective Bohr radius of donor states, aB = 4.0 nm,

appears larger than the bare Bohr radius aB0 = 2.84 nm.[59] This larger magnitude of the

Bohr radius might be due to interdependence of the following values. As mentioned above
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Figure 8.3: Simulating the hopping transport with a given set of parameters inside the

calculated density of impurity states yields the dashed curves. Experimental

results for the same temperatures are shown for comparison. The resemblance

is good, but there are still some minor differences. For the lowest temperature

the high-field part shows a differences. Also the temperature dependence at

zero magnetic field seems not to satisfy the experimental data.
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the used value for the chlorine density is only a lower limit. So it is obvious that by choosing

a larger value the fit would give a smaller Bohr radius. But the chlorine density cannot be

much larger as the transport measurement confirms that the sample is still far from the

metal–insulator transition. If on the other hand the real compensation might be higher this

would also lead to a smaller Bohr radius. There might even be a correlated explanation

combining the two statements. As the simulation converges at this values it is most likely

that effects, that are not included in this simplified calculation like the hopping of bound

magnetic polarons or the coexistence of both spin bands at low fields, are the reason for the

large Bohr radius derived.

As already mentioned above, the fitting parameters are not entirely uncorrelated. In addition

different combinations of parameters are also fairly close to the best fit presented in figure 8.3.

In other words reproducing the measured curves by our simulation scheme is possible not

only with that given set of parameter values. The number of free parameters is fairly large

and their effects on the magnetoresistivity are not entirely uncorrelated. Finite values of σ̃0,

for instance, do also allow for a good agreement between experiment and computer simulation

when N0 γ and ν0 are adjusted accordingly. On the contrary, finite values of the manganese

induced alloy shifts {ǫi,0}, which do spatially correlate with the manganese spin induced

exchange energies {ǫi,ex}, turn out to be essential in order to fit all of the magnetoresistivity

curves at different temperatures but with the same set of parameters. Due to the large number

of unknown parameters in the model, we are not able to precisely determine the parameter

values of the experimental system in terms of one absolute parameter set. However, the values

of parameters obtained by fitting are reasonable when compared to known values, showing

that our simple model is able to explain the experimental observations. In particular, the

model reproduces the magnitudes and the shapes of the ρ(B, T ) curves as a function of both

temperature and magnetic field in the range studied.

The reason for the discrepancy between the theoretical and experimental results at T = 1.6 K

might be the following one. At a such low temperature a transition to Efros-Shklovskii variable

range hopping might occur. The occurance of variable range hopping itself is no problem for

the simulation as all correlated effects are implicitly accounted for in the model. However,

the special version that was proposed by Efros and Shklovskii has some special features

our model does not consider. These are long-range Coulomb interactions. As pointed out

in Ref. [43], where the temperature dependence of the resistivity has been studied. There

it was shown that the Efros-Shklovskii regime based on the effect of Coulomb correlations

might take place at T = 1.6 K and temperatures below. Therefore our approach is justified

at T > 1.6 K, i.e. for the three curves in figure 8.3 corresponding to T = 2 K, 2.3 K and 3.1 K.

With respect to the data at T = 1.6 K, the validity of our theoretical approach is not certain.

So the question might arise, whether our theoretical approach with neglecting the effect of

long-range Coulomb interactions on the density of states is justified or not.

At low magnetic fields there is a small deviation to be seen. As mentioned before our simulation

approach does not account for the hopping of bound magnetic polarons and also neglects the

upper spin band. Both simplifications are decisive at low fields and vanish before saturation.

Therefor we attribute the deviation to these two phenomena, which are not included. The

deviations at low magnetic fields might also arise from a non-perfect fit.
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8.1.1 Comparison of Gaussian and simulated impurity bands

Finally, we show in figure 8.4 the effect of the shape of the exchange energy distribution on

the relative magnetoresistance at saturation magnetization, R = [ρ(Bsat) − ρ(0)]/ρ(0), as a

function of the manganese content x. For this purpose, we have performed the simulation, on

the one hand, using the numerical approach described above, i.e. deriving the alloy shift and

exchange energy distributions according to equations (8.1) and (8.2), and, on the other hand,

applying a Gaussian distribution approximation for the alloy shifts and exchange energies

{ǫi,0 + ǫi,ex(sz = −1/2)} with the variance given by[42]

σ2
0+ex =

(

N0 γ − sz 〈Jz〉N0 α
)2 1

8π a3B N0

x (1 − x) . (8.7)

As we have no particular sample in mind but instead are interested in general trends the

choice of parameters in this calculation partially deviates from the values given above. Here,

the width of the Gaussian background energy fluctuations due to the host material σ̃0 is

0.3 meV, the perturbation constant N0 γ is zero, the Bohr radius of donor states aB is 2.8 nm,

and the compensation level is 10 %.

Let us denote the two saturation magnetoresistances with RSim. for the numerical approach

with a random distribution of manganese atoms, and RGauss for the Gaussian approximation.

As can be seen in figure 8.4, the two calculated magnetoresistances, RSim. and RGauss, show

both a general dependence on x but deviate from each other, cf. figure 8.4. Spatial correlations

between the energies of nearby donors, which are incorporated in the numerical approach for

{ǫi,0 + ǫi,ex}, and which are known to be important for hopping transport in principle,[14,

29, 45] can be ruled out as the origin for the observed difference here because the average

spacing between donors, RCl = N
−1/3
Cl , is much larger than their Bohr radius. In fact, it is the

difference in the slopes of both distributions of energies {ǫi,0 + ǫi,ex} ∝ wi shown in figure 8.1

which causes the deviations between RSim. and RGauss. Moreover, it is worth noting that the

increasing difference |RSim. −RGauss| with increasing x does not automatically contradict

the previous statement that the Gaussian approximation of {ǫi,0 + ǫi,ex} improves with

higher manganese contents x. The reason is that R(x) vanishes for x → 0 for any reasonable

distribution {ǫi,0+ǫi,ex} in our model, where the magnetic field couples only to the manganese

spins, so that, in turn, the difference in R(x) between any two distributions {ǫi,0 + ǫi,ex}
must increase with increasing x at least for small values of x. Indeed, the relative difference,

[RGauss −RSim.] /RSim., decreases with increasing x as expected for two converging energy

distributions.
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Figure 8.4: Simulations of maximal magnetoresistance for the calculated manganese influ-

ence are compared with the results from a Gaussian distribution as a function

of x. Both show the same trend and differ only slightly in terms of absolute

values. However, both represent the experimentally observed super-linear in-

crease of the maximal relative magnetoresistance in figure 5.5. In this point

our model provides also a good agreement with the experiments.



Chapter 9

High Manganese Content

The subject of this chapter is sample 1 with x = 7.1 % and n = 3.2 × 1017 cm−3. The

measurements of the relative magnetoresistance are presented in figure 9.1. A special feature

can be seen, i.e. a strong negative contribution to the magnetoresistance at high magnetic

fields. The overall magnetoresistance is still positive but the negative contribution cannot

be ignored. In the following we will present a qualitative explanation consistent with our

proposed model. Basically we want to show that the dependence of the resistivity on the

impurity band-width still holds although a simple correlation between the Brillouin function

and the impurity band-width no longer exists.

For the measurement of the temperature dependence a slightly different procedure than the

usual one for the measurement of the magnetic field dependence was used. The magnetic field

was held constant while the temperature was changed. As no significant difference occurs
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Figure 9.1: The relative magnetoresistance of sample 1 calculated from the temperature

dependence done at several magnetic field values. The deduced curves resem-

ble very well the ones obtained the normal magnetic field measurement at

different temperatures, cf. figure 5.4. Therefore one can be sure that no errors

between the two experimental approaches occur, although only one direction

of the magnetic field is used.
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when the magnetoresistance is measured for one field direction only instead of averaging the

values obtained for both field directions, switching of the field direction was omitted in the

temperature dependent resistivity measurements at constant field value.

Detailed temperature dependence were obtained at various magnetic fields. The curves are

presented in figure 9.2. In figure 9.2 one observes that for an increasing magnetic field

the temperature dependence changes giving rise to the magnetoresistance in figure 9.1. At

temperatures above about 50 K the curves merge and the differences become negligible. The

assumptions made in the model, in particular that the giant Zeeman splitting dominates,

hold for temperature up to 30 K.

From the temperature dependence in figure 9.2 the values for the hopping activation energy ε3

in figure 9.3 and the maximal conductivity of the conduction channel ρ3 in figure 9.4 were

determined. The names ε3 and ρ3 were used although the phenomenon at 12.5–22 K could be

due to double occupation (ε2 and ρ2). Even from the temperature dependence it is obvious,

that no single fit is able to describe the behavior. Dividing the low temperature region into

four intervals allows one to apply a numerical linear fit. The observed behavior contradicts

our simple model used for low manganese contents where we assume only one interval where

only the activation energy changes and the maximal conductivity remains constant. On the

basis of the experimental observations, this is no longer justified at higher manganese content.

What we observe is four regimes instead of one and a change in almost all four activation

energies ε3 as well as maximal conductivities ρ3. The dependence of the quantities are given

in figures 9.3 and 9.4, respectively. All activation energies show the characteristic feature of

a curve that increases at low fields then passes a maximum and in the following decreases
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Figure 9.2: The temperature dependence of sample 1 in form of an Arrhenius plot for

different magnetic fields. New information may be gathered by this method.

Important for us is the change of the activation energy as a function of

the magnetic field. To get this information linear fits of the temperature

dependence have been done. To be accurate the low temp region has to

be divided into four separate temperature regimes, in which linear fits are

appropriate. This will be discussed further in the text. If one uses this fitting

values to recalculate the relative magnetoresistance, i.e. a vertical line through

the measurement, one ends with the presented curves in figure 9.1.
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Figure 9.3: The activation energies for the four temperature regions as a function of the

external magnetic field are shown here, on the right hand side a zoom of the

three lowest temperatures is given. All of them show an increasing, then a

maximum and afterward a decrease ending in saturation. This is one reason

for the appearance of the magnetoresistance curves, which follows exactly our

model idea. But these dependence is too low to explain the magnitude of the

magnetoresistance effect. The discussion of the four activation energies can

be found in the text.

0 -2 -4 -6 -8 -10

0

5

10

15

12.5-22 K

4.5-11 K

2.2-3.7 K

1.6-2.2 K
ca

lc
u
la

te
d
 f

ro
m

 T
-d

e
p
. 

fi
ts

re
la

ti
ve

 m
a
g
n
e
to

re
si

st
a
n
ce

 (
ρ

3
-ρ

3
,0
)/

ρ
3

,0

magnetic field B / T

Figure 9.4: The relative change of fitting values ρ3 as a function of the magnetic field

show a behavior very similar to the magnetoresistance itself. The changes are

larger and the field values of the maximum are lower at lower temperatures,

all curves saturate at high fields. In contrast to the temperature dependence

of the resistivity the zero-field values are not uniformly continuous. According

to our model these values should stay constant, so for high x the conductivity

of the channel itself plays a role in transport.

and ends in saturation. This is somewhat comparable with the magnetoresistance itself. The

lower the temperature of the regime is the lower are the field values of the maximum. This

behavior resembles the faster saturation of the Brillouin function for lower temperatures.

Analyzing the maximum conductivity ρ3,i of every channel one observes a similar behavior.
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The lower the temperature the lower the field value of the maximum. And again the trend

is comparable with the magnetoresistance itself. But this only holds if the relative changes

are depicted. In the absolute values no consistent similarity is apparent. This result is the

dependence of the maximal channel conductivity on the magnetic field. Until now there is no

validated explanation for this behavior at hand. This may be a sign for the suppression of

bound magnetic polaron hopping.

A negative magnetoresistance effect should occur for very high x-values above the minimum

of the conduction band bowing, for example for x > 15 %. In this case the energies on the high

energy tail of the impurity band correspond to high local x and those in the low energy tail to

low local x. Thus, the preferential spin states of the former will exhibit a larger shift to lower

energies than the latter leading overall to a narrowing of the transport-carrying impurity

band and, thus, to a negative magnetoresistance. Therefor it is clear that for x-values near

the minimum of the conduction band bowing a transition of the magnetoresistance behavior

must occur. According to our understanding this may be the origin of the observed positive

and negative contribution to the magnetoresistance observed for sample 1 in in figure 9.1.

For such intermediate x the impurity band-width σ shows a rather complicated behavior as

depicted in figure 9.5. It does no longer show a continuous increase as for low x or a continuous

decrease as for high x, instead it results from both shares. As a consequence the impurity

band-width does not vary monotonously anymore and even worse the shape of the impurity

band changes. The reason is that the position of the donor energies in zero field is no longer

a linear function of x as depicted in figures 6.3 and 8.2.
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Figure 9.5: Hypothesis how the impurity band changes due to the applied magnetic field

for high x-values. This situation is close to the minimum of the conduction

band edge. In this region a linear dependence is no longer valid. If this is the

case energies in both impurity band tails would exhibit a smaller splitting

than an energy in the middle. As depicted this situation would lead to a

complex change of the impurity band shape. In this framework both positive

and negative contributions to the magnetoresistance are possible, but hard

to predict. To be precise even the starting density of states is no longer a

Gaussian one, but this was chosen to show the shape changing character.
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Pressure Dependence

10.1 Resistivity changes under hydrostatic pressure

The pressure dependence of the resistivity at different temperatures and at zero magnetic

field is shown on the left of figure 10.1. One can observe a super-exponential increase of the

resistivity with increasing pressure at every temperature. At lower temperatures the increase

is even higher. Both effects must be related to bandstructure changes under hydrostatic

pressure. Several effects may possibly play a role here.

At room temperature, where activated transport into the free conduction band states is
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Figure 10.1: left: The resistivity increases as a function of hydrostatic pressure at zero

magnetic field and at differenttemperatures. The increase is more than

exponentially and larger for lower temperatures. For the curve at 280K it is

possible to analyze the resistivity ̺ in terms of carrier concentration n and

mobility µ (left). The increase of ̺ is mainly determined by the decrease of n

by more than a factor of two, while µ stays almost constant. The reason for

the carrier loss could be due to an increasing carrier trapping. This would

also partially explain the behavior at low temperatures. But judging by the

magnitude of the effect, there seems to exist another origin.
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dominant, the Hall and resistivity data may be analyzed in terms of carrier mobility µ and

the carrier concentration n. The two quantities obtained from the measurements performed

at 280 K are plotted as a function of hydrostatic pressure on the right of figure 10.1. The

carrier concentration shows a decrease, which is mainly responsible for the increase of the

resistivity at room temperature (solid line on the right of figure 10.1) whereas the mobility is

almost constant and decreases only slightly at higher pressures. It should be noted that the

results obtained at the highest pressures have the largest error bars.

The decreasing carrier concentration is qualitatively in accordance with an increasing donor

depth. A possible explanation is schematically illustrated on the left of figure 10.2. Firstly,

the applied pressure leads to an increase of the band gap Eg or rather an up-shift of the

conduction band edge Ec away from the valence band edge. According to ~k · ~p theory this

is accompanied by an increase of the electron effective mass m∗. For hydrogen-like shallow

donors a higher effective mass implies a higher donor binding energy Ed, cf. equation (3.1).

However, quantitatively this effect appears too large, so that other contributions may be

relevant.

In section 2.1 already the observation of a too small carrier concentration in the presence of
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Figure 10.2: The second reason for the increase of ρ is most likely a decreasing Bohr

radius. The concept behind this is illustrated on the left hand side. Applying

hydrostatic pressure on zinc manganese selenide leads to a increasing of the

conduction band edge due to an increasing bandgap Eg. This situation is

accompanied by a higher effective mass m∗. As we know a higher effective

mass yields a increased donor depth and a smaller Bohr radius. This last

effect, not depicted here, would result in a massive increase of resistivity,

just like the one we observe at low temperatures. right: Looking at the

relative magnetoresistance as a function of magnetic field at different ambient

pressures shows an increase of the effect by more of a factor 3. This is of

course small compared to the resistivity changes at zero magnetic field. Our

model predicts on the first order no such increase, but two explanations are

possible. Ether the carrier loss enhances the magnetoresistance effect, like

we have seen before in figure 5.7, or the non-Gaussian impurity band tail

leads to this deviation.
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manganese is mentioned. Also the low chlorine doping efficiency, that corresponds with the

poor incorporation of chlorine atoms, indicates a certain degree of compensation. A possible

cause may be the manganese-induced formation of trap states in the vicinity of the conduction

band edge e.g. manganese pairs or higher manganese clusters. If hydrostatic pressure is applied

even more of these manganese states would come into resonance with the donor states and

also the total number of states beneath the donor energy levels would increase. Accompanied

with this energy shifts an increasing compensation may occur, which in turn would explain

the decreasing carrier concentration.

For low temperatures the situation is different, but the same effects could affect the electron

transport. The transition from band transport to hopping transport occurs in the temperature

range between 15 and 30 K. At low temperatures the transport is not diffusive and mainly

takes place via hopping processes in the impurity band, thus, a description by means of a free

carrier concentration and a mobility is no longer valid. In general, the hopping probability

between two sites is a function of the difference in site energies and of the distance between

the sites relative to the Bohr radius, cf. equation (3.10). A reduced effective Bohr radius, cf.

to the left of figure 10.2, as well as increasing compensation under pressure are discussed

above. Both effects lead to a decrease of the hopping probability, yielding a higher resistivity

under pressure.

The former arguments for an increasing donor binding energy Ed accompanied by a smaller

aB may also apply at low temperatures. A decreasing Bohr radius leads to a reduced overlap

of the wavefunctions of adjacent donors. As the donor wavefunction drops exponentially

with increasing distance from the donor ion, the latter effect has a major impact on the

low-temperature hopping transport which solely takes place in the impurity band. Due to

this effect and the different types of conduction mechanisms it is expected that this is more

significant at low temperatures than at high temperatures in agreement with experiment.

In this low temperature region where hopping takes place compensation could also explain the

dependence of the resistivity on hydrostatic pressure. Assuming a situation where the Fermi

level is located below the middle of the impurity band distribution due to the mentioned

compensation at ambient pressure the following argumentation would apply. According to

Davis and Compton [10] and Stutius [59] in this case a further lowering of the Fermi energy

inside the impurity band due to a higher compensation yields a higher activation energy for

hopping transport. This effect is obvious as less electrons contribute to the transport and as

the average energy distance of donor levels is higher closer to the tail of the donor distribution.

Both effects lead to an increase of the resistivity under hydrostatic pressure.

At this stage it is very hard to estimate the relative importance of both effects, i.e. pressure

induced wave-function shrinkage and the increasing compensation. Therefore we take a look

at the magnetoresistance measurements.

10.2 Magnetoresistance under pressure

The magnetoresistance as a function of magnetic field at different pressure values and at a

temperature of 1.6 K is shown on the right of figure 10.2. The magnetoresistance effects at
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the highest pressure are more than three times larger than at ambient pressure. This effect

is not due to the increase of the resistivity with pressure as the relative magnetoresistance is

shown. The shape of the curves resembles the Brillouin function at all pressures. The negative

magnetoresistance contribution at high magnetic fields is very small but it gets stronger with

increasing pressure. As the characteristics of the curves are hardly altered under pressure, it

may be anticipated that the effect is still the spreading of the impurity band but that this

somehow has a larger effect on the relative magnetoresistance.

However, solely on the basis of equation (2.4) one cannot fully explain this behavior as the

effective manganese content as well as the Brillouin function itself are the same at all pressures,

and the exchange integral N0α should only increase slightly, at maximum by 10 %, with

increasing pressure [21]. Thus, this effect cannot explain the rise of the magnetoresistance by

more than a factor of 3. An alternative explanation is based on the increasing compensation

and decreasing aB state was already proposed in the previous section. Both will also be

discussed in the following.

Looking at the right of figure 10.2 a somewhat similar effect occurs like when the carrier

concentration is successively reduced in a series of samples, cf. figure 5.7. In case of a lower

carrier concentration the relative magnetoresistance is larger. This could mean that in case

of this sample applying pressure leads to a shift away from the activated regime rather

close to the metal–insulator transition more to the insulating side of the metal–insulator

transition. This would be consistent with the decreasing Bohr radius under pressure discussed

in section 10.1. However, one has to keep in mind that such a reduction of the Bohr radius

is also accompanied by a reduced influence of the manganese spins on the donor energy. So

one would also expect the opposing effect of a reduced splitting of the donor states. Then the

positive magnetoresistance effect of wave-function shrinkage would be dominant compared

to the negative one due to reduced state splitting.

Another argument based on compensation is plausible. In a Gaussian impurity band com-

pensation would basically result in the same relative magnetoresistance due to the fact that

the scaling argument is the same for every compensation. But as the detailed simulation has

shown the impurity band has an asymmetry and the lower tail is more pronounced compared

to that in a Gaussian approximation. If now compensation shifts the Fermi level closer to the

end of this tail, one can qualitatively state that the relative magnetoresistance effect would

be larger.

Unfortunately the coexistence of both explanation approaches still holds for ρ(p) and for the

relative magnetoresistance measurements, so none of them could be ruled out. Or that at

least in the presence of both the dominant one could be identified.

In general one can see that our model is applicable to get qualitative results even for this

measurements under hydrostatic pressure and that no observations contradict our assump-

tions.
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Conclusion

In this work a novel explanation for the large positive magnetoresistance effect is presented,

which occurs in the dilute magnetic semiconductor zinc manganese selenide in the hopping

transport regime. In literature no conclusive explanation for this large positive magnetore-

sistance effect is known, so we set out to fill this gap. The appearance of hopping transport

is a necessary requirement for this effect to occur, as is the presence of magnetic ions in the

material. Thus the explanation given here is valid not only for zinc manganese selenide but

for all dilute magnetic semiconductor at low temperatures. Another aspect is important for

the description, i.e. that the conduction band edge of an n-type material has to decrease with

increasing content of the magnetic cation, in our case manganese. This means it has to occur

a large bowing of the conduction band edge and by this a large discrepancy from the virtual

crystal approximation.

Our explanation includes the statistical distribution of magnetic as well as donor atoms in the

crystal, manganese and chlorine respectively. The random distribution of manganese leads

to fluctuations of the conduction band edge according to its bowing. The energy position of

the donors reproduces these fluctuations. This fluctuating donor levels are represented in the

density of donor states. This donor energy distribution is called impurity band and can be

described by its width and its shape.

An external magnetic field affects the spins of the manganese atoms and leads to a magne-

tization proportional to the Brillouin function. This magnetization leads to a splitting of

the conduction band and of the donor levels, which is again proportional to the Brillouin

function. At this point it is important that the splitting is different for different energetic

positions inside the impurity band. This fluctuation of the splitting leads to a change of the

width of the impurity band, while its shape remains unaffected. Using only basic hopping

rates this increasing impurity band-width results in a increasing resistivity, i.e. a positive

magnetoresistance.

In this work all these steps of this novel explanation were motivated and confirmed. This

process was accompanied by two theoretical approaches, which allowed us to illuminate the

model from different angles. In the scaling approach it was possible to model this magnetore-

sistance mechanism and to reduce all data to a universal function of an idealized Gaussian
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impurity band-width and to explain why this is possible. As this only leads to a relative

change of the impurity band-width this may seem to be only a qualitative analysis, but as

this process allows one to reconstruct theoretical magnetoresistance curves also a quantitative

analysis is given.

To specify this in more detail and to give a quantitative explanation simulations were per-

formed. They offered a detailed view on the shape of the impurity band and were able to

reproduce the measurements in all aspects with a reasonable set of parameters. In both

theoretical frameworks it was possible to show that the maximal resistivity increases with

increasing manganese content. This finding is also in good agreement with the experimental

results.

It is possible to give a fitting function for the magnetic field dependence in agreement with

our model. With this function an easy and fast fitting of experimental data is provided.

All this is the main part of this work, to provide this new magnetoresistance mechanism

to explain the large positive magnetoresistance effect in zinc manganese selenide. But in

the end this led to a lot more facets. For instance if hydrostatic pressure is applied the

relative magnetoresistance increases. This could be due to carrier trapping and thus due to

an increased compensation which affects the occupation of the impurity band tail.

At high manganese contents the presented concept has to be modified to represent the different

experimental situation, i.e. the decreasing conduction band edge is no longer certain. In the

region of the conduction band minimum an additional negative contribution opposes the

positive one. The intermixed magnetoresistance behavior observed in our samples for x-values

close to the x-values corresponding to the minimum of the conduction band bowing supports

the theoretical explanation first suggested by Mycielski et al. [42] and refined here by us in

our model. It gives an alternative to attributing the negative magnetoresistance effect to

bound magnetic polarons.

It seems that our model not only applies for zinc manganese selenide but also for other

materials. A number of measurements support that this effect occurs in all (II,Mn)VI dilute

magnetic semiconductor.

11.1 Outlook

There are a few aspects which are interesting for future investigations and one being carried

out separately. The work presented here does not explicitly treat the variable range hopping

regime. But the model has recently been expanded to this case in a mostly theoretical

manner.[44]

The simulation approach is expandable for the effect of bound magnetic polaron hopping. This

is a work that could be done simply by adding the polaron shift to every energy difference

before performing the transport simulation. However, it is not possible to include bound

magnetic polaron hopping into the scaling approach.

Our model could be applied to more dilute magnetic semiconductor materials with a large
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bowing to check if this truly is a universal explanation for this material class. In this light

also the concept for high manganese contents could be intensified. A model dealing with every

conduction band behavior is more complex but could support our suggestion for high x.

Also the behavior under high pressure is not fully understood and needs a more detailed

investigation.



82 CHAPTER 11. CONCLUSION



Appendix A

Supporting Information

A.1 Sample parameters

name original name thickness d/nm Mn content x/% n/1017 cm−3

a B0-188 1050 0 4.3 ± 0.3

b B0-182 1000 0.75 4.3 ± 0.3

c B0-175 1050 2.0 4.3 ± 0.3

1 BD-233 881 7.1 3.2

2 BD-230 1037 6.0 4.2

3 BD-274 895 ± 9 6.2 13

4 BD-275 904 5.5 45

5 BD-231 1022 6.8 49

6 BD-232 948 7.3 84

Table A.1: sample parameters see section 4.1
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A.2 Term conversion

in section 7.1

σ2 = Var(ǫ̃i,0) +

(

y − 1

2
α 〈Jz〉

)2

Var(Σ) (A.1)

= Var(ǫ̃i,0) +

(

y − 1

2
αJ BJ

)2

Var(Σ) (A.2)

,with Σ =
∑

m

|φi(rm)|2 (A.3)

σ2
B=0 =σ2

0 = Var(ǫ̃i,0) + y2 Var(Σ) , as BJ(B = 0) = 0 (A.4)
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0
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αJ BJ
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σ
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Var(ǫ̃i,0) + y2 Var(Σ)
+

(

y − 1
2
αJ BJ

)2
Var(Σ)

Var(ǫ̃i,0) + y2 Var(Σ)
(A.6)

, for shortening we insert X =
Var(Σ)

Var(ǫ̃i,0) + y2 Var(Σ)
and extend the first summand

(A.7)

=
Var(ǫ̃i,0) + y2 Var(Σ) − y2 Var(Σ)
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, now we have two independent variables (y, X), but they are not yet dimensionless
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√
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Ich erkläre: Ich habe die vorgelegte Dissertation selbständig und ohne unerlaubte fremde Hilfe
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durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die Grundsätze

guter wissenschaftlicher Praxis, wie sie in der Satzung der Justus-Liebig-Universität Gießen

zur Sicherung guter wissenschaftlicher Praxis niedergelegt sind, eingehalten.

Ort und Datum Unterschrift

97


	Introduction
	Motivation

	Material System
	Zinc manganese selenide 
	Dilute magnetic semiconductor (DMS) 
	Magnetic impurities 
	Model devices for spintronics 


	Electronic Impurities
	Shallow donor 
	Transport mechanisms 
	Band transport 
	Double occupation 
	Hopping transport 
	Metallic transport 

	Experimental transport mechanisms 

	Experimental Setup
	Sample growth and sample parameters 
	Preparation, geometry, setup and measurements 
	Physical quantities 

	Magnetotransport
	Magnetoresistance mechanisms
	Wave function shrinkage
	Impurity band related effects
	Hopping of bound magnetic polarons
	Double occupation effects
	Interference effects
	Evaluation of possible explanations

	Measurements in literature
	Magnetoresistance results 
	Empirical description

	Disordered Crystal 
	Chemical shift 
	Splitting of a single donor level 
	Impurity band formation 

	Scaling Approach
	Gaussian distribution 
	Resistivity scaling
	Experimental data

	Simulation
	Hopping transport simulation
	Comparison of Gaussian and simulated impurity bands


	High Manganese Content
	Pressure Dependence
	Resistivity changes under hydrostatic pressure
	Magnetoresistance under pressure

	Conclusion
	Outlook

	Supporting Information
	Sample parameters
	Term conversion

	Danksagung
	Erklärung

