
I F I G

R e s e a r c h

R e p o r t

Institut für Informatik

JLU Gießen

Arndtstraße 2

35392 Giessen, Germany

Tel: +49-641-99-32141

Fax: +49-641-99-32149

mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

Institut für Informatik

On the Magic Number Problem of the

Cut Operation

Markus Holzer Michal Hospodár

IFIG Research Report 1703

October 2017

IFIG Research Report

IFIG Research Report 1703, October 2017

On the Magic Number Problem of the Cut Operation

Markus Holzer1

Institut für Informatik, Universität Giessen
Arndtstraße 2, 35392 Giessen, Germany

and

Michal Hospodár2

Mathematical Institute, Slovak Academy of Sciences
Grešákova 6, 040 01 Košice, Slovakia

Abstract. We investigate the state complexity of languages resulting from the cut operation of two
regular languages represented by deterministic finite automata with m and n states, respectively.
We study the magic number problem of the cut operation and show that the entire range of com-
plexities, up to the known upper bound, can be produced in case of binary alphabets. Moreover,
we prove that in the unary case only complexities up to 2m− 1 and between n and m + n− 2 can
be produced, while if 2m ≤ n− 1, then complexities within the interval 2m up to n− 1 cannot be
reached—these non-producible numbers are called “magic.”

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models
of Computation—Automata; F.4.3 [Mathematical Logic and Formal Languages]: Formal
Languages—Classes defined by grammars or automata; F.4.3 [Mathematical Logic and For-
mal Languages]: Formal Languages—Operations on Languages

Additional Key Words and Phrases: finite automata, cut operation, descriptional complexity, magic
number problem, unary languages

1 E-mail: holzer@informatik.uni-giessen.de
2 E-mail: hosmich@gmail.com. Research supported by VEGA grant 2/0084/15 and grant APVV-15-0091.

Copyright c© 2017 by the authors

1 Introduction

It is well known that for every n-state nondeterministic finite automaton one can always con-
struct a language equivalent deterministic finite state device with at most 2n states [15]. This
bound is tight in the sense that for an arbitrary n there is always some n-state nondeterministic
finite automaton which cannot be simulated by any deterministic finite state device with less
than 2n states [12, 13]. Nearly two decades ago a very fundamental question was raised in [9]:
does there always exists a minimal n-state nondeterministic finite automaton whose equiva-
lent minimal deterministic finite automaton has α states for all n and α with n ≤ α ≤ 2n?
A number α not satisfying this condition is called a magic number for n. This simple question
turned to be harder than expected. In a series of papers non-magic numbers were identified until
the problem was solved in [10], showing that for ternary languages no magic numbers exist; for
binary languages the original problem from [9] is still open. Contrary to the ternary case magic
numbers do exist for unary languages as shown in [6]. A brief historical summary of the magic
number problem can be found there.

The idea behind the magic number problem is not limited to the determinization of non-
deterministic finite automata. In fact every (regularity preserving) formal language operation
can be used to define a magic number problem for the operation in question. For instance,
consider the intersection operation on languages. Let A and B be an m-state and n-state finite
automaton, respectively. Then the lower and upper bound the output complexity for the inter-
section operation is 1 and mn. The former is induced by the empty set and the latter one by
the standard cross-product construction for the intersection operation. Thus, in a similar way as
for the determinization one may now ask, whether every α within the range between 1 and mn
can be reached by intersecting two given automata with m and n states, respectively? In other
words, is the outcome of the intersection operation in terms of the number of states continuous
or are there any gaps, hence magic numbers? In [8] it was shown that for the intersection on
deterministic finite automata no number in the interval [1,mn] is magic—this already holds
for binary automata. Besides intersection also other formal language operation such as, e.g.,
union [8], concatenation, square [2], star [3], and reversal were investigated from the “magic
number” perspective. It turned out that magic numbers are quite rare. For instance, for the star
of unary languages there are linearly many magic numbers [3]. On the other hand, star of binary
languages has no magic numbers.

We contribute to the list of magic number problems for formal language operations by
studying the cut operation, which was introduced in [1]. Roughly speaking, the cut operation is
the machine implementation of concatenation on Unix text processors simulating the behavior
of leftmost maximal matching. Tight upper bounds for the cut and iterated cut operation on
deterministic finite automata were obtained in [5]. While the state complexity of concatenation
is growing linearly with first parameter of the left automaton and exponentially with second
parameter of the right automaton, the state complexity of the cut operation is only linearly
growing with both parameters. We show that the entire range of complexities, up to the known
upper bound, can be produced by the cut operation on deterministic finite automata with m
and n states, respectively, in case of binary input alphabets. The proof of this result resembles
some ideas used in [8] for the magic number problem on the union operation of deterministic
finite automata. On the other hand, when restricting to unary automata we show that only
complexities up to 2m − 1 and between n and m+ n− 2 can be reached, while complexities
within the interval 2m up to n − 1 turn out to be magic. Thus, these complexities cannot be
reached by the cut operation on m- and n-state deterministic finite automata, if 2m ≤ n − 1.

2

Here, as usual, the tail-loop structure of unary deterministic finite automata turns out to be
very valuable in the proofs.

2 Preliminaries

We recall some definitions on finite automata as contained in [7]. Let Σ∗ denote the set of all
words over the finite alphabet Σ. The empty word is denoted by λ. Further, we denote the
set {i, i + 1, . . . , j} by [i, j], if i and j are integers. A deterministic finite automaton (DFA) is
a quintuple A = (Q,Σ, δ, s, F), where Q is the finite set of states, Σ is the finite set of input
symbols, s ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and δ : Q×Σ → Q is the
transition function. The language accepted by the DFA A is defined as

L(A) = {w ∈ Σ∗ | δ(s, w) ∈ F },

where the transition function is recursively extended to δ : Q×Σ∗ → Q. Two DFAs A and B are
equivalent if they accept the same language, that is L(A) = L(B). An automaton is minimal if
it admits no smaller equivalent automaton w.r.t. the number of states. For DFAs this property
can be easily verified by showing that all states are reachable from the initial state and all states
are pairwise inequivalent.
In [1] the cut operation on languages K and L, denoted by K !L, is defined as

K !L = {uv | u ∈ K, v ∈ L, and uv′ 6∈ K for every v′ ∈ pref(v) },

where pref(v) denotes the set of all nonempty prefixes of the word v. The above defined cut
operation preserves regularity as shown in [1]. Since we are interested in the descriptional com-
plexity of this operation we briefly recall the construction of a DFA for the cut operation; we
slightly deviate from the presentation of the construction given in [5].

Let A = (QA, Σ, δA, sA, FA) and B = (QB, Σ, δB, sB, FB) be two DFAs accepting the lan-
guages K and L, respectively. The automaton that accepts the cut of K and L is drawn in a
a row-column like fashion. To this end the DFA A is drawn in a column (its states are rows),
and the DFA B is drawn in a row (its states are columns), see Figures 1 to 3. Then define the
automaton C = (Q,Σ, δ, s, F), with state set Q = (QA × {⊥}) ∪ (QA × QB), where ⊥ /∈ QB,

p, q

r, s

a

p

..
.

r

..
.

a

A

q. . . s . . .a
B

Fig. 1. The DFAs A and B and the DFA for L(A) !L(B). We have r = δA(p, a) and s = δB(q, a). Notice that the
state r is non-final.

3

and for each state (p, q) in Q and each input a in Σ we have

δ((p,⊥), a) =

{
(δA(p, a),⊥), if δA(p, a) /∈ FA;

(δA(p, a), sB), otherwise;

and

δ((p, q), a) =

{
(δA(p, a), δB(q, a)), if δA(p, a) /∈ FA, see Figure 1;

(δA(p, a), sB), otherwise, see Figure 2;

and s = (sA,⊥), if λ /∈ L(A), and s = (sA, sB), otherwise. The set of final states is set
to F = QA × FB, see Figure 3. Then L(C) = K !L.

p, q

r, sB

a

p

..
.

r

..
.

a

A

sB q. . . s . . .a
B

Fig. 2. The DFAs A and B and the DFA for L(A) !L(B). We have r = δA(p, a) and s = δB(q, a). Notice that the
state r is final.

We prove two useful results on the cut operation, which we use later during our investigations
on the magic number problem of the operation in question. The results deal with special cases
of the cut operation, if the first language is a right ideal or the second language is universal.

p, q. . . p, s . . .p

..
.

..
.

A

q. . . s . . .B

..
.

..
.

..
.

..
.

Fig. 3. The DFA B and the DFA for L(A) !L(B), one row is shown. We have p ∈ QA and q, s ∈ QB . All states
in a single column have the same finality.

4

Lemma 1. Let K be a right ideal language over Σ, that is, a non-empty language satisfy-
ing K = KΣ∗. Then

K !L =

{
K, if λ ∈ L;

∅, otherwise.

Proof. We have K !L = {uv | u ∈ K, v ∈ L, and uv′ 6∈ K for every v′ ∈ pref(v) } by defini-
tion. If λ ∈ L, then K ⊆ K !L since for every w ∈ K, we have w = w · λ with λ ∈ L and
pref(λ) = ∅. Let u ∈ K and v be a non-empty word in L. Since K is a right ideal, uv′ ∈ K for
every v′ ∈ pref(v). Thus, the word uv cannot be in K !L, and the lemma follows. ut

If the second language is universal, the cut operation acts like ordinary concatenation.

Lemma 2. Let K ⊆ Σ∗. Then K !Σ∗ = KΣ∗.

Proof. We have K !L ⊆ KΣ∗ by definition. Let w ∈ KΣ∗. Then w = uv for some u ∈ K
and v ∈ Σ∗. Let v′ be the longest word in pref(v) such that uv′ ∈ K. Then w = uv′v′′

and uv′ · v′′ ∈ K !Σ∗. Hence KΣ∗ ⊆ K !Σ∗, and the stated claim follows. ut

In [5, Theorem 1] the tight upper bound on state complexity of DFAs for the cut operation
was obtained.

Theorem 3 ([5], Theorem 3.1). Let A be an m-state and B an n-state DFA. Then f(m,n)
states, where

f(m,n) =

{
m, if n = 1;

(m− 1)n+m, if n ≥ 2,

are sufficient and necessary in the worst case for any DFA accepting L(A) !L(B). The lower
bound even holds for automata with binary input alphabet.

Proof. If n = 1, then L(B) = ∅ or L(B) = Σ∗. We have L(A) !Σ∗ = L(A)Σ∗ by Lemma 2. Since
the language L(A)Σ∗ is accepted by an m-state DFA, the upper bound follows and it is met by
the unary language am−1a∗. If n ≥ 2, the proof continues as in [5, Theorem 3.1]. ut

If we change to unary DFAs, that is, automata where the input alphabet Σ is a singleton
set, that is, Σ = {a} for some input symbol a, the descriptional complexity of the cut operation
changes dramatically. The following tight bounds were shown in [5, Theorem 3.2].

Theorem 4 ([5], Theorem 3.2). Let A be an m-state and B an n-state DFA accepting a
unary language. Then f1(m,n) states, where

f1(m,n) =


1, if m = 1;

m, if m ≥ 2 and n = 1;

2m− 1, if m,n ≥ 2 and m ≥ n;

m+ n− 2, if m,n ≥ 2 and m < n,

are sufficient and necessary in the worst case for any DFA accepting L(A) !L(B).

3 The Descriptional Complexity of the Cut Operation

This section is twofold. In the first subsection we investigate the magic number problem for the
cut operation on unary regular languages, while in the second subsection we study the magic
number problem for regular languages in general.

5

3.1 The Cut Operation on Unary Regular Languages

When working with unary DFAs we will use the notational convention on unary DFAs as pro-
posed by Nicaud in [14] as a generalization of Chrobaks notation [4], in order to keep the
presentation simple. It is not difficult to see that a unary DFA consists of a tail path, which
starts from the initial state, followed by a cycle of one or more states. Therefore a unary DFA
is totally determined by the number of states, the length of the tail path, and the set of final
states. Let A = (Q, {a}, δ, q0, F) be a unary DFA. We can identify the states of A with numbers
from [0, |Q| − 1] via q 7→ min{ i | δ(q0, ai) = q }. In particular the initial state q0 is mapped to 0.
Then the unary automaton A with |Q| states, tail path length t, and set of accepting states F
is referred to as A = (|Q|, t, F). Unary minimal DFAs were characterized in [14, Lemma 1].

Theorem 5. A unary automaton A = (n, t, F) is minimal if and only if the two following
conditions hold:

1. its loop is minimal, and
2. if t 6= 0, then states n − 1 and t − 1 do not have the same finality, that is, exactly one of

them is accepting.

0 . . . t− 1 t . . . n− 1

Fig. 4. Structure of a unary DFA; states t− 1 and n− 1 have opposite finality.

Now we are ready for our first result on the cut operation of unary regular languages rep-
resented by DFAs. In a series of lemmata we consider the state complexity α of the resulting
automaton in increasing order of α. The first interval we are going to discuss is [1,m].

Lemma 6. Let m,n ≥ 1. Then for every α with 1 ≤ α ≤ m, there exist a minimal unary m-
state DFA A and a minimal unary n-state DFA B such that the minimal DFA for L(A) !L(B)
has α states.

Proof. The proof has five cases:

1. Let m = 1, so we must have α = 1. Let A be the one-state DFA accepting the empty language
and B be the minimal n-state DFA for an−1a∗. Then L(A) !L(B) = ∅ which is accepted by
a minimal one-state DFA.

2. Let m ≥ 2, n = 1. By [11, Lemma 13] and Lemma 2, the result follows.
3. Let m,n ≥ 2 and α = 1. Consider the unary languages am−1a∗ and an−1a∗ accepted by

minimal DFAs of m and n states, respectively. Then am−1a∗ is a right ideal and λ /∈ an−1a∗.
By Lemma 1, the cut of these two languages is the empty set accepted by a minimal one-
state DFA.

4. Let m ≥ 2, n = 2, and 2 ≤ α ≤ m. Consider the unary DFAs A and B defined as follows:
if m − α is even, then L(A) = { ai | i = α − 2, α, . . . ,m − 2 } and L(B) = a(aa)∗. Other-
wise, L(A) = { ai | i = α− 1, α+ 1, . . . ,m− 2 } and set L(B) = (aa)∗. The minimal DFAs A
and B have m and 2 states, respectively, and L(A) !L(B) = aα−1(aa)∗, which is accepted by
a minimal α-state DFA—see, Figure 5.

6

0

..
.

β − 1

β

β + 1

β + 2

..
.

m− 2

m− 1

0 1

..
.

..
.

Fig. 5. The DFAs for the case 4 of Lemma 6. We have β = α− 2 if m− α is even, and β = α− 1 otherwise. The
minimized DFA has α states.

5. Let m ≥ 2, n ≥ 3, and 2 ≤ α ≤ m. Consider the unary DFAs A = (m,α−2, [α − 1,m − 1])
and B = (n, n−1, [0, n−2]). Since the loop of A contains a single non-final state and the loop
of B is a dead state, by Theorem 5, the DFAs A and B are minimal. The cut-construction
applied to A and B results in the DFA (m+ 1, α − 1, [α − 1,m]) which is equivalent to the
minimal DFA (α, α− 1, {α− 1}). ut

Our next interval is [m+ 1, 2m− 1]; compare with Theorem 4.

Lemma 7. Let m,n ≥ 2. Then for every α with m + 1 ≤ α ≤ 2m − 1, there exist a mini-
mal unary m-state DFA A and a minimal unary n-state DFA B such that the minimal DFA
for L(A) !L(B) has α states.

Proof. We have α = m+ β for some integer β with 1 ≤ β ≤ m− 1. Consider the unary DFA

A = (m, 0, {β}).

Define the unary DFA B as follows:

B =

{
(n, 0, {m− 1}), if m < n;

(n, n− 1, {n− 1}), otherwise.

7

By Theorem 5, the DFAs A and B are minimal. Then we apply the cut construction to A and B
and minimize the result. If m < n, then L(A) !L(B) is accepted by the unary DFA (α, β, {α−1}),
otherwise, it is accepted by the DFA (α, β, { i | n + β − 1 ≤ i ≤ α − 1 }). The resulting DFA is
minimal again by Theorem 5. ut

The last interval we are considering in this series of lemmata is [n,m+ n− 2].

Lemma 8. Let m,n ≥ 2. Then for every α with n ≤ α ≤ m + n − 2, there exist a mini-
mal unary m-state DFA A and a minimal unary n-state DFA B such that the minimal DFA
for L(A) !L(B) has α states.

Proof. Consider the DFAs A = (m,m−1, {m−2}) and B = (n, 0, {α−m+1}) which are minimal
by Theorem 5. The cut automaton (m+ n− 1,m− 1, {α− 1}) for L(A) !L(B) is equivalent to
the minimal DFA (α, α− n, {α− 1}). ut

For certain values of m an n the intervals stated in the previous lemmata may not be
continuous. For instance, if we choose m = 2 and n = 5, then the intervals from Theorem 10
cover [1, 3] ∪ [5]. Hence the value 4 is missing, which comes from the interval [2m,n − 1]. In
fact, we show that whenever this interval is non-empty, these values cannot be obtained by an
application of the cut operation on DFAs with an appropriate number of states. Hence we have
found some magic numbers.

Theorem 9 (Magic numbers in the unary case). Let m,n ≥ 2 satisfying 2m ≤ n−1. Then
for every α with 2m ≤ α ≤ n − 1, there exist no minimal unary m-state DFA A and minimal
unary n-state DFA B such that the minimal DFA for L(A) !L(B) has α states.

Proof. We discuss two cases depending on whether the language L(A) is infinite or finite. If L(A)
is infinite, then A must have a final state in its loop. Denote the size of loop in A by ` and
the smallest final state in the loop of A by j. The cut construction for A and B results in
a DFA (j + `, j, F), for some set F . Since j ≤ m − 1 and ` ≤ m, the cut automaton has at
most 2m− 1 states.

Let A = (m,m − 1, F) and B = (n, k, F ′) be minimal unary DFAs such that L(A) is fi-
nite. Then the state m − 1 is a non-final sink state in A, and the state m − 2 is final in A. It
follows that in the cut automaton for A and B, the state (m − 2, 0) and the states (m− 1, j),
for j = 1, 2, . . . , n− 1 are reachable. Two distinct states (m−1, j) and (m−1, j′) are distinguish-
able by the same word as the states j and j′ in B, and the state (m−2, 0) and a state (m− 1, j)
are distinguishable by the same word as 0 and j are distinguishable in B. It follows that the
cut automaton has at least n reachable and pairwise distinguishable states, and the theorem
follows. ut

Now let us summarize the attainable complexities in the unary case.

Theorem 10 (Attainable complexities in the unary case). For every m,n, α ≥ 1 such
that

1. α = 1, if m = 1,
2. 1 ≤ α ≤ m, if m ≤ 2 and n = 1, or
3. 1 ≤ α ≤ 2m− 1 or n ≤ α ≤ m+ n− 2, if m,n ≥ 2,

there exist a minimal unary m-state DFA A and a minimal unary n-state DFA B such that the
minimal DFA for L(A) !L(B) has α states.

8

0 1 . . . m−1
a, b a, b a, b a, b a

b

a, b

0 . . . m−1 m . . . α−m . . . n−1
a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a, b

Fig. 6. The DFAs A (top) and B (bottom) for the case of m < n and α satisfying 2m ≤ α ≤ m+ n− 1.

Proof. The cases of m = 1 and m ≥ 2, n = 1 are given by Lemma 6(1) and by Lemma 6(2),
respectively. Let m,n ≥ 2. The case of 1 ≤ α ≤ m is investigated in Lemma 6(3) up to 6(5).
The case of m+ 1 ≤ α ≤ 2m− 1 is given by Lemma 7. The case of n ≤ α ≤ m+ n− 2 is shown
in Lemma 8. ut

3.2 The Cut Operation on Binary Regular Languages

Next we consider the magic number problem for regular languages in general. Here it will turn
out that no magic numbers exist in this case, even for languages on a binary alphabet. First, we
show that the values from [1,m+ n− 1] are not magic in the binary case.

Lemma 11. Let m,n ≥ 2 and m < n. Then for α with 2m ≤ α ≤ m+ n− 1, there exist a
minimal binary m-state DFA A and a minimal binary n-state DFA B such that the minimal DFA
for L(A) !L(B) has α states.

Proof. Consider the binary DFA A = ([0,m− 1], {a, b}, δA, 0, {m− 1}), where

δA(i, a) = (i+ 1) mod m and δA(i, b) =

{
(i+ 1) mod m, if i 6= m− 2,

m− 2, otherwise.

Next, consider the binary DFA B = ([0, n− 1], {a, b}, δB, 0, {m− 1}), where

δB(j, a) = (j + 1) mod n and δB(j, b) =

{
(j + 1) mod n, if j 6= α−m,

m− 1, otherwise.

Both automata are depicted in Figure 6 and the cut automaton is drawn in Figure 7. In the cut
automaton for L(A) !L(B) we consider the following set of states:

R1 = { (i,⊥) | 0 ≤ i ≤ m− 2 } ∪ {(m− 1, 0)} ∪ { (i, i+ 1) | 0 ≤ i ≤ m− 3 },
R2 = {(m− 2,m− 1)},
R3 = { (m− 2, j) | m ≤ j ≤ α−m },

and let R = R1 ∪ R2 ∪ R3. Each state in R1 ∪ R2 is reached from (0,⊥) by a word in a∗,
and each state in R3 is reached from (m − 2,m − 1) by a word in b∗. Next, notice that each
state in R goes to a state in R on both a and b. It follows that no other state is reachable in
the cut automaton. To prove distinguishability, notice that the state (m− 2,m− 1) is a unique
final state. Next, two distinct states in R1 are distinguishable by a word in a∗ and two distinct
states in R3 are distinguishable by a word in b∗. The state (m− 2,⊥) is distinguishable from a
state in R3 by a word in b∗. Every other state in R1 is distinguishable from a state in R3 since
the word a leads them to two distinct states in R1 which are distinguishable as shown above.
Since |R| = α, our proof is complete. ut

9

a, b

a, b

a, b

b

a

a, b

a, b

a, b

a, b

a

a

b b

a b

Fig. 7. The cut automaton for the DFAs from Figure 6 if m = 5, n = 9, and α = 11.

Since the operational complexity of the cut operation for regular languages in general is higher
than those for unary language, we have to consider the remaining interval [m+n−1, (m−1)n+m]
up to the maximal state complexity. This is done in three steps—compare with [8]:

1. First we show that some special values of α are attainable, namely

α = 1 + (m− 1)s+ (n− s)r

for some r, s with 1 ≤ r ≤ m− 1 and 1 ≤ s ≤ n; every such value corresponds to the number
of states in the cut automaton in which the following states are reachable: the state (0, 0),
all the states in rows 1, 2, . . . , r, and all the states in columns 0, 1, . . . , s− 1 except for those
in row 0. Here the term rows and columns refers to the state components.

2. Then we show that all the remaining values of α in [m+ n− 1, (m− 1)n+ 1] are attainable.
3. Finally, we show that all the values of α in [(m− 1)n+ 2, (m− 1)n+m] are attainable.

Let us start with the first task.

Lemma 12. Let m,n ≥ 2 and set r, s such that 1 ≤ r ≤ m − 1 and 1 ≤ s ≤ n. Then there
exist a minimal binary m-state DFA Ar,s and a minimal binary n-state DFA Br,s such that the
minimal DFA for L(Ar,s) !L(Br,s) has exactly 1 + (m− 1)s+ (n− s)r states.

Proof. Our aim is to define the DFAs

Ar,s = ([0,m− 1], {a, b}, δA, 0, {0})

and
Br,s = ([0, n− 1], {a, b}, δB, 0, {n− 1})

in such a way that in the DFA for the cut of their languages the states in the following sets
would be reachable and pairwise distinguishable:

R1 = {(0, 0)},
R2 = { (i, j) | 1 ≤ i ≤ m− 1 and 0 ≤ j ≤ s− 1 },
R3 = { (i, j) | 1 ≤ i ≤ r and s ≤ j ≤ n− 1},

10

m

n

r

s

1

R3

(n− s)r
R2

(m− 1)s

Fig. 8. A part of a cut automaton with αr,s = 1 + (m− 1)s+ (n− s)r states.

and let R = R1∪R2∪R3. For a schematic illustration of these sets within the cut automaton see
Figure 8. Figure 9 shows the binary DFAs from Lemma 12 form+n−1 up to the value (m−1)n+1
and the resulting cut automaton—compare with Figure 10 from Lemma 13. Moreover, we have
to assure that no other state of the cut automaton is reachable. Since

|R1|+ |R2|+ |R3| = 1 + (m− 1)s+ (n− s)r,

the DFAs Ar,s and Br,s will be the desired DFAs. To this aim, we define δA and δB as follows:

δA(i, a) = (i+ 1) mod m and δA(i, b) =

{
i if i ≤ r;
r if i ≥ r + 1;

and

δB(j, b) = (j + 1) mod n and δB(j, a) =

{
j if j ≤ s− 1;

s− 1 if j ≥ s.

Then, in the DFA for L(Ar,s) !L(Br,s), the state (0, 0) is the initial state, and each state (i, j)
in R is reached from (0, 0) by aibj . To show that no other state is reachable, notice that each
state (i, j) in R goes on a to a state (i′, j′) where j′ ≤ s− 1, and it goes on b to a state (i′′, j′′)
where i′′ ≤ r. Since both resulting states are in R, no other state is reachable in the cut
automaton.

It remains to prove the distinguishability of states in R. The state (0, 0) and any other state
in R are distinguishable by a word in b∗. Two states in different columns are distinguishable
by a word in b∗ since exactly one of them can be moved to the last column containing the final
states of the cut automaton. Two states in different rows are distinguishable by a word in a∗

since exactly one of them can be moved to the state (0, 0). This proves distinguishability and
concludes the proof. ut

In the above lemma we obtained the values

αr,s = 1 + (m− 1)s+ (n− s)r

in [m+ n− 1, (m− 1)n+ 1]. We still need to get the values between αr,s and αr+1,s resp. αr,s+1

We have αr+1,s − αr,s = n − s and αr,s+1 − αr,s = m − 1 − r, so we need to obtain the
complexities αr,s + t, where 1 ≤ t ≤ min{n− s,m− 1− r} − 1. The next lemma produces these
complexities.

Lemma 13. Let m,n ≥ 2 and set r, s such that 1 ≤ r ≤ m − 1 and 1 ≤ s ≤ n. Moreover let t
satisfy 1 ≤ t ≤ min{n− s, m− 1− r}− 1. Then there exist a minimal binary m-state DFA Ar,s,t

11

0 1 2 3 4 5

0 1 2 3 4

A2,3

B2,3

a a a a a
a

b b b
b b b

b b b b
b

a a a
a a

a

a

a

a

a

a

a

a

a

a

a

a

a

a a

a

b

b b b b

b b b b

b b

b b

b b

b

a a

Fig. 9. The DFAs A2,3 and B2,3; m = 6, n = 5 (left). The DFA for L(A2,3) !L(B2,3) (right). Not all transitions
are shown.

and a minimal binary n-state DFA Br,s,t such that the minimal DFA for L(Ar,s,t) !L(Br,s,t)
has 1 + (m− 1)s+ (n− s)r + t states.

Proof. Let αr,s = 1+(m−1)s+(n−s)r. Then in the cut automaton for the languages accepted
by DFAs Ar,s and Br,s described in the previous proof, exactly αr,s states are reachable and
distinguishable. Our aim is to modify both automata in such a way that in the resulting cut
automaton has t more reachable states q1, q2, . . . , qt. We want these states to be in the row r+ 1
or in the column s. Moreover, we have to be careful and assure that no other state is reachable.
Since we have only two letters, the states qi must not be neighboring. For that reason, the
states q1, q3, . . . are in the row r+ 1 and columns s+ 1, s+ 3, . . ., and the states q2, q4, . . . are in
the column s and rows r + 2, r + 4,

To achieve this goal, we modify DFAs Ar,s and Br,s as follows: in Ar,s, we replace each
transition (r + i − 1, b, r) by (r + i − 1, b, r + i), if 1 ≤ i ≤ t and i is even. In Br,s, we replace
each transition (s + i − 1, a, s − 1) by (s + i − 1, a, s + i), if 1 ≤ i ≤ t and i is odd. Denote the
resulting DFAs by Ar,s,t and Br,s,t, respectively; see Figure 10 for an illustration in case m = 7,
n = 8, r = 2, s = 3, and t = 3.

Consider the cut automaton for L(Ar,s,t) !L(Br,s,t). Let R, R1, R2, R3 be the same sets as
in the previous proof. Then each state (i, j) in R is reachable from (0, 0) by aibj . Next, if i is
odd, then each state qi = (r + 1, s+ i) is reached from (r, s+ i− 1) by a, and if i is even, then
each state qi = (r + i, s) is reached from (r + i − 1, s − 1) by b. Now, let us show that that no
other state is reachable. Notice that each state in R goes either to a state in R or to a state
in {q1, q2, . . . , qt} on a and b. Next, each state in {q1, q2, . . . , qt} goes to a state in row r+ 1 or to
a state in column s on a and b. Since all the resulting states are in R∪{q1, q2, . . . , qt}, no other
state is reachable in the cut automaton. The proof of distinguishability is exactly the same as
in the proof of Lemma 12. ut

12

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7

A2,3,3

B2,3,3

a a a a a a
a

b b b

b
b

b

b

b b b b b b b
b

a a a

a
a a a a

q2

q1 q3

b

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b b b b b b b

b

b b b b b b b
a a a a a

b b

b b

b b

b b

b

a a

Fig. 10. For m = 7 and n = 8, the DFAs A2,3,3 and B2,3,3 are shown on top and the cut automaton
for L(A2,3,3) !L(B2,3,3) is depicted below. Not all transitions are shown.

We have already produced all the complexities in [m + n − 1, (m − 1)n + 1]. It remains to
show that the complexities in [(m− 1)n+ 2, (m− 1)n+m] are attainable.

Lemma 14. Let m,n ≥ 2 and (m−1)n+2 ≤ α ≤ (m−1)n+m. There exist a minimal binary m-
state DFA A and a minimal binary n-state DFA B such that the minimal DFA for L(A) !L(B)
has α states.

Proof. We have α = (m − 1)n + 1 + β for some β such that 1 ≤ β ≤ m − 1. Let B = Bm−1,n,
where DFA Bm−1,n is given by Lemma 12. Let A be the DFA obtained from Am−1,n by making
the state 0 non-final and by making the state β final; see Figure 11 for an illustration. Consider
the cut automaton constructed from A and B. Denote

R1 = { (i,⊥) | i ∈ [0, β − 1] } ∪ {(β, 0)},
R2 = { (i, j) | i ∈ [0, β − 1] ∪ [β + 1,m− 1] and j ∈ [0, n− 1] }.

Notice that each state in R1 is reachable since by reading β consecutive a’s we start in (0,⊥)
and run through the states (1,⊥), . . . , (β − 1,⊥) followed by (β, 0), and ending in (0, 0) by
further reading am−β. Each state (i, j) in R2 is reached from (0, 0) by aibj . No other state may
be reachable in the cut automaton.

To prove distinguishability, let p and q be two different states in R1 ∪ R2. If p ∈ R1

and q ∈ R2, then p is a non-final state with a loop on b, while a word in b∗ is accepted from q.
If both p and q are in R1, then a word in a∗ leads one of them to the state ((β + 1) mod m, 0)
in R2, while it leads the second one to a state in R1, and the resulting states are distinguishable
as shown above. Finally, let p and q be in R2. If they are in different columns, then a word in b∗

13

0 1 2 3 4 5

0 1 2 3 4

a a a a a
a

b b b b b b

b b b b
b

a a a a a

a

a

a

b

b

b

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b b b b

b b b b

b b b b

b

b b b b

b b b b

b

Fig. 11. The DFAs A and B; m = 6, n = 5, and β = 3 (left). The DFA for L(A) !L(B) (right). Not all transitions
are shown.

leads one of them to column n− 1 in which all states are final, while it leads the second one to
a different column in which all states are non-final. If p and q are in different rows, then a word
in a∗ leads one of them to the state (β, 0) in R1, and it leads the second one to a state in R2. ut

We summarize the result of this section.

Theorem 15 (Attainable complexities in the general case). Let m,n ≥ 1 and f(m,n)
be the state complexity of the cut operation. For each α such that 1 ≤ α ≤ f(m,n), there exist a
minimal binary m-state DFA A and a minimal binary n-state DFA B such that the minimal DFA
for L(A) !L(B) has α states.

Proof. First notice that if we have unary witnesses over {a} for some complexity of their cut,
and define transitions on b identically as on a, we get binary witnesses for the same complexity.
The case of n = 1 follows from Lemma 6(1) and 6(2). Let n ≥ 2. The case of m = 1 is given by
Lemma 6(1) since f(1, n) = 1. Let m ≥ 2. The case of 1 ≤ α ≤ m is given by Lemma 6(3)–6(5),
and the case of m + 1 ≤ α ≤ 2m − 1 by Lemma 7. The case of 2m ≤ α ≤ m + n − 1 is given
by Lemma 11. The complexities from [m + n − 1, (m − 1)n + 1] which can be written in the
form 1 + (m− 1) · s+ (n− s) · r are covered by Lemma 12, and all the remaining complexities
in this set are covered by Lemma 13. Finally, the complexities in [(m− 1)n+ 1, (m− 1)n+m]
are covered by Lemma 14. ut

Observe, that the previous theorem solves the magic number problem for the cut operation
for arbitrary sized alphabets of at least two letters, since adding duplicitous letters does not
change the complexity.

14

Acknowledgements. We would like to thank Juraj Šebej and Jozef Jirásek Jr. for their help
with proving the validity of our theorems for border values. Moreover, also thanks to Galina
Jirásková for her support on the paper. We also thank the anonymous referee who pointed out
a flaw in an earlier version of the proof of Lemma 6.

References

1. Berglund, M., Björklund, H., Drewes, F., van der Merwe, B., Watson, B.: Cuts in regular expressions. In:
17th DLT. pp. 70–81. No. 7907 in LNCS, Springer, Marne-la-Vallée, France (2011)

2. Čevorová, K., Jirásková, G., Krajňáková, I.: On the square of regular languages. In: 19th CIAA. pp. 136–147.
No. 8587 in LNCS, Springer, Giessen, Germany (2014)

3. Čevorová, K.: Kleene star on unary regular languages. In: 15th DFCS. pp. 277–288. No. 8031 in LNCS,
Springer, London, Ontario, Canada (2013)

4. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986)
5. Drewes, F., Holzer, M., Jakobi, S., van der Merwe, B.: Tight bounds for cut-operations on deterministic finite

automata. Fundam. Inform. 153, 1–22 (2017)
6. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inform. Comput. 205(11), 1652–1670

(2007)
7. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley (1978)
8. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages and descriptional com-

plexity. In: 7th DCFS. pp. 170–181. Universita degli Studi di Milano, Milano, Italy (2005)
9. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of DFAs that are equivalent

to n-state NFAs. Theoret. Comput. Sci. 237(1–2), 485–494 (2000)
10. Jirásková, G.: Magic numbers and ternary alphabet. Internat. J. Found. Comput. Sci. 22(2), 331–344 (2011)
11. Jirásková, G., Szabari, A., Šebej, J.: The complexity of languages resulting from the concatenation operation.

In: 18th DFCS. pp. 153–167. No. 9777 in LNCS, Springer, Bucharest, Romania (2016)
12. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: 12th

SWAT. pp. 188–191. IEEE Computer Society Press (1971)
13. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeter-

ministic, and two-way finite automata. IEEE Transaction on Computing C-20, 1211–1219 (1971)
14. Nicaud, C.: Average state complexity of operations on unary automata. In: 24th MFCS. pp. 231–240. No.

1672 in LNCS, Springer, Szklarska Poreba, Poland (1999)
15. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)

15

Institut für Informatik
Justus-Liebig-Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

Recent Reports

(Further reports are available at www.informatik.uni-giessen.de.)

M. Holzer, S. Jakobi, A Note on the Computational Complexity of Some Problems for Self-Verifying Finite Au-
tomata, Report 1702, April 2017.

S. Beier, M. Holzer, M. Kutrib, On the Descriptional Complexity of Operations on Semilinear Sets, Report 1701,
April 2017.

M. Holzer, S. Jakobi, M. Wendlandt, On the Computational Complexity of Partial Word Automata Problems,
Report 1404, May 2014.

H. Gruber, M. Holzer, Regular Expressions From Deterministic Finite Automata, Revisited, Report 1403, May
2014.

M. Kutrib, A. Malcher, M. Wendlandt, Deterministic Set Automata, Report 1402, April 2014.

M. Holzer, S. Jakobi, Minimal and Hyper-Minimal Biautomata, Report 1401, March 2014.

J. Kari, M. Kutrib, A. Malcher (Eds.), 19th International Workshop on Cellular Automata and Discrete Complex
Systems AUTOMATA 2013 Exploratory Papers, Report 1302, September 2013.

M. Holzer, S. Jakobi, Minimization, Characterizations, and Nondeterminism for Biautomata, Report 1301, April
2013.

A. Malcher, K. Meckel, C. Mereghetti, B. Palano, Descriptional Complexity of Pushdown Store Languages, Re-
port 1203, May 2012.

M. Holzer, S. Jakobi, On the Complexity of Rolling Block and Alice Mazes, Report 1202, March 2012.

M. Holzer, S. Jakobi, Grid Graphs with Diagonal Edges and the Complexity of Xmas Mazes, Report 1201, January
2012.

H. Gruber, S. Gulan, Simplifying Regular Expressions: A Quantitative Perspective, Report 0904, August 2009.

M. Kutrib, A. Malcher, Cellular Automata with Sparse Communication, Report 0903, May 2009.

M. Holzer, A. Maletti, An n logn Algorithm for Hyper-Minimizing States in a (Minimized) Deterministic Au-
tomaton, Report 0902, April 2009.

H. Gruber, M. Holzer, Tight Bounds on the Descriptional Complexity of Regular Expressions, Report 0901, Febru-
ary 2009.

M. Holzer, M. Kutrib, and A. Malcher (Eds.), 18. Theorietag Automaten und Formale Sprachen, Report 0801,
September 2008.

M. Holzer, M. Kutrib, Flip-Pushdown Automata: Nondeterminism is Better than Determinism, Report 0301,
February 2003

M. Holzer, M. Kutrib, Flip-Pushdown Automata: k + 1 Pushdown Reversals are Better Than k, Report 0206,
November 2002

M. Holzer, M. Kutrib, Nondeterministic Descriptional Complexity of Regular Languages, Report 0205, September
2002

H. Bordihn, M. Holzer, M. Kutrib, Economy of Description for Basic Constructions on Rational Transductions,
Report 0204, July 2002

M. Kutrib, J.-T. Löwe, String Transformation for n-dimensional Image Compression, Report 0203, May 2002

A. Klein, M. Kutrib, Grammars with Scattered Nonterminals, Report 0202, February 2002

A. Klein, M. Kutrib, Self-Assembling Finite Automata, Report 0201, January 2002

M. Holzer, M. Kutrib, Unary Language Operations and its Nondeterministic State Complexity, Report 0107,
November 2001

A. Klein, M. Kutrib, Fast One-Way Cellular Automata, Report 0106, September 2001

M. Holzer, M. Kutrib, Improving Raster Image Run-Length Encoding Using Data Order, Report 0105, July 2001

M. Kutrib, Refining Nondeterminism Below Linear-Time, Report 0104, June 2001

M. Holzer, M. Kutrib, State Complexity of Basic Operations on Nondeterministic Finite Automata, Report 0103,
April 2001

M. Kutrib, J.-T. Löwe, Massively Parallel Fault Tolerant Computations on Syntactical Patterns, Report 0102,
March 2001

