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Zusammenfassung

Das Risiko, dass ein Kreditnehmer oder allgemeiner ein Geschäftspartner sei-
nen Forderungen, bedingt durch beispielsweise Insolvenz, nicht nachkommen
kann, wird als Kreditrisiko oder Kreditausfallrisiko bezeichnet. Betrachtet
man einen einzelnen Kreditnehmer, sind dabei für eine Bank drei Größen
von besonderer Bedeutung:

• die Höhe der ausstehenden Forderungen zum Zeitpunkt des Ausfalls

• die Verwertungsrate, d.h. der Anteil, der aufgrund von Sicherheiten
noch zurückgezahlt werden kann

• die Ausfallwahrscheinlichkeit

Die Ausfallwahrscheinlichkeit bezieht sich dabei immer auf einen festgelegten
Zeithorizont. Die Ein-Jahres-Ausfallwahrscheinlichkeit beschreibt beispiels-
weise die Wahrscheinlichkeit eines Ausfalls innerhalb des nächsten Jahres.
Betrachtet man ein Portfolio mit mehreren Kreditnehmern, müssen auch
noch Abhängigkeiten zwischen den Kreditnehmern berücksichtigt werden.
Für die Modellierung von Kreditrisiken haben sich im Wesentlichen zwei
Modellansätze durchgesetzt:

• Intensitätsbasierte Modelle

• Firmenwertbasierte Modelle
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Der Fokus der vorliegenden Arbeit liegt dabei auf firmenwertbasierten Mo-
dellen. In der Einleitung wird die wegweisende, mit dem Nobelpreis ausge-
zeichnete Pionierarbeit von Robert C. Merton, (Merton, 1974), sowie eini-
ge darauf basierende Erweiterungen vorgestellt. Im Merton-Modell wird der
Firmenwert als geometrische Brownsche Bewegung modelliert. Ein Ausfall
findet statt, falls der Firmenwert zu einem bestimmten Zeitpunkt unterhalb
einer festgelegten Schranke liegt. Dieses Modell wurde in (Black and Cox,
1976) dahingehend erweitert, dass ein Ausfall zu jedem Zeitpunkt stattfin-
den konnte. Als Ausfallzeitpunkt wurde der Zeitpunkt definiert, zu dem der
Firmenwert zum ersten Mal eine bestimmte Schranke erreicht.

Basierend auf diesem Ansatz wurden zahlreiche so genannte strukturel-
le Modelle entwickelt, deren Hauptmerkmal ist, dass der Ausfallzeitpunkt
als Erstaustrittszeit eines stochastischen Prozesses, nicht notwendigerweise
des tatsächlichen Firmenwertprozesses, modelliert wird. Als Beispiel wird
im zweiten Kapitel das in (Albanese et al., 2003) vorgestellte Modell nä-
her betrachtet. Als Ausfallschranke dient dort die Null. Der Prozess, der die
Kreditqualität repräsentiert, wird als driftfreier stochastischer Prozess mit
lokaler Volatilität modelliert. Dieser Prozess resultiert aus einer stochasti-
schen Transformation, angewendet auf einen Squared Bessel Prozess. Das
Modell kann jedoch lediglich Kreditrisiken einzelner Kreditnehmer modellie-
ren. Um jedoch auch Abhängigkeiten zwischen verschiedenen Kreditnehmern
berücksichtigen zu können, muss ein Modell auch gemeinsame Ausfallwahr-
scheinlichkeiten zweier Kreditnehmer produzieren können.

Basierend auf dem Merton-Ansatz sind so genannte Faktormodelle wie
beispielsweise Creditmetrics, (JPMorgan, 1997), entwickelt worden. Da dort
der Ausfall nur an einem bestimmten Zeitpunkt stattfinden kann, genügt es,
die Kreditwürdigkeit durch eine Zufallsvariable zu modellieren. Die Ausfall-
schranke ist dann durch das Quantil der Ausfallwahrscheinlichkeit gegeben.
Um Abhängigkeiten zu modellieren, wird diese Zufallsvariable als Summe
zweier unabhängiger Zufallsvariablen modelliert. Dabei repräsentiert die ers-
te Zufallsvariable das individuelle Risiko und die zweite Zufallsvariable das
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gemeinsame Risiko. Im dritten Kapitel wird dieses Konzept auf Erstaustritt-
szeitmodelle übertragen. Dazu muss der Kreditwürdigkeitsprozess als Sum-
me zweier unabhängiger Prozesse modelliert werden. Bezug nehmend auf das
vorangegangene Kapitel werden aufgrund ihrer Additivitätseigenschaft dazu
Squared Bessel Prozesse gewählt. Als Ausfallschranke dient wiederum die
Null. Um die gemeinsame Wahrscheinlichkeit, d.h. die Wahrscheinlichkeit,
dass die Prozesse beider Kreditnehmer bis zu einem bestimmten Zeitpunkt
die Null erreichen, zu berechnen, muss auf den gemeinsamen Prozess bis
zum festgelegten Zeithorizont bedingt werden. Da dies jedoch nicht realisier-
bar ist, wird, um dieses Problem zu beheben, der gemeinsame Prozess durch
einen gestoppten Prozess ersetzt. Falls dieser also die Null erreicht, bleibt
er dort. Der Kreditwürdigkeitsprozess besteht danach nur noch aus dem in-
dividuellen Prozess. Dadurch erhält das Modell die Charakteristika eines so
genannten Common Shock Modells. Der Ausfall kann nur durch ein bestimm-
tes, alle Kreditnehmer beeinflussendes Ereignis ermöglicht werden, in diesem
Fall dem Erreichen der Null des gemeinsamen Prozesses. Der Ausfallzeit-
punkt und damit der Erstaustrittszeitpunkt des Kreditwürdigkeitsprozesses
setzt sich zusammen als Summe des Erstaustrittszeitpunktes des gemeinsa-
men Prozesses und der Zeit bis zum ersten Eintreffen in der Null des indivi-
duellen Prozesses nach diesem Zeitpunkt. Damit lassen sich dann für jeden
gegebenen Zeithorizont Ausfallwahrscheinlichkeiten sowie gemeinsame Aus-
fallwahrscheinlichkeiten bestimmen.

Im vierten Kapitel werden zwei weitere Ansätze kurz vorgestellt. Im vor-
angegangenen Modell kann ein Ausfall nur stattfinden, falls ein alle Kre-
ditnehmer beeinflussendes Ereignis vorher eingetreten ist. Damit ein Ausfall
auch vor einem solchen Ereignis stattfinden kann, wirkt sich in diesem Modell
der Schock lediglich auf die Parameter der Firmenwertprozesse aus. Werden
diese also durch geometrische Brownsche Bewegungen modelliert, könnte der
Schock beispielsweise eine Erhöhung der Volatilität hervorrufen. In dem zwei-
ten vorgestellten Ansatz wird der Driftparameter selbst als Zufallsvariable
modelliert.
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Das letzte Kapitel gibt einen bereits veröffentlichten Artikel über die
Verwendung von Copulas in dem Kreditrisikomodell CreditRisk+, (Ebmeyer
et al., 2007), wieder.
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Chapter 1

Introduction

Credit risk can be defined as the risk that a counterparty or a bank borrower
will not be able to settle its obligations according to agreed terms. Since
credit risk is still the leading source of problems for a bank, a main task of
its risk management is to analyze the credit risk of the entire portfolio as
well as the risk of individual credits or transactions. Considering a single
counterparty, for a bank there are three issues to pay attention to:

• credit exposure, i.e., the amount of the outstanding obligations in case
of default.

• recovery rate, i.e., the fraction of the credit exposure, that can be
recovered in case of default.

• default probability, i.e., the likelihood that the counterparty will default
on its obligations over some specified time horizon.

At least as important as the single counterparty risk is the consideration of
credit risk at the portfolio level. One objective of assessing portfolio credit
risk is the increase of diversification, that reduces risk as well as to decrease
credit concentration effects. There are several reasons for the high attention
that is paid to portfolio credit risk modelling. On the one hand there is an
interest in getting the Basel II accord permission to use internal models for
calculating credit risk capital charges and to improve the capital allocation

1



2 CHAPTER 1. INTRODUCTION

for portfolio credit risk. On the other hand there is the necessity to price
credit derivatives that are linked to baskets of defaultable obligations and
the increasing importance of collateralized debt obligations. Hence, an im-
portant task in risk management is the study of the dependence structure of
different obligors.
The main objective is to develop appropriate models that do not just produce
reasonable single default probabilities but also provide joint default proba-
bilities for at least two obligors. The credit risk literature often distinguishes
between two different types of credit risk models:

• Reduced form models

• Firm value based models

Reduced form models were introduced for the first time in (Jarrow and Turn-
bull, 1992) and studied in (Jarrow and Turnbull, 1995), (Duffie and Singleton,
1999) and others.
In contrast to firm value models, the time of default in reduced form mod-
els is not linked to the value of the firm. It is modelled as the first jump
of an exogenously given jump process. The intensity rate of this process,
called default intensity represents the instantaneous default probability. The
simplest case is a constant default intensity λ. Then the jump process is
a Poisson process with intensity λ and the default time τ is exponentially
distributed with parameter λ. In more advanced models the jump process is
a Cox process. Then the default intensity itself is a stochastic process. In
order to model dependence between defaults of different firms, it is possible
to introduce a dependence structure for the different default intensities.
In firm value based models, also called structural models, the credit quality
of the firm itself is modelled as a stochastic process. Thus, a default takes
place if the process lies below a certain barrier. This process, also called
ability-to-pay process and the default barrier can be directly linked to the
assets and the liabilities of the firm. The structural models are based on
the Merton model, introduced in (Merton, 1974), where the option pricing
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theory developed by (Black and Scholes, 1973) is applied. In this chapter the
Merton model as well as some extensions are introduced.

1.1 Merton Approach

As already mentioned, the Merton model introduced in (Merton, 1974) uses
the option pricing framework of (Black and Scholes, 1973) to create a link
between the default risk and the asset and liability structure of the firm. In
this simplified approach it is assumed that the firm has issued only equity
and debt, where the equity receives no dividends. The debt is a single bond
with promised payment K at time T . Since the debt is senior to the equity,
the value of the equity is 0 at time T if the asset value VT lies below K and
is equal to VT −K otherwise, i.e.,

ET = max(VT −K, 0).

Thus, the equity can be seen as a call option on the asset value with strike
K. Applying the option price model of (Black and Scholes, 1973) leads to

Et = VtΦ(d1)−Ke−r(T−t)Φ(d2)

with

d1 =
log
(
Vt
K

)
+ r(T − t) + 1

2
σ
√
T − t

σ
√
T − t

d2 = d1 − σ
√
T − t

where r is the risk free interest rate and σ is the volatility of the asset value.
Now we are interested in the probability of default under the real world
measure. Since the payment is due only at maturity T , a default can only
happen at the fixed date T . In the case of default, the firm’s asset value at
time T does not suffice to pay the amount of K. If we define τ to be the
random variable representing the default time, τ can only take the values T
and ∞:

τ =

 T if VT ≤ K

∞ otherwise.
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Since the Black-Scholes environment is assumed to hold, the asset value
(Vt)0≤t≤T follows a geometric Brownian motion, i.e., its dynamics are repre-
sented by

dVt = µVtdt + σVtdWt , V0 > 0

where µ ∈ R is called the drift parameter and σ > 0 the volatility parameter.
Wt denotes a standard Brownian motion. Applying Itô’s Lemma, we get

Vt = V0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
.

Then the default probability is

P(τ = T ) = P(VT ≤ K)

= P
(
V0 exp

((
µ− 1

2
σ2

)
T + σWT

)
≤ K

)
= P

(
σWT ≤ log

(
K

V0

)
−
(
µ− 1

2
σ2

)
T

)

= Φ

 log
(
K
V0

)
−
(
µ− 1

2
σ2
)
T

σ
√
T


The obvious shortcoming of this approach is that a default can only happen
at maturity of the zero coupon bond.

1.2 First Passage Approach

1.2.1 Black and Cox (1976)

The first approach to overcome this problem was made by (Black and Cox,
1976). They extended the Merton model to the case when the firm can default
at any time. So the default time τ becomes a continuous random variable
on (0,∞]. In their approach the default time τ describes the first time
the firm value falls below a certain deterministic time-dependent threshold
D(t) = Deλt. So τ is defined as

τ = inf{t : Vt < Deλt}.
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Nevertheless we first describe the case of a constant threshold D. Still mod-
elling the firm value V as a geometric Brownian motion and the default
barrier D as fixed and deterministic we get for the default probability, i.e.,
the probability that the firm defaults before time t as

P(τ ≤ t) = P( min
0≤s≤t

Vs < D)

= P
(

min
0≤s≤t

V0 exp

((
µ− 1

2
σ2

)
s+ σWs

)
< D

)
= P

(
min

0≤s≤t

((
µ− 1

2
σ2

)
s+ σWs

)
< log

(
D

V0

))
.

This is the probability, that the running minimum of the arithmetic Brownian
motion Xt =

(
µ− 1

2
σ2
)
t+ σWt lies below log

(
D
V0

)
and is given as

Φ

 log
(
D
V0

)
−
(
µ− 1

2
σ2
)
t

σ
√
t

+

(
D

V0

) 2µ

σ2−1

Φ

 log
(
D
V0

)
+
(
µ− 1

2
σ2
)
t

σ
√
t

 .

1.2.2 Time-dependent Default Barrier

The constant default barrier D is now replaced by the deterministic default
barrier function D(t) = Deλt. Thus, τ is the first time the process Vt lies
below the time-dependent barrier D(t). Since

{Vt < D(t)} = {Vt < Deλt} = {Vte−λt < D} ∀t
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we get the following default probability:

P(τ ≤ t) = P
(

min
0≤s≤t

Vse
−λs < D

)
= P

(
min

0≤s≤t
V0 exp

((
µ− 1

2
σ2 − λ

)
s+ σWs

)
< D

)
= P

(
min

0≤s≤t

((
µ− 1

2
σ2 − λ

)
s+ σWs

)
< log

(
D

V0

))

= Φ

 log
(
D
V0

)
−
(
µ− 1

2
σ2 − λ

)
t

σ
√
t


+

(
D

V0

) 2(µ−λ)

σ2 −1

Φ

 log
(
D
V0

)
+
(
µ− 1

2
σ2 − λ

)
t

σ
√
t

 .

The approach by (Zhou, 1997) proposes to set the parameter λ of the default
barrier to λ = µ− 1

2
σ2. So the default probability reduces to

P(τ ≤ t) = 2Φ

 log
(
D
V0

)
σ
√
t

 .

1.3 Distance to Default Models

In this section we present two structural models, where although the ability-
to-pay processes indicate the creditworthiness of the firm, the processes are
not directly identified with the firm’s asset value. The first model considers
a discrete time grid such that a default can only happen at one of these
pre-defined time points. The second model extends the first model to the
continuous time case.

1.3.1 Hull and White (2001)

In (Hull and White, 2001) the authors extend their own proposal to the val-
uation of Credit Default Swaps, see (Hull and White, 2000), by allowing the
payoff to be contingent on defaults by multiple reference entities. Thus they
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have to incorporate default correlation of those entities.
Here we restrict ourselves on the calculation of the default correlation. We
will not address the issue of valuation of Credit Default Swaps. Although fol-
lowing the ideas of (Merton, 1974), (Black and Cox, 1976) and (Zhou, 1997),
this approach is based on risk-neutral default probabilities, since in order to
price contingent claims, risk-neutral probabilities shall be used. Considering
a set of companies J = {1, . . . , N}, for each company j ∈ J , the credit
index (Xj(t))t≥0 ( a kind of ability to pay process) is defined as a standard
Brownian motion. The instantaneous correlation between two firms j, k ∈J

is denoted by ρjk. The default correlation βjk(T ) is defined as

βjk(T ) =
Pjk(T )−Qj(T )Qk(T )√

Qj(T )−Qj(T )2
√
Qk(T )−Qk(T )2

where Pjk(T ) denotes the joint default probability of j and k and Qj(T )

the default probability of company j by time T . To obtain βjk(T ) from
the credit index correlation ρjk, one has to simulate the credit indices, since
Pjk(T ) cannot be specified directly. The default probability Qj(T ) is defined
as

Qj(T ) =

T∫
0

qj(t)dt

where qj(t) denotes the default probability density. These risk-neutral default
probability densities are assumed to be estimated from bond prices or CDS
spreads. Now the time dependent default barrier Kj(t) has to be determined
such that qj(t) coincides with the first passage time density, i.e., Kj(t) has
to be chosen so that with the first passage time

τj := inf{s ≥ 0 : Xj(s) ≤ Kj(s)}

we get

P(τj ≤ t) = Qj(t).

For this the default probability density is discretized so that defaults can
only happen at times ti, 1 ≤ i ≤ n. Now qij is defined as the risk-neutral
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probability of default by company j at time ti, i.e.,

qij = P(τj = ti).

A default occurs at time ti if the credit index Xj(ti) lies below the default
barrier Kij = Kj(ti) and no default has happened before ti. Furthermore we
define fij(x) to be the density of Xj(ti) under the condition that no default
happened prior to ti. These definitions imply that the cumulative probability
of company j defaulting by time ti satisfies

P(τj ≤ ti) =
i∑

k=1

qkj = 1−
∞∫

Kij

fij(x)dx.

Then Kij and fij(x) have to be determined inductively from the risk-neutral
default probabilities. Since Xj follows a standard Brownian motion, we get

f1j(x) =
1√
2πt1

exp

(
− x

2

2t1

)
and

q1j = P(Xj(t1) ≤ K1j) = P(N(0, t1) ≤ K1j) = Φ

(
K1j√
t1

)
.

So the default barrier for t1 is

K1j =
√
t1Φ−1(q1j).

Then for 2 ≤ i ≤ n, the probability of a default at time ti, conditioned on
the event {Xj(ti−1) = u, u > Ki−1,j} equals

qij(u) := P(Xj(ti) ≤ Kij|Xj(ti−1) = u)

= P(N(u, ti − ti−1) ≤ Kij) = Φ

(
Kij − u√
ti − ti−1

)
.

Thus

qij =

∞∫
Ki−1,j

qij(u)fi−1,j(u)du =

∞∫
Ki−1,j

fi−1,j(u)Φ

(
Kij − u√
ti − ti−1

)
du. (1.1)
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Equivalently fij(x) is determined for x > Ki−1,j:

fij(x) =

∞∫
Ki−1,j

fi−1,j(u)
1√

2π(ti − ti−1)
exp

(
− (x− u)2

2(ti − ti−1)

)
du. (1.2)

Now equations 1.1 and 1.2 have to be solved numerically.

1.3.2 Avellaneda and Zhu (2001)

In (Avellaneda and Zhu, 2001) the authors describe an extension to the ap-
proach of (Hull and White, 2001), introduced in the last subsection. Here
the continuous time case is considered and the credit index is modelled as a
general diffusion process

X(t) = X(0) +

t∫
0

a(X(s), s)ds+

t∫
0

σ(X(s), s)dW (s)

where W (t) is a standard Brownian motion. The default time is the first
time the credit index hits the barrier function b(t), i.e.,

τ = inf{t ≥ 0|X(t) ≤ b(t)}.

The survival probability density function of X(t) is given as

f(x, t)dx = P(x < X(t) < x+ dx, τ ≥ t).

Then f(x, t) satisfies the forward Fokker-Planck equation

ft =
1

2
(σ2(x, t)f)xx − (a(x, t)f)x, t > 0, x > b(t) (1.3)

with the following conditions

f(x, t)|t=0 = δ(x−X0) (1.4)

f(x, t)|x=b(t) = 0. (1.5)

Thus the default probability is given by

P (t) = 1−
∞∫

b(t)

f(x, t)dx.
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Now b(t) has to be determined so that P (t) coincides with the market-given
default probabilities. Therefore we first determine the derivative of P (t):

P ′(t) = −
∞∫

b(t)

∂f

∂t
dx+ f(b(t), t)b′(t)

=
1.5
−
∞∫

b(t)

∂f

∂t
dx

=
1.3
−1

2

∞∫
b(t)

(σ2(x, t)f)xxdx+

∞∫
b(t)

(a(x, t)f)xdx

=
1.5

1

2

∂

∂x
(σ2f)

∣∣∣∣
x=b(t)

.

Thus b(t) has to satisfy

f(b(t), t) = 0 and P ′(t) =
1

2

∂

∂x
(σ2f)

∣∣∣∣
x=b(t)

A risk-neutral distance-to-default (RNDD) process, i.e., calibrated to the
market implied default probability P (t), is defined as

Y (t) = Y (0) +

t∫
0

ã(Y, t)dt+

t∫
0

σ̃(Y, t)dW (t), Y (0) > 0

so that
P (t) = P

(
inf

0≤s≤t
Y (s) ≤ 0

)
.

Then
Y (t) = X(t)− b(t)

is a RNDD process with

ã(Y, t) = a(X, t)− b′(t).

Its survival density equals

u(y, t) = f(y + b(t), t).



1.3. DISTANCE TO DEFAULT MODELS 11

Thus, the Fokker-Planck equation is given by

ut =
1

2
(σ2u)yy − (ãu)y

=
1

2
(σ2u)yy − auy + b′(t)uy.

Furthermore we have

P ′(t) =
1

2

(
∂

∂y
(σ2u)

)∣∣∣∣
y=0

.

Hence, b′(t) has to be determined so that this condition is satisfied for all
t > 0. That means, the free boundary problem for the credit index in (Hull
and White, 2001) is transformed into a control problem for the RNDD.



Chapter 2

Credit Barrier model by Albanese

et al.

2.1 Introduction

In (Albanese et al., 2003) the authors extend the distance to default models
presented in the preceding subsections. In this article, the credit quality of
an obligor is represented by a credit quality process, whose current state can
be identified with the obligor’s credit rating. Since the calibration to de-
fault probabilities as well as migration rates failed in the diffusion case, they
introduced jumps by using a stochastic time change. The presented model
is a single obligor model and cannot be extended to the multidimensional
case in order to determine joint default probabilities. Nevertheless in this
chapter we will review the development of the credit quality process in the
diffusion case. This process results from a two-stage transformation, called
stochastic transformation, applied to a Squared Bessel process. In the next
chapter the Squared Bessel process is used to develop a multi issuer model
which disregards rating transition probabilities and instead focusses on de-
fault probabilities and joint default probabilities. Nevertheless the stochastic
transformation used to produce the credit quality process will be presented
here in detail. First we summarize the requirements for the credit quality

12



2.1. INTRODUCTION 13

process.

2.1.1 The Credit Quality Process

The credit quality process (Yt)t≥0 is to be identified with the credit rating of
the obligor. Next we list the properties we require from this process.

• Yt is nonnegative

• the lower boundary 0 is absorbing

• the upper boundary bmax is unattainable

• the volatility is state dependent

• the process is driftless

• the process has stationary increments.

Since Yt can be seen as a distance-to-default it is chosen to be nonnegative.
The state 0 represents the default state. Thus this state is absorbing. The
interval (0, bmax) is divided into K subintervals, where (0, b1) represents the
worst rating and [bK−1, bmax) represents the best rating. The subintervals do
not have to be equidistant. Since higher quality ratings are less volatile than
low quality ratings the volatility is chosen to be state dependent. Finally
the process has stationary increments since migration probabilities remain
consistent over time and through economic cycles.

The migration probabilities are determined as follows. If the obligor has
rating i at time 0, i.e., the initial state yi0 satisfies yi0 ∈ [bi−1, bi), the proba-
bility to have rating j at time t > 0 is given as

pj(y
i
0, t) =

bj∫
bj−1

pY (t, yi0, y)dy

where pY (t, yi0, y) is the transition probability density of the credit quality
process (Yt)t≥0. There it is not clear, how to determine the initial state yi0.
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The default probability is given as

pD(yi0, t) = 1−
bmax∫
0

pY (t, yi0, y)dy.

In the next section the state dependent volatility σ(Yt) is determined in
order to satisfy the requirements listed above. Then the process Yt satisfies
the following integral equation:

Yt = Y0 +

t∫
0

σ(Ys)dWs

whereWt is a standard Brownian motion. Thus, Yt is a martingale with local
volatility function.
In order to achieve analytical tractability of the probability kernel pY (t, y0, y),
the process Yt is chosen to be the result of a stochastic transformation, as de-
scribed in (Albanese and Campolieti, 2001), consisting of a change of measure
and a nonlinear transformation of a process Xt with a closed form transition
probability density. The stochastic transformation preserves the analytical
tractability by allowing the probability kernel pY to be expressed in terms of
the probability kernel pX of the process Xt. Moreover the stochastic trans-
formation has to provide sufficient parameters for the purpose of calibration.

2.2 Stochastic Transformation

The underlying process Xt is chosen to be a Squared Bessel process, i.e., Xt

satisfies

Xt = x0 + δt+ 2

t∫
0

√
XsdWs (2.1)

with the well known probability kernel

pX(t, x0, x) =
1

2t

(
x

x0

) θ
2

exp

(
−x+ x0

2t

)
Iθ

(√
xx0

t

)
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where θ = δ
2
− 1 and Iθ is the modified Bessel function of the first kind of

order θ. For a deeper survey of Squared Bessel processes see section 3.1.
As already mentioned the stochastic transformation consists of two steps.

The first step is a change of measure and the second step is a removal of the
drift. These two steps will be described in the next subsections.

2.2.1 Change of Measure

The Squared Bessel process Xt is a Markov process on the filtered probabil-
ity space (Ω,F , (Ft)t≥0,Px0) according to the following definition (see ,e.g.,
(Borodin and Salminen, 1996)).

Definition 2.2.1 An adapted stochastic process (Xt)t≥0 defined on a filtered
probability space (Ω,F , (Ft)t≥0,P) and taking values in a general state space
(E,E ) is called a time-homogeneous Markov process if for every t there exists
a kernel Pt : E × E 7→ [0, 1], called a transition function, such that

1. for all A ∈ E and t, s ≥ 0,

P(Xt+s ∈ A|Ft) = Ps(Xt, A) a.s.

2. for all A ∈ E and t Pt(·, A) is measurable

3. for all x ∈ E and t Pt(x, ·) is a probability measure on (E,E )

4. for all A ∈ E and x ∈ E,

P0(x,A) = δx(A)

where δx(·) is the Dirac measure, i.e.,

δx(A) =

1 if x ∈ A

0 if x /∈ A

5. The Chapman-Kolmogorov equation holds:

Pt+s(x,A) =

∫
E

Pt(x, dy)Ps(y, A) ∀x ∈ E,A ∈ E , s, t ≥ 0
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The process starts almost surely in x0, i.e., Px0(X0 = x0) = 1. As from now
we can unambiguously omit the subscript x0 from the probability measure.
The new probability measure Q has to be locally absolutely continuous with
respect to P according to the following definition:

Definition 2.2.2 A probability measure Q defined on the filtered probability
space (Ω,F , (Ft)t≥0) is said to be locally absolutely continuous with respect
to P, defined on the same filtered space, if, for all t ≥ 0, Q is absolutely
continuous with respect to P on Ft, i.e., for all F ∈

⋃
t∈[0,∞)Ft,

P(F ) = 0⇒ Q(F ) = 0.

Then for every t ≥ 0 the Radon-Nikodým derivative of Q relative to P with
respect to Ft is given by

Lt =
dQ
dP

∣∣∣∣
Ft
.

The process Lt is a positive P-martingale. Now the following result holds:

Lemma 2.2.3 Let Q be locally absolutely continuous with respect to P. The
random variable ζ is defined by

ζ = inf{t > 0|Lt = 0}

and ζ =∞ if {Lt = 0} = ∅ ∀t. Then

1. ζ =∞ Q− a.s.

2. Let Vt be an Ft-adapted process, then for s ≤ t

EQ(Vt|Fs) = L−1
s EP(LtVt|Fs)1{Ls 6=0} (2.2)

3. Let M̃ be an adapted process. Then

M̃ ∈M loc(Q)⇔ M̃L ∈M loc,ζ(P)

where M loc(Q) is the set of local Q-martingales and M loc,ζ(P) are the
local P-martingales up to ζ.
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Proof:

1. Since {ζ < t} ∈ Ft we have

Q(ζ < t) = EP(Lt1{ζ<t}) = EP(Lζ1{ζ<t}) = 0

2. Both sides of 2.2 are Fs-measurable. According to the definition of the
conditional expectation EQ(Vt|Fs) is unique with

EQ(1AVt) = EQ(1AEQ(Vt|Fs))

for any set A ∈ Fs. Thus we have to show that

EQ(1AL
−1
s 1{Ls 6=0}EP(LtVt|Fs)) = EQ(1AVt).

For this we make use of the following:
For t > 0 we have

EQ(Y ) = EP(LtY ) (2.3)

for any Ft-measurable random variable Y .
Then

EQ(1AVt) =
(2.3)

EP(1ALtVt)

= EP(1A1{Ls 6=0}LtVt) = EP(1A1{Ls 6=0}EP(LtVt|Fs))

= EP(1ALsL
−1
s EP(LtVt|Fs))

=
(2.3)

EQ(1AL
−1
s 1{Ls 6=0}EP(LtVT |Fs)).

3. ′′ ⇐′′: Let M̃L be a P-martingale. Then

EQ(M̃t|Fs) = L−1
s EP(M̃Lt|Fs)1{Ls 6=0}

= L−1
s M̃sLs1{Ls 6=0} = M̃s Q− a.s.

′′ ⇒′′: Let M̃ be a Q-martingale. Then

EP(M̃Lt|Fs)1{Ls 6=0} = Ls1{Ls 6=0}EQ(M̃t|Fs)

= M̃sLs1{Ls 6=0}.
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�

Theorem 2.2.4 (Girsanov’s Theorem) Let Q be locally absolutely continu-
ous with respect to P and set

Lt =
dQ
dP

∣∣∣∣
Ft
.

If (Mt)t≥0 is a local P-martingale, then

M̃t := Mt −
t∫

0

L−1
s d〈M,L〉s

is a local martingale under Q.

Proof: To show that M̃ ∈M loc(Q), we can also show that M̃L ∈M loc,ζ(P).
Let

At :=

t∫
0

L−1
s d〈M,L〉s.

For

(M̃L)t = Lt(Mt − At)

with Itô’s product formula it follows that

M̃tLt = M0L0 +

t∫
0

(Ms − As)dLs +

t∫
0

LsdMs −
t∫

0

LsdAs + 〈M,L〉t

= M0L0 +

t∫
0

(Ms − As)dLs +

t∫
0

LsdMs − 〈M,L〉t + 〈M,L〉t

= M0L0 +

t∫
0

M̃dLs +

t∫
0

LsdMs.

�

Applied to the special case of a Brownian motion we get
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Corollary 2.2.5 Let W be a Brownian motion under P and let Q be locally
absolutely continuous with respect to P. Then

W̃t = Wt −
t∫

0

L−1
s d〈W,L〉s

is a Brownian motion under Q.

Proof: W̃ is a Q-martingale with 〈W̃ 〉t = t. �

If it is required that the process Xt remains a Markov process under the new
measure Q, the Radon-Nikodým derivative Lt must be a function of Xt and
t, i.e.,

Lt = g(Xt, t)

with g(X0, 0) = 1. Then for the Q-Brownian motion W̃ it follows

W̃t = Wt −
t∫

0

1

g(Xs, s)
d〈W, g(X., ·)〉s.

According to Itô’s formula we have

g(Xt, t) = g(X0, 0) +

t∫
0

gx(Xs, s)dXs +

t∫
0

gxx(Xs, s)d〈X〉s +

t∫
0

gs(Xs, s)ds

where gx(Xs, s) is the first derivative and gxx(Xs, s) is the second derivative
with respect to the first component. gs(Xs, s) is the first derivative with
respect to the second component. Thus we have

〈W, g(X., ·)〉t =

t∫
0

gx(Xs, s)d〈W,X〉s

+

t∫
0

gxx(Xs, s)d〈W, 〈X〉〉s +

t∫
0

gs(Xs, s)d〈W, s〉s

=

t∫
0

gx(Xs, s)d〈W,X〉s.
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With

〈W,X〉t =

t∫
0

2
√
Xsd〈W 〉s =

t∫
0

2
√
Xsds

we have

〈W, g(X·, ·)〉t =

t∫
0

gx(Xs, s)d〈W,X〉s

=

t∫
0

gx(Xs, s)2
√
Xsds

Altogether we get

W̃t = Wt −
t∫

0

gx(Xs, s)

g(Xs, s)
2
√
Xsds.

Under the new measure Q the process Xt has the following form

XQ
t = x0 +

t∫
0

δds+

t∫
0

2
√
Xsd

W̃ +

t∫
0

gx(Xs, s)

g(Xs, s)
2
√
Xsds


= x0 +

t∫
0

(
δ + 4Xs

gx(Xs, s)

g(Xs, s)

)
ds+

t∫
0

2
√
XsdW̃s.

The process is also required to be stationary. This is only possible if gx(Xt,t)
g(Xt,t)

is independent of t. This implies that

g(Xt, t) = g(t)h(Xt).

Applying Itô’s formula again leads to

dg(Xt, t) = (gx(Xt, t)δ + gxx(Xt, t)2Xt + gt(Xt, t))dt+ 2
√
Xtgx(Xt, t)dWt

= (g(t)h′(Xt)δ + g(t)h′′(Xt)2Xt + g′(t)h(Xt))dt

+2
√
Xtg(t)h′(Xt)dWt

= (g(t)(h′(Xt)δ + h′′(Xt)2Xt) + g′(t)h(Xt))dt

+2
√
Xtg(t)h′(Xt)dWt.
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Since g(Xt, t) is a martingale under P it has to be driftless, i.e., g has to
satisfy

g(t)(h′(x)δ + h′′(x)2x) + g′(t)h(x) = 0

Since g(x, t) is strictly positive we can rearrange the above equation to obtain

g′(t)

g(t)
= −h

′(x)δ + h′′(x)2x

h(x)
.

The right hand side does not depend on t. Thus it must be constant, i.e.,

h′(x)δ + h′′(x)2x

h(x)
= ρ.

Then
g′(t)

g(t)
= −ρ

leads to

g(t) = e−ρt.

Thus

g(x, t) = e−ρth(x).

The drift condition becomes

e−ρt(h′(x)δ + h′′(x)2x)− ρe−ρth(x) = 0

⇔ h′(x)δ + h′′(x)2x = ρh(x).

This corresponds to the equation

GXh(x) = ρh(x)

where GX is the infinitesimal generator of the process X. To verify this we
first need some definitions and remarks, see (Revuz and Yor, 1991).

Definition 2.2.6 (Feller semi-group) Let E be a metric space and let C0(E)

be the space of continuous functions on E which vanish at infinity. A Feller
semi-group on C0(E) is a family Tt, t ≥ 0, of positive linear operators on
C0(E) such that
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1. T0 = Id and ||Tt|| ≤ 1 for every t

2. Tt+s = Tt ◦ Ts for any pair s, t ≥ 0

3. limt↓0 ||Ttf − f || = 0 for every f ∈ C0(E)

The transition function of a Markov process (cf. 2.2.1) forms a semi-group
and even a Feller semi-group if the following proposition holds.

Proposition 2.2.7 A transition function (Pt)t≥0 is a Feller semi-group if
and only if

1. PtC0 ⊂ C0 for each t

2. ∀f ∈ C0,∀x ∈ E, limt↓0 Ptf(x) = f(x)

Proof: See (Revuz and Yor, 1991) �

If the transition function of a Markov process is a Feller semi-group, the
process is a Feller process. Now we can define the infinitesimal generator of
a Feller process.

Definition 2.2.8 Let (Vt)t≥0 be a Feller process. A function f in C0 is said
to belong to the domain D of the infinitesimal generator of V if the limit

GV f = lim
t↓0

Ptf − f
t

exists in C0. The operator GV : D → C0 is called the infinitesimal generator
of V or of the semi-group Pt.

If the process Vt is a diffusion process and satisfies the following stochastic
integral equation

Vt = v0 +

t∫
0

a(Vs)ds+

t∫
0

b(Vs)dWs

with Borel-measurable functions a(x) and b(x), then the infinitesimal gener-
ator is given by

GV f(x) = a(x)f ′(x) +
1

2
b2(x)f ′′(x).
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In the case of the Squared Bessel process we have

GXf(x) = δf ′(x) + 2xf ′′(x).

As already mentioned, the function h(x) has to satisfy the following equation

GV h(x) = ρh(x).

This problem is solved in section 4.6 of (Itô and McKean, 1974). There two
solutions are presented that are linearly independent and span all solutions
of the above equation.
If we choose Hq to be the first time the process V reaches the value q ∈ R,
i.e.,

Hq = inf{t ≥ 0|Vt = q}

these solutions are given by

ψVρ (x) = Ex(e
−ρHq) if x ≤ q

φVρ (x) = Ex(e
−ρHq) if x ≥ q.

According to (Rogers and Williams, 1987, p. 292), changing the reference
point q will only change ψVρ (x) and φVρ (x) by a multiplicative constant. Fur-
thermore, due to the fact that

Ex(e
−ρHq) = Ex(e

−ρHz) · Ez(e
−ρHq) for x ≤ z ≤ q

and
Ex(e

−ρHq) = Ex(e
−ρHz) · Ez(e

−ρHq) for q ≤ z ≤ z

we get

Ex(e
−ρHz) =


ψVρ (x)

ψVρ (z)
if x ≤ z

ϕρ(x)V

ϕVρ (z)
otherwise.

(2.4)

Thus the function ψVρ (x) is increasing and the function φρ(x)V is decreasing.
For a Squared Bessel process of order θ we get, see (Borodin and Salminen,
1996, chap. 4, 2.0.1), that

Ex(e
−ρHz) =


x−

θ
2 Iθ(
√

2ρx)

z−
θ
2 Iθ(
√

2ρz)
x ≤ z

x−
θ
2Kθ(

√
2ρx)

z−
θ
2Kθ(

√
2ρz)

x ≥ z.
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Thus, we can set

ψXρ (x) =
Iθ(
√

2ρx)

x
θ
2

and
ϕXρ (x) =

Kθ(
√

2ρx)

x
θ
2

where Kθ(x) is the modified Bessel function of the second kind of order θ.
Thus, in order to obtain two further parameters q1 and q2, which in addition
ensure that h(x0) = 1, the function g(x, t) defining the Radon-Nikodým
derivative Lt, i.e.,

dQ
dP

∣∣∣∣
Ft

= g(Xt, t)

is given by

g(x, t) = e−ρth(x) (2.5)

= e−ρt(q1ϕ
X
ρ (x) + q2ψ

X
ρ (x))

= e−ρtx−
θ
2

(
q1Iθ

(√
2ρx
)

+ q2Kθ

(√
2ρx
))

.

The next theorem shows that g(Xt, t) is a martingale.

Theorem 2.2.9 The stochastic process Gt = g(Xt, t), where g(x, t) is given
by (2.5), satisfies the following stochastic differential equation

dGt = e−ρt2
√
Xt
∂h

∂x
dWt.

Proof: The function h satisfies

G h = ρh

⇔ δ
∂h

∂x
+ 2x

∂2h

∂x2
= ρν

⇔ −ρh+ δ
∂h

∂x
+ 2x

∂2h

∂x2
= 0.

By multiplying both sides with e−ρt we get

−ρe−ρth+ δe−ρt
∂h

∂x
+ 2xe−ρt

∂2h

∂x2
= 0.
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Since
∂g

∂t
= e−ρth

∂g

∂x
= e−ρt

∂h

∂x

∂2g

∂x2
= e−ρt

∂2h

∂x2

we have
∂g

∂t
+ δ

∂g

∂x
+ 2x

∂2g

∂x2
= 0.

Thus, by applying Itô’s Lemma, g(Xt, t) is driftless, since

dgt =

(
∂g

∂t
+ δ

∂g

∂x
+ 2x

∂2g

∂x2

)
︸ ︷︷ ︸

=0

dt+ 2
√
Xt
∂g

∂x
dWt

= e−ρt2
√
Xt
∂h

∂x
dWt.

�

Under the new measure Q, the process has the following form

XQ
t = x0 +

t∫
0

(
δ + 4Xs

gx(Xs, s)

g(Xs, s)

)
ds+

t∫
0

2
√
XsdW̃s

= x0 +

t∫
0

(
δ + 4Xs

h′(Xs)

h(Xs)

)
ds+

t∫
0

2
√
XsdW̃s.

Since g(Xt, t) is a positive P-martingale, it satisfies

h(x0) = g(x0, 0) = Ex0(g(Xt, t)) = Ex0(e−ρth(Xt)) = e−ρtEx0(h(Xt)).

Let I be an Interval with left endpoint l ≥ −∞ and right endpoint r ≤ ∞,
such that the diffusion process V takes values in I. Then the function h(x)

is ρ-invariant according to the following definition.

Definition 2.2.10 A nonnegative measurable function h : I 7→ R ∪ {∞} is
called ρ-excessive, ρ ≥ 0, for V if it has the following two properties:

• e−ρtEx(h(Vt)) ≤ h(x) ∀x

• e−ρtEx(h(Vt))→ h(x), t→ 0 ∀x.
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A ρ-excessive function h is called ρ-invariant if for all x ∈ I and t ≥ 0

e−ρtEx(h(Vt)) = h(x).

Furthermore, according to (Borodin and Salminen, 1996) we can use the
following lemma.

Lemma 2.2.11 A nonnegative function h is ρ-excessive if and only if h is
continuous and satisfies

Ex(e
−ρTh(VT )) ≤ h(x)

where T := inf{t : Vt ∈ Γ} is the first passage time of an arbitrary compact
set Γ, with h(VT ) = 0 if T =∞.

If we choose Hz to be the first time the process V reaches the value z ∈ I,
i.e.,

Hz = inf{t : Vt = z},

then VHz = z a.s. when Hz < ∞. Since V has a.s. continuous paths and
thus

Ex(e
−ρHzh(z)) ≤ h(x)

⇔ Ex(e
−ρHz) ≤ h(x)

h(z)
,

with (2.4) we get

h(x)

h(z)
≥


ψVρ (x)

ψVρ (z)
if x ≤ z

ϕVρ (x)

ϕVρ (z)
otherwise.

The following lemma will show that h(x) = q1ϕ
V
ρ (x)+q2ψ

V
ρ (x) is a ρ-excessive

function.

Lemma 2.2.12 The linear combination

h(x) = q1ψ
V
ρ (x) + q2ϕ

V
ρ (x)

where ψVρ (x) and ϕVρ (x) are the fundamental solutions of G f = ρf , is a
ρ-excessive function.
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Proof: For x ≤ z, we have to show that

q1ψ
V
ρ (x) + q2ϕ

V
ρ (x)

q1ψVρ (z) + q2ϕVρ (z)
≥
ψVρ (x)

ψVρ (z)
.

Multiplying both sides with the left denominator leads to

q1ψ
V
ρ (x) + q2ϕ

V
ρ (x) ≥ q1ψ

V
ρ (x) + q2

ψVρ (x)ϕVρ (z)

ψVρ (z)

⇔ q2ϕ
V
ρ (x) ≥ q2

ψVρ (x)ϕVρ (z)

ψVρ (z)
.

If q2 = 0 this inequality is satisfied, otherwise we get

ϕVρ (x)

ϕVρ (z)
≥
ψVρ (x)

ψVρ (z)
.

Since ϕVρ is decreasing and ψVρ is increasing the inequality is satisfied. The
case x ≥ z is analog. �

As a conclusion the process (XQ
t )t≥0 can be interpreted as a so-called Doob’s

h-transform of X. We will illustrate the concept of Doob’s h-transform,
sometimes also called ρ-excessive transform, in the next subsection.

2.2.2 Doob’s h-transform

First we have to introduce some basic characteristics of diffusion processes,
namely the scale function and the speed measure (see e.g. (Rogers and
Williams, 1987)). Let Vt be again a diffusion process with state space I =

(l, r), where −∞ ≤ l < r ≤ ∞, satisfying

dVt = a(Vt)dt+ b(Vt)dWt. (2.6)

Then the scale function sV (x) is a solution of the following equation

GV s(x) = 0,

i.e.,
s′(x)a(x) +

1

2
s′′(x)b2(x) = 0. (2.7)
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Furthermore the function s(x) is assumed to have a strictly positive deriva-
tive. Though in the literature it is often unambiguously characterized as the
scale function it is not unique, since αs(x)+β with α > 0 and β ∈ R satisfies
the same criteria.

Using Itô’s formula, we get for the process Yt = sV (Vt)

dYt = (s′(Vt)a(Vt) +
1

2
s′′(Vt)b

2(Vt))dt+ s′(Vt)b(Vt)dWt

= s′(Vt)b(Vt)dWt. (2.8)

Thus, Yt is a local martingale, since it is driftless.

This fact will also be important for the second step of the stochastic
transformation.
Assuming that

b2(x) > 0 ∀x ∈ R

and

∀x ∈ R ∃ε > 0 such that
x+ε∫
x−ε

|a(y)|
b2(y)

dy <∞,

equation (2.7) is an ordinary linear differential equation of order one for s′(x)

and is solved by

s′(x) = exp

− x∫
c

2a(z)

b2(z)
dz


for a fixed number c ∈ R. Thus the scale function is

s(x) =

x∫
c

exp

− y∫
c

2a(z)

b2(z)
dz

 dy.

The speed measure M is a measure on B(I) with 0 < M((a, b)) < ∞ for
l < a < b < r. For t > 0 and x ∈ I, the probability measure Pt(x, ·) on B(I)

is absolutely continuous with respect to M , i.e.,

Pt(x,A) =

∫
A

pM(t, x, y)M(dy)
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where pM(t, x, y) is the transition density of X with respect to the speed
measure. The speed density, i.e., m(x) with

M(dx) = m(x)dx

is given by

m(x) =
1

b2(x)s(x)
.

Furthermore we introduce the Green function.

Definition 2.2.13 The Green function of X is given by

Gρ(x, y) =

∞∫
0

e−ρtpM(t, x, y)dt,

where pM(t, x, y) is the transition density of X with respect to the speed mea-
sure.

The Green function can also be written as

Gρ =

W−1
ρ ψρ(x)ϕρ(y) x ≤ y

W−1
ρ ψρ(y)ϕρ(x) x ≥ y

(see (Itô and McKean, 1974, p. 150)), where Wρ is the Wronskian of ψρ(x)

and ϕρ(x), defined as

Wρ(x) = ψρ(x)φ′ρ(x)− ψ′ρ(x)ϕρ(x).

In this case the Wronskian is a positive constant. Then with Lemma 2.2.11
and (2.4) we get

Lemma 2.2.14 x 7→ Gρ(x, y) is a ρ-excessive function.

Proof: For x ≤ y ≤ z we have

Gρ(x, y)

Gρ(z, y)
=
W−1
ρ ψρ(x)ϕρ(y)

W−1
ρ ψρ(z)ϕρ(y)

=
ψρ(x)

ψρ(z)
,
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while for x ≤ z ≤ y we have

Gρ(x, y)

Gρ(z, y)
=

W−1
ρ ψρ(x)ϕρ(y)

W−1
ρ ψρ(y)ϕρ(z)

=
ψρ(x)ϕρ(y)

ψρ(y)ϕρ(z)

≥ ψρ(x)

ψρ(y)
≥ ψρ(x)

ψρ(z)
.

The other cases follow analogously. �

According to the following lemma the functions ψρ(x), ϕρ(x) and Gρ(x, y) are
minimal in the sense that an arbitrary non-trivial ρ-excessive function h can
be represented as a linear combination of them, see (Borodin and Salminen,
1996, II.5.30).

Lemma 2.2.15 Let h(x) be a positive function on I = [l, r] such that h(x0) =

1. Then h is ρ-excessive if and only if there exists a probability measure µ
on [l, r] such that for all x ∈ I

h(x) =

∫
(l,r)

Gρ(x, y)

Gρ(x0, y)
µ(dy) +

ϕρ(x)

ϕρ(x0)
µ({l}) +

ψρ(x)

ψρ(x0)
µ({r}).

The measure µ is called the representing measure of h.

The representing measure for the function

h(x) = q1ψρ(x) + q2ϕρ(x)

is given by

µ((l, r)) = 0 µ({l}) = q1ψρ(x0) µ({r}) = q2ϕρ(x0).

This leads to the following condition for the parameters q1 and q2:

q1

q2

=
ϕρ(x0)

ψρ(x0)
.

Now we can construct a new measure Ph. For this let h(x) be a ρ-excessive
function for X. Then

Phx0
(A) := e−ρtEx0

(
h(Xt)

h(x0)
1A

)
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for A ∈ Ft. The process X under the new measure Ph or shortly Xh is
again a diffusion process and is called Doob’s h-transform. The next lemma
describes the above mentioned characteristics of an h-transform.

Lemma 2.2.16 Let X be a diffusion process satisfying (2.6). Then the h-
transform Xh is a diffusion process satisfying

dXh
t = ah(Xt)dt+ bh(Xt)dW

h
t

where W h
t is a Brownian motion under Ph with

ah(x) = a(x) + b2(x)
h′(x)

h(x)

and
bh(x) = b(x).

For the scale function we get

(sh)′(x) =
s′(x)

h2(x)
.

The density of the speed measure is given by

mh(x) = h2(x)m(x)

The transition density with respect to the speed measure is

phM(t, x, y) =
e−ρt

h(x)h(y)
pM(t, x, y).

Proof: see (Albanese and Kuznetsov, 2007) �

2.2.3 Removal of Drift

The second step of the stochastic transformation removes the drift from the
process Xh

t . As we have already seen in the last subsection the scale func-
tion applied to the process leads to a local martingale, i.e., it has no drift
component. According to Lemma 2.2.16 we have

(sh)′(x) =
s′(x)

h2(x)
.
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Thus we first determine the derivative of s(x). With a(x) = δ and b2(x) = 4x

we get

s′(x) = exp

−2

x∫
c

δ

4y
dy

 = exp

− x∫
c

δ

2y
dy


= exp

−δ
2

x∫
c

1

y
dy

 = exp

(
−δ

2
(log y)xc

)

= exp

(
−δ

2
(log x− log c)

)
= exp

(
−δ

2
log
(x
c

))
= exp

(
log

((x
c

)− δ
2

))
=

(x
c

)− δ
2

= c1x
− δ

2 = c1x
−θ−1

where θ = δ
2
−1 is the index of the Squared Bessel process and c1 = c

δ
2 = cθ+1.

Since
h(x) = x−

θ
2

(
q1Iθ(

√
2ρx) + q2Kθ(

√
2ρx)

)
we have

(sh)′(x) =
s′(x)

h2(x)

=
c1x
−θ−1

x−θ
(
q1Iθ(

√
2ρx) + q2Kθ(

√
2ρx)

)2

=
c1

x
(
q1Iθ(

√
2ρx) + q2Kθ(

√
2ρx)

)2 .

Now we have to determine sh(x) as the primitive of (sh)′(x).

Lemma 2.2.17 The primitive of

(sh)′(x) =
c1

x(q1Iθ(
√

2ρx) + q2Kθ(
√

2ρx))2

where c1 = cθ+1, is given by

sh(x) =
2c1Iθ(

√
2ρx)

q2(q1Iθ(
√

2ρx) + q2Kθ(
√

2ρx))
.
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Proof:

(sh)′(x) =
2c1

ρ√
2ρx
I ′θ(
√

2ρx)(q1Iθ(
√

2ρx) + q2Kθ(
√

2ρx))

q2

(
q1Iθ(

√
2ρx) + q2Kθ(

√
2ρx)

)2

−
2c1

ρ√
2ρx
Iθ(
√

2ρx)(q1I
′
θ(
√

2ρx) + q2K
′
θ(
√

2ρx))

q2

(
q1Iθ(

√
2ρx) + q2Kθ(

√
2ρx)

)2

=
2c1

ρ√
2ρx

(
q1Iθ(

√
2ρx)I ′θ(

√
2ρx) + q2Kθ(

√
2ρx)I ′θ(

√
2ρx)

)
q2

(
q1Iθ(

√
2ρx) + q2Kθ(

√
2ρx)

)2

+
2c1

ρ√
2ρx

(
−q1Iθ(

√
2ρx)I ′θ(

√
2ρx)− q2K

′
θ(
√

2ρx)Iθ(
√

2ρx)
)

q2

(
q1Iθ(

√
2ρx) + q2Kθ(

√
2ρx)

)2

=
2c1

ρ√
2ρx

(
Kθ(
√

2ρx)I ′θ(
√

2ρx)−K ′θ(
√

2ρx)Iθ(
√

2ρx)
)(

q1Iθ(
√

2ρx) + q2Kθ(
√

2ρx)
)2 .

Here we can use the Wronskian relation, see (Abramowitz and Stegun, 1972,
9.6.14)

Kθ(x)I ′θ(x)− Iθ(x)K ′θ(x) =
1

x

for any index θ.
Thus, we get

(sh)′(x) =
2c1

ρ√
2ρx

(
1√
2ρx

)
(
q1Iθ(

√
2ρx) + q2Kθ(

√
2ρx)

)2

=
c1

x
(
q1Iθ(

√
2ρx) + q2Kθ(

√
2ρx)

)2 .

�

Then according to (2.8) the process

Yt = sh(Xh
t )

solves the stochastic differential equation

dYt = σ̃(Yt)dW̃t
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under Ph with

σ̃(y) = (sh)′((sh)−1(y))bh((sh)−1(y))

= (sh)′(x)bh(x)

= 2
√
x

c1

x
(
q1Iθ(

√
2ρx) + q2Kθ(

√
2ρx)

)2

=
2c1

√
x
(
q1Iθ(

√
2ρx) + q2Kθ(

√
2ρx)

)2

where sh(x) = y.

Since the process Xh
t is nonnegative and the scale function sh(x) is non-

decreasing, the process Yt is also nonnegative. Thus, the lower boundary 0
is absorbing. To determine the upper boundary bmax, we can make use of
the following approximations for large x � θ, following (Abramowitz and
Stegun, 1972, 9.7.1 and 9.7.2):

Iθ(x) ∼ 1√
2πx

ex

Kθ(x) ∼
√

π

2x
e−x.

So for large x we have

sh(x) =
2c1Iθ(

√
2ρx)

q2

(
q1Iθ(

√
2ρx) + q2Kθ(

√
2ρx)

)
≈

2c1
e
√

2ρx√
2π
√

2ρx

q2(q1
e
√

2ρx√
2π
√

2ρx
+ q2

√
π

2
√

2ρx
e−
√

2ρx)

=
2c1e

√
2ρx

q2

(
q1e
√

2ρx + q2πe−
√

2ρx
)

→
x→∞

2c1

q1q2

.

Thus, we get

bmax =
2c1

q1q2

− sh(c).
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2.3 Default Probability

One of the main reasons for this two-stage transformation is the preservation
of the analytical tractability. Especially the transition probability has to be
expressed in terms of the well known transition probability of the Squared
Bessel process. Thus, the next proposition will clarify the relation between
the transition probability of the process Xt and the transition probability of
the transformed process Yt.

Proposition 2.3.1 Let pX(t, x0, x1) be the transition probability density of
the process Xt and let pY (t, y0, y1) be the transition probability density of the
process Yt = sh(Xh

t ). Then

pY (t, y0, y1) =
g(x1, t)

g(x0, 0)
· 1

(sh)′(x1)
pX(t, x0, x1),

where y0 = sh(x0) and y1 = sh(x1).

Proof: Since sh(x) is a diffeomorphism we have

pY (t, y0, y1)dy1 = pXh(t, x0, x1)
1

(sh)′(x1)
dx1

=
1

(sh)′(x1)

g(x1, t)

g(x0, 0)
pX(t, x0, x1)dx1.

�

With the following abbreviation

w(x) := q1Iθ(
√

2ρx) + q2Kθ(
√

2ρx)

we get
g(x1, t)

g(x0, s)
= e−ρt

(
x0

x1

) θ
2 w(x1)

w(x0)

and
(sh)′(x) =

c1

xw(x)2
.

Thus, the transition probability density becomes

pY (t, y0, y1) = e−ρt
(
x0

x1

) θ
2 x1w(x1)3

c1w(x0)
pX(t, x0, x1).
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As we have already seen, the transition probability density for the Squared
Bessel process is given as

pX(t, x0, x1) =
1

2t

(
x1

x0

) θ
2

exp

(
−x1 + x0

2t

)
Iθ

(√
xx0

t

)
.

So, we finally get

pY (t, y0, y1) = exp

(
−ρt− x1 + x0

2t

)
x1

2c1t

w(x1)3

w(x0)
Iθ

(√
xx0

t

)
.

Since the absorbing state 0 has been proposed to be the default state, the
probability of default by time t is given as

pD(yi0, t) = 1−
bmax∫
0

pY (t, yi0, y)dy

where yi0 is the initial state. The index i indicates the rating class of the
obligor at time 0.
If we differentiate pD with respect to t, we get

∂pD(yi0, t)

∂t
= −

bmax∫
0

∂pY (t, yi0, y)

∂t
dy. (2.9)

As we have already seen, the process Yt is driftless. Thus, the forward Kol-
mogorov equation for the transition probability density pY reduces the inte-
grand to

∂pY
∂t

=
1

2

∂2

∂y2

(
σ̃2(y)pY

)
.

If we plug this into equation (2.9), we get

∂pD(yi0, t)

∂t
= −

bmax∫
0

1

2

∂2

∂y2

(
σ̃2(y)pY

)
dy

= −

(
1

2

∂

∂y

(
σ̃2(y)pY

)∣∣∣∣
y=bmax

− 1

2

∂

∂y

(
σ̃2(y)pY

)∣∣∣∣
y=0

)
.

The upper boundary bmax is unattainable, so the following boundary condi-
tion

pY (t, y0, bmax) = 0
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leads to
1

2

∂

∂y

(
σ̃2(y)pY

)∣∣∣∣
y=bmax

= 0.

Thus we get
dpDi (t)

dt
=

1

2

∂

∂y

(
σ̃2(y)pY

)∣∣∣∣
y=0

.

Using an integral representation of the modified Bessel function Kθ and a
series expansion for Iθ, the derivative of the default probability is equal to

dpDi (t)

dt
=
q2e
−ρt−x0

2t

2w(x0)

(
x0

2ρ

) θ
2

.

Integrating this expression leads to

pDi (t) =
q2

2w(x0)

(
x0

2ρ

) θ
2

t∫
0

e−ρs−
x0
2s

s1+θ
ds.

2.4 Stochastic Time Change

Since the calibration to historical migration rates was unsuccessful in this
diffusion model, especially for rating migrations of several rating classes,
Albanese et al. include jumps in their model. These jumps are introduced
by a stochastic time change. Thus, the process is obtained by evaluating
the process Y at a random time given by a gamma process, similar to the
Variance Gamma model, as introduced, e.g., in (Madan et al., 1998). The
gamma process γ(t, 1, β) with mean 1 and variance rate β is a process with
independent gamma distributed increments. Thus, the transition probability
density Γ̃(s, t) is given by a gamma distribution with shape parameter t

β
and

scale parameter β:

Γ̃(s, t) =
s
t
β
−1e−

s
β

Γ
(
t
β

)
β
t
β

where Γ is the gamma function.
Thus the rating transition probability under the stochastic time change is
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given by

p̃ij(t) =

bj∫
bj−1

pỸ (t, y0, y)dy

=

bj∫
bj−1

∞∫
0

pY (s, y0, y)Γ̃(s, t)dsdy.

Equivalently, we get for the default probability

p̃Di (t) = 1−
bmax∫
0

pỸ (t, y0, y)dy

=
q2

2w(x0)

(
x0

2ρ

) θ
2

∞∫
0

Γ̃(z, t)

z∫
0

e−ρs−
x0
2s

s1+θ
dsdz.



Chapter 3

A Structural Squared Bessel

Model

The article (Zhou, 1997) was the first to present an analytical formula for the
joint default probability of two firms in a first-passage time model. The two
firm values follow geometric Brownian motions where the dependence is put
in the underlying Brownian motions. Another possibility to calculate default
correlations based on a first-passage time model is to adopt the concept of
factor models such as Creditmetrics, see (JPMorgan, 1997). Similarly, in this
chapter, we introduce and discuss a time continuous structural model where
the ability to pay process of every firm is composed of one individual process
part and one common process part. These two processes are assumed to
be independent of each other. Since this process is not necessarily directly
connected to the asset value of the firm, but rather represents an abstract
indicator of the ability of the firm to fulfill its obligations, we denote this
process as ability to pay process. Thus the ability to pay process of firm
i ∈ I = {1, 2} turns out to be

X i
t = Yt + Y i

t ∀t ∈ [0,∞)

where (Yt)t≥0 and (Y i
t )t≥0 are independent of each other. In order to study

the properties of (X i
t)t≥0 we have to be able to determine the process re-

sulting from the addition of two independent processes. Thus we require

39
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the processes to have the so-called additivity property. A similar concept,
though not designed as ability to pay processes, has already been applied in
reduced form models, see (Duffie and Singleton, 2003). There, the default
probability is given as

P(τ ≤ t) = 1− E

exp

− t∫
0

λ(u)du

 .

The intensity process λ(t) is modelled as a stochastic process with state space
R+ satisfying

dλ(t) = κ(θ − λ(t))dt+ σ
√
λ(t)dW (t) + ∆J(t).

A process λ(t) satisfying this stochastic differential equation is called a basic
affine process with parameters (κ, θ, σ, µ, l), where µ is the mean of the ex-
ponentially distributed jump sizes and l is the mean jump arrival rate of the
pure jump process J . In order to introduce dependencies between different
obligors, Duffie proposed to describe the intensity process λi of obligor i as
the sum of two basic affine processes, i.e.,

λi = Xc +Xi.

Here the parameters of Xc are (κ, θc, σ, µ, lc) and Xi has the parameters
(κ, θi, σ, µ, li). Then λi is a basic affine process with parameters (κ, θ, σ, µ, l)

where θ = θc + θi and l = lc + li. In our first passage time model we have to
consider the special case l = 0, i.e., with no jumps at all. This leads to the
Cox-Ingersoll-Ross process

dXt = κ(θ −Xt)dt+ σ
√
XtdWt

or in a more general form

dXt = (δ + bXt)dt+ c
√
XtdBt

where δ ≥ 0, b ∈ R, c > 0 and (Bt)t≥0 a standard Brownian motion. In
this chapter we will concentrate on the case b = 0, c = 2, which leads to the
Squared Bessel process. Some of the following definitions and properties can
be found in (Göing-Jaeschke and Yor, 2003).
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3.1 Squared Bessel Processes

In this section we will highlight some of the main properties of the Squared
Bessel Process (see (Revuz and Yor, 1991)).

Definition 3.1.1 A process (Xt)t≥0 satisfying the equation

Xt = x+ δt+ 2

t∫
0

√
XtdBt

with δ ≥ 0 is called a δ-dimensional Squared Bessel process with start in
x ≥ 0 and is denoted by BESQδ(x).

The next Theorem makes clear, why the parameter δ is called the dimension
of the Squared Bessel process.

Theorem 3.1.2 Let (Bt)t≥0 be a δ-dimensional Brownian motion, where
δ ∈ N with start in B0 ∈ Rδ and

Xt = ||Bt||2

where || · || denotes the Euclidian norm in Rδ.
Then the stochastic process (Xt)t≥0 with start in x = ||B0||2 satisfies the
following equation

Xt = x+ δt+ 2

t∫
0

√
Xtdβt

where (βt)t≥0 is a standard Brownian motion. According to this the δ-dimen-
sional Squared Bessel process equals the square of the norm of a δ-dimensional
Brownian motion if δ ∈ N.

Proof: We have
||Bt||2 = (B1

t )
2 + . . .+ (Bδ

t )
2.

Applying the δ-dimensional Itô-formula to f(x) = ||x||2 =
∑δ

i=1 x
2
i leads to

f(Bt) = f(B0) +
δ∑
i=1

t∫
0

∂f

∂xi

∣∣∣∣
x=Bs

dBi
s +

1

2

δ∑
i,j=1

t∫
0

∂2f

∂xi∂xj

∣∣∣∣
x=Bs

d〈Bi, Bj〉s.
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Since

〈Bi, Bj〉t = δijt

where δij denotes the Kronecker-Delta, we get

f(Bt) = f(B0) +
δ∑
i=1

t∫
0

∂f

∂xi

∣∣∣∣
x=Bs

dBi
s +

1

2

δ∑
i=1

t∫
0

∂2f

∂x2
i

∣∣∣∣
x=Bs

ds.

The partial derivatives are

∂f

∂xi
= 2xi

∂2f

∂x2
i

= 2

for i = 1, ..., δ. Hence

f(Bt) = f(B0) + 2
δ∑
i=1

t∫
0

Bi
sdB

i
s +

1

2

δ∑
i=1

t∫
0

2ds

= f(B0) + 2
δ∑
i=1

t∫
0

Bi
sdB

i
s + δ · t.

Furthermore

δ∑
i=1

t∫
0

Bi
sdB

i
s =

t∫
0

δ∑
i=1

Bi
sdB

i
s

=

t∫
0

ρs

δ∑
i=1

Bi
s

ρs
dBi

s =

t∫
0

ρsdβs

where ρt = ||Bt|| =
√
f(Bt) and

βt =
δ∑
i=1

t∫
0

Bi
s

ρs
dBi

s.
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Now we show that 〈β〉t = t so that βt is a Brownian motion. In fact,

〈β〉t = 〈
δ∑
i=1

·∫
0

Bi
s

ρs
dBi

s〉t

=
δ∑

i,j=1

〈
·∫

0

Bi
s

ρs
dBi

s,

·∫
0

Bj
s

ρs
dBj

s〉t =
δ∑
i=1

〈
·∫

0

Bi
s

ρs
dBi

s〉t

=
δ∑
i=1

·∫
0

(
Bi
s

ρs

)2

d〈B〉s =
δ∑
i=1

t∫
0

(
Bi
s

ρs

)2

ds

=

t∫
0

∑δ
i=1(Bi

s)
2

ρ2
s

ds =

t∫
0

1ds = t.

With Xt = f(Bt) we get

Xt = x+ δt+ 2

t∫
0

√
Xtdβt.

�

The next Theorem will prove the additivity property for the Squared Bessel
process, i.e., the sum of two independent squared Bessel processes Y 1

t and Y 2
t

with start in y1 and y2 and dimensions δ1 and δ2, respectively, is a Squared
Bessel process itself with start in y1 + y2 and dimension δ1 + δ2. The law of
a BESQδ(x) on C(R+,R) is denoted by Qδ

x.

Definition 3.1.3 Let P and Q be two probability measures, then P ? Q is
defined to be the convolution of P and Q.

Then the following result holds:

Theorem 3.1.4 For every δ1, δ2 ≥ 0 and y1, y2 ≥ 0,

Qδ1
y1
? Qδ2

y2
= Qδ1+δ2

y1+y2
.

Proof: We set Xt = Y 1
t + Y 2

t , where Y 1 is a BESQδ1(y1) and Y 2 is
a BESQδ2(y2) independent of Y 1. Now we have to show, that X is a
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BESQδ1+δ2(y1 + y2).

Xt = Y 1
t + Y 2

t

= y1 + y2 + 2

t∫
0

(
√
Y 1
s dB

1
s +

√
Y 2
s dB

2
s ) + (δ1 + δ2)t.

Now we can write √
Y 1
s dB

1
s +

√
Y 2
s dB

2
s

=
√
Xs1{Xs>0}

√
Y 1
s dB

1
s +

√
Y 2
s dB

2
s√

Xs

=
√
Xsdγs

where

γt =

t∫
0

1{Xs>0}

√
Y 1
s dB

1
s +

√
Y 2
s dB

2
s√

Xs

.

We can conclude

Xt = y1 + y2 + 2

t∫
0

√
Xsdγs + (δ1 + δ2)t.

Now we have to show that γt is a Brownian motion. For this we again show,
that its quadratic variation equals t:

〈γ〉t = 〈
·∫

0

1{Xs>0}

√
Y 1
s dB

1
s +

√
Y 2
s dB

2
s√

Xs

〉t

= 〈
·∫

0

1{Xs>0}

√
Y 1
s√

Xs

dB1
s 〉t + 〈

·∫
0

1{Xs>0}

√
Y 2
s√

Xs

dB2
s 〉t

=

t∫
0

1{Xs>0}
Y 1
s

Xs

ds+

t∫
0

1{Xs>0}
Y 2
s

Xs

ds

=

t∫
0

1{Xs>0}
Y 1
s + Y 2

s

Xs

ds =

t∫
0

1{Xs>0}ds

= t
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and γ is a Brownian motion. �

Since we are going to identify the credit barrier with zero, it is important to
study the behavior of the paths of Squared Bessel process dependent on its
dimension δ:

(i) for δ = 0 the point 0 is absorbing (i.e., after it reaches 0, the process
will stay there forever);

(ii) for 0 < δ < 2 the point 0 is instantaneously reflecting (i.e., after reach-
ing 0, the process will immediately move away from 0);

(iii) for 0 < δ < 2 the point 0 is reached a.s.

(iv) for δ ≥ 2 the point 0 is unattainable.

The term Squared Bessel process leads to the following definition:

Definition 3.1.5 The square root of a BESQδ(x) is called δ-dimensional
Bessel process starting at

√
x and is denoted by BESδ(

√
x).

In the following we will set a :=
√
x and we write BESδ(a) instead of

BESδ(
√
x). Now we can determine the SDE satisfied by a BESδ(a):

Lemma 3.1.6 The process (Rt)t≥0 is a BESδ(a) if it is a solution of the
SDE

Rt = a+Bt +
δ − 1

2

t∫
0

1

Rs

ds.

Proof: We have to apply the Itô-formula

f(Xt) = f(X0) +

t∫
0

∂f

∂x
dXs +

1

2

t∫
0

∂2f

∂x2
d〈X〉s

to the BESQδ(x) X with x = a2 and f(x) =
√
x. We have

∂f

∂x
=

1

2
√
x

,
∂2f

∂x2
= − 1

4x
√
x
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and

dXt = δdt+ 2
√
XtdBt , d〈X〉t = 4Xtdt.

This leads to

Rt =
√
Xt = a+

t∫
0

1

2
√
Xs

(δdt+ 2
√
XsdBs)−

1

2

t∫
0

1

4Xs

√
Xs

4Xsds

= a+

t∫
0

1dBs +

t∫
0

δ − 1

2
√
Xs

ds

= a+Bt +
δ − 1

2

t∫
0

1

Rs

ds.

�

3.1.1 Transition Densities

Since the Squared Bessel process is a Markov process, its transition densities
are known explicitly. For δ > 0, the transition density is given as

p(t, x, y) =
1

2t

(y
x

) ν
2

exp

(
−x+ y

2t

)
Iν

(√
xy

t

)
. (3.1)

There t, x > 0 and ν = δ
2
− 1 is the index of the Squared Bessel process.

Moreover, Iν is the modified Bessel function of the first kind with index ν
and is defined as

Iν(z) =
∞∑
n=0

(
z
2

)ν+2n

n!Γ(n+ ν + 1)
, z ∈ C.

For x = 0 and y > 0 the transition density becomes

p(t, 0, y) =
y
δ
2
−1

(2t)
δ
2 Γ
(
δ
2

)e− y
2t .
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From these transition densities, one can obtain the transition densities for
the BESδ by a change of variables, i.e., for a =

√
x and b =

√
y we get

1

2t

(
b2

a2

) ν
2

exp

(
−a

2 + b2

2t

)
Iν

(
ab

t

)
db2

=
b

t

(
b

a

)ν
exp

(
−a

2 + b2

2t

)
Iν

(
ab

t

)
db

and thus
p(t, a, b) =

b

t

(
b

a

)ν
exp

(
−a

2 + b2

2t

)
Iν

(
ab

t

)
.

Similarly, we get for a = 0

p(t, 0, b) =
y2ν̂+1

2ν̂tν̂+1Γ(ν̂ + 1)
exp

(
−y

2

2t

)
. (3.2)

3.2 Simulation of Squared Bessel Processes

In this section we want to present some methods to simulate a Squared Bessel
process on a given interval [0, T ], T > 0. For this we divide the interval into
n+ 1 equidistant grid points

{ti =
iT

n
|i = 0, ..., n}

and generate the vector (X̂t0 , ..., X̂tn), where X̂t0 = x is the starting point
of the BESQδ(x). Although the Squared Bessel process can be simulated
exactly, as seen at the end of this section, sometimes it is easier or at least
faster to use an approximation scheme. The next two discretization schemes
can be found for Cox-Ingersoll-Ross processes in (Alfonsi, 2005).

3.2.1 Euler-Maruyama Scheme

The easiest way to simulate a process is the explicit Euler-Maruyama scheme.
This scheme extends the Euler-scheme in not just discretizing the time, but
also the Brownian motion. This leads to

X̂ti+1
= X̂ti + δ

T

n
+ 2

√
X̂ti(Wti+1

−Wti)
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and thus

X̂ti+1
= X̂ti + δ

T

n
+ 2

√
X̂tiξi

where {ξi}i=0,...,n are i.i.d. N(0, T
n

)-distributed and X̂t0 = x. Since the Gaus-
sian increments are not bounded from below, this scheme can lead to negative
values. In order to be able to compute X̂ti+1

if X̂ti is negative one can instead
use

X̂ti+1
= X̂ti + δ

T

n
+ 2
√
X̂ti1{X̂ti>0}(Wti+1

−Wti).

Negative values can be totally avoided by using

X̂ti+1
=

∣∣∣∣X̂ti + δ
T

n
+ 2

√
X̂ti(Wti+1

−Wti)

∣∣∣∣ .
3.2.2 An implicit Scheme

The positivity can also be obtained by using an implicit scheme. To derive
this implicit scheme we first have to rewrite the Squared Bessel process.
Since

t∫
0

δds = lim
n→∞

n∑
i=1, ti<t

δ
T

n

and
t∫

0

√
XsdWs = lim

n→∞

n∑
i=1, ti<t

√
Xti(Wti+1

−Wti)

we have

Xt = x+

t∫
0

δds+ 2

t∫
0

√
XsdWs

= x+ lim
n→∞

{
n∑

i=1, ti<t

δ
T

n
+ 2

n∑
i=1, ti<t

√
Xti(Wti+1

−Wti)

}

= x+ lim
n→∞

{∑
i:ti<t

δ
T

n
+ 2

∑
i:ti<t

√
Xti+1

(Wti+1
−Wti)

−2
∑
i:ti<t

(
√
Xti+1

−
√
Xti)(Wti+1

−Wti)

}
.
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Now
lim
n→∞

∑
i:ti<t

(
√
Xti+1

−
√
Xti)(Wti+1

−Wti)

= 〈
√
X,W 〉t

is the quadratic covariation of the Bessel process (
√
Xt)t≥0 and the underlying

Brownian motion (Wt)t≥0. Since the Bessel process is a semi-martingale
(at least for δ > 1) with the Brownian motion as the martingale-part, the
quadratic covariation is

〈
√
X,W 〉t = 〈W 〉t = t.

Thus we get

Xt = x+ δt− 2t+ 2 lim
n→∞

{∑
i:ti<t

√
Xti+1

(Wti+1
−Wti)

}
= x+ (δ − 2)t+ 2 lim

n→∞

{∑
i:ti<t

√
Xti+1

(Wti+1
−Wti)

}
.

Then for sufficiently large n we can consider the following implicit scheme:

X̂ti+1
= X̂ti + (δ − 2)

T

n
+ 2

√
X̂ti+1

(Wti+1
−Wti).

Since X̂ti+1
appears on both sides of the equation, we set x̂ =

√
X̂ti+1

to get
a quadratic equation in x̂:

x̂2 − 2(Wti+1
−Wti)x̂− X̂ti − (δ − 2)

T

n
= 0.

This equation has two solutions:

x̂1,2 = (Wti+1
−Wti)±

√
(Wti+1

−Wti)
2 + X̂ti + (δ − 2)

T

n
.

But only for δ > 2 one can guarantee that there is only one positive solution:

x̂1 = (Wti+1
−Wti) +

√
(Wti+1

−Wti)
2 + X̂ti + (δ − 2)

T

n
.

Then we have

X̂ti+1
=

(
(Wti+1

−Wti) +

√
(Wti+1

−Wti)
2 + X̂ti + (δ − 2)

T

n

)2

.
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3.2.3 Exact Simulation

The last method we introduce and we will actually use to simulate the
Squared Bessel process is to determine the increments of the process. There-
fore we generate the vector

(X̂t0 , ..., X̂tn)

for a given initial value X̂t0 = X̂0 = x by means of the increments

X̂ti+1
= X̂ti + (X̂ti+1

− X̂ti).

As already mentioned the Squared Bessel process is a Markov process, so we
have for A ∈ σ(Xu, u ≤ t)

P (Xt ∈ A|σ(Xu, u ≤ s))

= P (Xt ∈ A|Xs), s ≤ t

and thus

P (Xti+1
∈ A|Xti = x) =

∫
A

p(
T

n
, x, y)dy

where p(T
n
, x, y) is the transition density of the Squared Bessel process, in-

troduced in 3.1. If we substitute now x = bt and y = at in the transition
density p(t, x, y), we get

p(t, x, y) = pb(a) =
1

2

(a
b

) ν
2

exp

(
−a+ b

2

)
Iν

(√
ab
)
.

But this is exactly the probability density of a noncentral χ2-distribution
with δ degrees of freedom and noncentrality-parameter b. Thus we can draw
X̂ti+1

as a random number from a conditional noncentral χ2-distribution with
noncentrality-parameter X̂ti , i.e.,

X̂ti+1
∼ χ2

δ,
X̂ti

n

T

.
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3.2.4 Some Paths of Squared Bessel Processes

In this subsection we will present some figures with paths of Squared Bessel
processes. For this we use the exact simulation introduced in the last sub-
section. The figures will show some sample paths to illustrate the behavior
of the Squared Bessel process in dependence of the dimension δ as itemized
in section 3.1. As initial value we choose x = 5, while the dimensions are
δ1 = 0, δ2 = 0.5, δ3 = 1, δ4 = 1.5, δ5 = 2 and δ6 = 3.

(a) Squared Bessel process with δ = 0

Figure 3.1: This figure illustrates, that a BESQ0(x) dies as soon as it reaches
zero, i.e., it stays there without return.
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(a) Squared Bessel process with δ = 0.5

Figure 3.2: This figure illustrates, that a BESQ0.5(x) hits 0 very often and
is reflected immediately.
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(a) Squared Bessel process with δ = 1

Figure 3.3: This process equals the square of a one-dimensional Brownian
motion with start in

√
5.
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(a) Squared Bessel process with δ = 1.5

Figure 3.4: This figure illustrates, that a BESQδ(x) with 1 < δ < 2 still
reaches zero with positive probability.
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(a) Squared Bessel process with δ = 2

Figure 3.5: This figure shall illustrate, that a BESQ2(x) never reaches zero.
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(a) Squared Bessel process with δ = 3

Figure 3.6: This figure shall illustrate, that a BESQ3(x) is a transient pro-
cess.

3.3 First Hitting Time of

Squared Bessel Processes

In this section we will determine the probability density of the first time a
Squared Bessel process with dimension δ < 2 hits zero. Therefore we denote
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the first hitting time of a BESQδ(x) process (Xt)t≥0 with T0, i.e.,

T0 = inf{t ≥ 0|Xt = 0}.

Let Rt be the associated Bessel process. Then it is obvious, that the first
hitting time of the Squared Bessel process Xt and the Bessel process Rt

coincide:

T0 = inf{t ≥ 0|Xt = 0} = inf{t ≥ 0|R2
t = 0} = inf{t ≥ 0|Rt = 0}.

Thus we can as well determine the first hitting time of a Bessel process.

Theorem 3.3.1 Let Rt be a δ-dimensional Bessel process with start in r =
√
x and let T0 = inf{t ≥ 0|Rt = 0} be its first hitting time in zero. Then we

have

P(T0 ∈ dt) =
1

tΓ(1− δ
2
)

( x
2t

)1− δ
2
e−

x
2tdt.

To prove this result we will make use of the fact that the first hitting time in
zero is equal in distribution to the last exit time of the time reversed process.
The time reversed process of Rt is denoted by R̂t according to the following
definition:

Definition 3.3.2 If we just consider the process Rt on the stochastic interval
[0, T0] we can define the time reversed process R̂t as follows:

R̂t = RT0−t if 0 ≤ t ≤ T0.

Now we have to define the last exit time of a transient diffusion.

Definition 3.3.3 Let X be a transient diffusion, living on R+ and starting
at x0, the last exit time of a ≥ 0 is defined as follows

La = sup{u|Xu = a}.

Then the following result, see (Göing-Jaeschke and Yor, 2003), can be ap-
plied:



58 CHAPTER 3. STRUCTURAL SQUARED BESSEL MODEL

Theorem 3.3.4 Let X be a transient diffusion, living on R+ and starting
at 0. Let X̃ be the time reversed process, starting at a. Then for the last
exit time of X, La = sup{u|Xu = a} and the first hitting time of X̃, T0 =

inf{u ≥ 0|X̃u = 0} we have

{Xu, u ≤ La}
L
= {X̃T0−u, u ≤ T0}.

This leads to the following proposition, see (Getoor and Sharpe, 1979):

Proposition 3.3.5 If we denote Pδr the probability measure of the BESδ(r)
and analogously Pδ̂0 the probability measure of BES δ̂(0), we have

Pδr(T0 ∈ dt) = Pδ̂0(Lr ∈ dt).

Thus to prove Theorem 3.3.1, we can equivalently determine the last exit time
of r of the time reversed Bessel process R̂. Therefore we need to determine
the dimension of the process R̂.

The time reversed process can be obtained as a Doob’s h-transform, (for
Doob’s h-transform see section 2.2.2), where the excessive function is given
by the scale function of the process.

Lemma 3.3.6 The scale function of the Bessel process with dimension δ is
given by

s(x) =


x−(δ−2)

δ−2
if 0 < δ < 2

log(x) if δ = 2

−x−(δ−2)

δ−2
if δ > 2.
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Proof:

s(x) =

x∫
c1

exp

− y∫
c2

2(δ − 1)

2z
dz

 dy

=
c2=1

x∫
c1

exp

− y∫
1

δ − 1

z
dz

 dy

=

x∫
c1

exp (− log(z)(δ − 1)) dy

=
c1=0

x∫
0

z−(δ−1)dy.

�

Thus according to Lemma 2.2.16 the drift parameter of the time reversed
process R̂t is given by

ah(x) = a(x) + b2(x)
s′(x)

s(x)

=
δ − 1

2x
− (δ − 2)

x−(δ−1)

x−(δ−2)

=
δ − 1

2x
− δ − 2

x
=

3− δ
2x

=
δ̂ − 1

2x

with δ̂ = 4− δ. Thus the time reversed process is again a Bessel process with
dimension δ̂ = 4− δ and is thus transient.
With these preliminaries we can prove now Theorem 3.3.1 by determining
the last exit time of a Bessel process with dimension δ̂ > 2. This problem has
been solved in (Getoor, 1979) for integer dimensions only. Thus in this section
we will extend this result to the more general non-integer case. Another way
to determine the last exit time is given in (Borodin and Salminen, 1996,
IV.44). Accordingly the probability density of the last exit time is given by

Pδ̂0(Lr ∈ dt) =
pm(t, 0, r)

−s(r)
dt
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where pm(t, 0, r) is the transition probability density with respect to the speed
measure m(x), i.e., such that

P (t, 0, A) =

∫
A

pm(t, 0, r)m(dr).

For the Bessel process with dimension δ we have

pm(t, 0, r) =
1

(2t)
δ
2 Γ( δ

2
)

exp

(
−r

2

2t

)
.

As seen in Lemma 3.3.6 the scale function s(x) is given by

s(x) = −x
−(δ−2)

δ − 2
.

Thus we get

Pδ̂0(Lr ∈ dt) =
pm(t, 0, r)

−s(r)
dt

=
2( δ̂

2
− 1)r

δ̂
2

(2t)
δ̂
2 Γ( δ̂

2
)

exp

(
−r

2

2t

)
.

The following property of the Gamma function

Γ(x+ 1) = Γ(x) · x ∀x ∈ R+ (3.3)

and δ̂ = 4− δ as well as x = r2 leads to

Pδx(T0 ∈ dt) =
1

tΓ(1− δ
2
)

( x
2t

)1− δ
2

exp
(
− x

2t

)
.

As already mentioned, in (Getoor, 1979) a proof for the last exit time of a
Bessel process with integer dimension d ≥ 3 is presented. There for r > 0 he
defines

Lr = sup{t : |Xt| ≤ r},

called the Brownian escape process, where X is a d-dimensional Brownian
motion with start in zero and d ≥ 3. In the following we will show that this
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proof can be extended to the non-integer case as well. Therefore we have to
define another process:

Ft = inf{R̂s|s > t}, t ≥ 0.

Obviously t→ Ft is increasing and continuous. Furthermore

lim
t→∞

Ft =∞ Pδ̂0 − f.s.

If the last exit time of r is less than t, the process R̂ stays above that level
and thus the minimum of the process after t is greater than r, i.e.,

Pδ̂0(Lr < t) = Pδ̂0(Ft > r).

Now we introduce the σ(R̂s, s ≥ t)-measurable shift-operator θt. If ω is an
arbitrary path of the Bessel process, such that R̂t(ω) = ω(t), then the shift
operator θt cuts off the path up to time t, i.e.,

θt(ω)(u) = ω(u+ t).

Thus

Ft(ω) = inf{R̂u(ω)|u > t}

= inf{ω(u)|u > t} = inf{ω(s+ t)|s > 0}

= inf{R̂s(ω(·+ t))|s > 0} = F0(ω(·+ t))

= F0(θt(ω)) = F0 ◦ θt(ω).

This leads to

Pδ̂0(Ft > r) = Pδ̂0(F0 ◦ θt > r)

= Eδ̂
0(Pδ̂

R̂t
(F0 > r)).

As the next step we determine the probability distribution, respectively the
survival function of F0 for

F0 = inf{R̄s|s > 0},
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where R̄ is a BES δ̂(u) for an arbitrary u > 0. Since

Pδ̂u(F0 > a) = Pδ̂u(inf{R̄s|s > 0} > a),

the process evaluated at the exit time of an interval (a, b) for an arbitrary
b > a Pδ̂u-almost surely will be b on the event inf{R̄s|s > 0} > a. Letting
b→∞ means thus

{R̄Tab = b} → {inf{R̄s|s > 0} > a} for b→∞

where

Tab = inf{t|R̄t /∈ (a, b)}.

As can be found, e.g., in (Borodin and Salminen, 1996), we have

Pδ̂u(R̄Tab = b) =
a−(δ̂−2) − u−(δ̂−2)

a−(δ̂−2) − b−(δ̂−2)
.

Then we can conclude

lim
b→∞

Pδ̂u(R̄Tab = b) =
a−(δ̂−2) − u−(δ̂−2)

a−(δ̂−2)

= 1−
(a
u

)δ̂−2

.

Hence it follows that

Pδ̂u(F0 > a) = 1−
(a
u

)δ̂−2

.

Bringing together the facts from above, we get

Pδ̂0(Lr < t) = Pδ̂0(Ft > r)

= Pδ̂0(F0 ◦ θt > r) = Eδ̂
0(Pδ̂

R̂t
(F0 > r)).

Since we can consider (Pδ̂
R̂t

(F0 > r) as a function in R̂t, we have

Eδ̂
0(Pδ̂

R̂t
(F0 > r)) =

∫ ∞
0

Pδ̂y(F0 > r)pδ̂(t, 0, y)dy.
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There pδ̂(t, 0, y) denotes the transition density of the BES δ̂(0). As seen in
3.2 this equals

pδ̂(t, 0, y) =
y2ν̂+1

2ν̂tν̂+1Γ(ν̂ + 1)
exp

(
−y

2

2t

)
=

yδ̂−1

2
δ̂−2

2 t
δ̂
2 Γ( δ̂

2
)

exp

(
−y

2

2t

)
dy.

Obviously we have to assume 0 < r < y, since otherwise

Pδ̂y(F0 > r) = 0.

With

Pδ̂y(F0 > r) = 1−
(
r

y

)δ̂−2

it follows that

Eδ̂
0(Pδ̂

R̂t
(F0 > r))

=

∞∫
r

[
1−

(
r

y

)δ̂−2
]
· yδ̂−1

2
δ̂−2

2 t
δ̂
2 Γ( δ̂

2
)

exp

(
−y

2

2t

)
dy

=

[
2
δ̂−2

2 t
δ̂
2 Γ(

δ̂

2
)

]−1 ∞∫
r

[
1−

(
r

y

)δ̂−2
]
yδ̂−1 exp

(
−y

2

2t

)
dy

=

[
2
δ̂−2

2 t
δ̂
2 Γ(

δ̂

2
)

]−1
 ∞∫
r

yδ̂−1 exp

(
−y

2

2t

)
dy −

∞∫
r

rδ̂−2y exp

(
−y

2

2t

)
dy

 .
This term has to be rearranged suitably to evaluate the integrals. Next we
get[

Γ(
δ̂

2
)

]−1
 ∞∫
r

yδ̂−2

(2t)
δ̂−2

2

y

t
exp

(
−y

2

2t

)
dy − rδ̂−2

(2t)
δ̂−2

2

∞∫
r

y

t
exp

(
−y

2

2t

)
dy

 .
Now we consider both integrals separately. First:

∞∫
r

yδ̂−2

(2t)
δ̂−2

2

y

t
exp

(
−y

2

2t

)
dy.
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Here we can substitute v for y2

2t
. Hence

dv = d

(
y2

2t

)
=
y

t
dy.

Then we can write

yδ̂−2

(2t)
δ̂−2

2

=

(
y2

2t

) δ̂−2
2

= v
δ̂−2

2 .

This leads to

∞∫
r

yδ̂−2

(2t)
δ̂−2

2

y

t
exp

(
−y

2

2t

)
dy =

∞∫
r2

2t

v
δ̂−2

2 exp(−v)dv.

Now we consider the second integral without the coefficient rδ̂−2

(2t)
δ̂−2

2

:

∞∫
r

y

t
exp(−y

2

2t
)dy.

Here no substitution is necessary, since we get directly

∞∫
r

y

t
exp(−y

2

2t
)dy = − exp

(
−y

2

2t

)∣∣∣∣∞
r

= exp

(
−r

2

2t

)
.

Summarizing, we get

Pδ̂r(T0 < t) =

[
Γ

(
δ̂

2

)]−1


∞∫

r2

2t

v
δ̂−2

2 exp(−v)dv − rδ̂−2

(2t)
δ̂−2

2

exp(−r
2

2t
)

 .
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In order to get the density of the first hitting time we have to differentiate
this expression with respect to t. For the first part we have

∂

∂t


∞∫

r2

2t

v
δ̂−2

2 exp(−v)dv


=

r2

2t2
rδ̂−2

(2t)
δ̂−2

2

exp(−r
2

2t
)

=
1

t

rδ̂

(2t)
δ̂
2

exp(−r
2

2t
) =

1

t

(
r2

2t

) δ̂
2

exp(−r
2

2t
).

Now we determine the derivative of the second part:

∂

∂t

(
rδ̂−2

(2t)
δ̂−2

2

exp(−r
2

2t
)

)

=
− δ̂−2

2
rδ̂−2

2
δ̂−2

2 t
δ̂
2

exp(−r
2

2t
) +

rδ̂−2

(2t)
δ̂−2

2

r2

2t2
exp(−r

2

2t
)

= − δ̂ − 2

2

(
r2

2t

) δ̂−2
2 1

t
exp(−r

2

2t
) +

1

t

(
r2

2t

) δ̂
2

exp(−r
2

2t
).

Hence it follows that

P(T0 ∈ dt)

=
∂

∂t

[
Γ

(
δ̂

2

)]−1


∞∫

r2

2t

v
δ̂−2

2 exp(−v)dv − rδ̂−2

(2t)
δ̂−2

2

exp(−r
2

2t
)


=

[
Γ

(
δ̂

2

)]−1 [
1

t

(
r2

2t

) δ̂
2

exp(−r
2

2t
)

+
δ̂ − 2

2

(
r2

2t

) δ̂−2
2 1

t
exp(−r

2

2t
)− 1

t

(
r2

2t

) δ̂
2

exp(−r
2

2t
)

]

=

[
Γ

(
δ̂

2

)]−1
δ̂ − 2

2

(
r2

2t

) δ̂−2
2 1

t
exp(−r

2

2t
).
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Applying (3.3) we get

P(T0 ∈ dt) =

[
Γ

(
δ̂ − 2

2

)]−1(
r2

2t

) δ̂−2
2 1

t
exp

(
−r

2

2t

)
.

Since δ̂ = 4− δ, the above expression becomes

P(T0 ∈ dt) =

[
Γ

(
1− δ

2

)]−1(
r2

2t

)1− δ
2 1

t
exp

(
−r

2

2t

)
.

Hence with x = r2 the assertion from Theorem 3.3.1 follows.

As the next lemma shows, this is exactly the density of the Inverse Gamma
distribution.

Lemma 3.3.7 The first hitting time T0 has an Inverse Gamma distribution
with shape parameter α = 1− δ

2
and scale parameter β = 2

x
.

Proof: To show that T0 has an Inverse Gamma distribution, we can use that
1
T0

has a Gamma distribution.

P(T0 ≤ t) = P
(

1

T0

≥ 1

t

)
=

∞∫
1
t

1

Γ(α)βα
yα−1e−

y
β dy.

The substitution s = 1
y
leads to

P(T0 ≤ t) = −
t∫

0

1

Γ(α)βα

(
1

s

)α−1

e−
1
βs

(
− 1

s2

)
ds

=

t∫
0

1

Γ
(
1− δ

2

) ( x
2s

)α 1

s
e−

x
2sds.

This integrand is exactly the density from Theorem 3.3.1. �
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3.4 The Default Time

In order to determine default probabilities as well as joint default probabili-
ties, we consider a finite set I of obligors, whereas for our purposes it suffices
to consider I = {1, 2}. We assign to each obligor i ∈ I an ability to pay
process X i with

X i
t = Yt + Y i

t for t ∈ [0,∞)

where (Yt)t≥0 and {(Y i
t )t≥0|i ∈ I } are independent Squared Bessel processes:

Y i
t = yi0 + δit+ 2

t∫
0

√
Y i
s dW

i
s

Yt = y0 + δt+ 2

t∫
0

√
YsdWs

with dimensions δ, δi ∈ (0, 2). As already mentioned, we identify the default
with the first time the ability to pay process reaches a certain level, called
default barrier. In our setting this default barrier will be zero for all obligors.
Thus, the default time of obligor i, Ti is identified with the first hitting time
of the process X i, i.e.,

Ti = inf{t|X i
t = 0}.

Since X i is composed of two other processes, the default time is the first time
both processes hit the barrier at the same time. This circumstance would not
pose a problem for the single default probability, because due to the additivity
property we can directly compute the first hitting time of X i regardless of
Y and Y i if δ + δi < 2 is satisfied. However, we are also interested in the
joint default probability of two firms, who are driven by the same common
process (Yt)t≥0. In analogy to the single period factor models one wants to
exploit the conditional independence of the asset values, respectively ability
to pay processes. Therefore we would have to condition on the complete path
of Y up to time t and the knowledge of the first hitting time of a Squared
Bessel process would no longer be of any use for us, since the first hitting
time of X i almost surely does not coincide with the first hitting time of the
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idiosyncratic part Y i. This makes it impossible to compute the joint default
probability. The only way out is to force the common process to stay in
zero after the first hitting time, i.e., to consider the stopped process. Then
a default can only happen after the ”default” of the common process. That
means the model can be seen as a kind of common shock model where one
certain event triggers the possibility of default for all obligors. Thus, instead
of Yt henceforth we consider the stopped process

Y T0
t := YT0∧t,

where
T0 = inf{t|Yt = 0}.

Then, for t ≥ T0 we have Y T0
t = 0, so that

X i
t = Y i

t + Y T0
t

=
(
Y i
t + Y T0

t

)
1{T0>t} +

(
Y i
t + Y T0

t

)
1{T0≤t}

=
(
Y i
t + Y T0

t

)
1{T0>t} + Y i

t 1{T0≤t}

=

yi0 + y0 + (δi + δ) · t+ 2

t∫
0

√
X i
sdB

i
s

 · 1{T0>t}

+

yi0 + δi · t+ 2

t∫
0

√
Y i
s dW

i
s

 · 1{T0≤t}

where

Bi
t =

t∫
0

√
Y i
s dW

i
s +
√
YsdWs√

X i
s

.

Thus we can also decompose the default time Ti in the first hitting time T0

and the first hitting time of the remaining process after T0. We denote this
stopping time by T̃i:

T̃i = inf{t|Y i
T0+t = 0},

i.e., we have
Ti = T0 + T̃i.
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Since the ability to pay process is no longer a pure Squared Bessel process,
we also have to compute the single default probability by conditioning on the
first hitting time T0:

P(Ti ≤ t) = P(T0 + T̃i ≤ t)

= E(P(T̃i ≤ t− T0|T0))

=

∞∫
0

P(T̃i ≤ t− s)P(T0 ∈ ds)

=

∞∫
0

P(T̃i ≤ t− s)1{s≤t}P(T0 ∈ ds)

+

∞∫
0

P(T̃i ≤ t− s)1{s>t}P(T0 ∈ ds).

For the second integral we get
∞∫

0

P(T̃i ≤ t− s)1{s>t}P(T0 ∈ ds)

=

∞∫
t

P(T̃i ≤ t− s)P(T0 ∈ ds)

= 0.

Thus, we have

P(Ti ≤ t) =

∞∫
0

P(T̃i ≤ t− s)1{s≤t}P(T0 ∈ ds)

=

t∫
0

P(T̃i ≤ t− s)P(T0 ∈ ds).

Using the definition of T̃i leads to

P(Ti ≤ t) =

t∫
0

P(inf{u|Y i
s+u = 0} ≤ t− s)P(T0 ∈ ds).
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To be able to proceed, we have to use the Strong Markov property of the
Squared Bessel process. The Strong Markov property is stated in the follow-
ing Theorem:

Theorem 3.4.1 If Z is a F∞-measurable and positive (or bounded) random
variable and T is a stopping time, for any initial measure ν,

Eν(Z ◦ θT |FT ) = EXT (Z)

Pν − a.s. on the set {T <∞}.

Proof: see (Revuz and Yor, 1991) �

Due to the Strong Markov property, conditional on a realization of Y i, eval-
uated at the random time T0, i.e., on the event {Y i

T0
= y}, the conditional

probability distribution of T̃i is equal to the distribution of the first hitting
time of a Squared Bessel process, starting at y. Now we can apply Theo-
rem 3.4.1 to compute P(inf{u|Y i

T0+u = 0} ≤ t − s). Therefore we write this
probability as the expectation of the indicator function:

P(inf{u|Y i
T0+u = 0} ≤ t− s)

= E(1[0,t−s](inf{u|Y i
T0+u = 0})).

Applying the tower property leads to

E(1[0,t−s](inf{u|Y i
T0+u = 0}))

= E(Eδi
yi0

(1[0,t−s](inf{u|Y i
T0+u = 0})|FT0)).

Now we can apply Theorem 3.4.1 for

Z = 1[0,t−s](inf{u|Y i
T0+u = 0})

and get

E(Eδi
yi0

(1[0,t−s](inf{u|Y i
T0+u = 0})|FT0))

= E(Eδi
yi0

(1[0,t−s](inf{u|Y i
u = 0}) ◦ θT0|FT0))

= E(Eδi
Y iT0

(1[0,t−s](inf{u|Y i
u = 0})))

= E(Pδi
Y iT0

(inf{u|Y i
u = 0} ≤ t− s)).



3.4. THE DEFAULT TIME 71

As already seen, the transition density of a Squared Bessel process X is given
by 3.1. We denote the associated semi-group by (Pt)t≥0. Then the following
property applies to the transition kernel Pt(·, ·):

Pt(x,A) =

∫
A

Pt(x, dy)

=

∫
A

p(t, x, y)dy.

Furthermore, we have

Ex(f(Xt)) =

∞∫
0

f(y)p(t, x, y)dy = Ptf(x).

As an application of the Strong Markov property, this extends to

Ex(f(XT )) = PTf(x)

for any stopping time T . Thus with

Pδi
Y iT0

(inf{u|Y i
u = 0} ≤ t− s) =: f(Y i

T0
)

we have

E(Pδi
Y iT0

(inf{u|Y i
u = 0} ≤ t− s))

= PT0P
δi
yi0

(inf{u|Y i
u = 0} ≤ t− s) =

∞∫
0

Pδiy (inf{u|Y i
u = 0} ≤ t− s)p(T0, y

i
0, y)dy.

Then, on the event {T0 = s}, we get

∞∫
0

Pδiy (inf{u|Y i
u = 0} ≤ t− s)ps(yi0, y)dy.
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Finally, the probability distribution of the default time Ti evolves into

P(Ti ≤ t)

=

t∫
0

∞∫
0

Pδiy (inf{u|Y i
u = 0} ≤ t− s)p(s, yi0, y)dyP(T0 ∈ ds)

=

t∫
0

∞∫
0

 t−s∫
0

Γ

(
1− δi

2

)−1
1

u

(
yi0
2u

)1− δi
2

e−
yi0
2udu


1

2s

(
y

yi0

) δi−1

4

exp

(
−y

i
0 + y

2s

)
I δi−1

2

(√
yi0y

s

)
dy

Γ

(
1− δ

2

)−1
1

s

(y0

2s

)1− δ
2
e−

y0
2s ds.

Now we denote the distribution function of the Inverse Gamma distribution
by FIG(x;α, β) and its probability density by fIG(x;α, β), where α is the
shape parameter and β is the scale parameter.

Accordingly the probability density of the noncentral-χ2-distribution is
denoted by fNCχ2(x; k, λ) with k degrees of freedom and noncentrality-para-
meter λ.
With these notations, the distribution function of the default time Ti becomes

P(Ti ≤ t) =

t∫
0

∞∫
0

FIG

(
t− s; 1− δi

2
,

2

y

)

fNCχ2

(
y

s
; 1− δi

2
,
yi0
s

)
fIG

(
s; 1− δ

2
,

2

y0

)
1

s
dyds.

3.5 Joint Default Probability

In order to compute the default correlation of two firms which is given by

ρij(t) =
P(Ti ≤ t, Tj ≤ t)− P(Ti ≤ t)P(Tj ≤ t)√

P(Ti ≤ t)(1− P(Ti ≤ t))P(Tj ≤ t)(1− P(Tj ≤ t))
(3.4)

we need to determine the joint default probability, i.e., the probability that
both firms have defaulted by time t. The joint default probability of two firms
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that are related by the common process Yt can now be easily be determined.
We have

P(T1 ≤ t, T2 ≤ t) = P(T0 + T̃1 ≤ t, T0 + T̃2 ≤ t)

= E(P(T̃1 ≤ t− T0, T̃2 ≤ t− T0|T0))

=

∞∫
0

P(T̃1 ≤ t− s, T̃2 ≤ t− s)P(T0 ∈ ds)

=

∞∫
0

P(T̃1 ≤ t− s)P(T̃2 ≤ t− s)P(T0 ∈ ds).

Here we have used the independence of T̃1 and T̃2.
In the last section we have determined the distribution function of T̃i:

P(T̃i ≤ t− s) =

∞∫
0

Pδiy (inf{u|Yu = 0} ≤ t− s)ps(yi0, y)dyP(T0 ∈ ds).

Thus, for the joint default probability we get

P(T1 ≤ t, T2 ≤ t)

=

t∫
0

P(T̃1 ≤ t− s)P(T̃2 ≤ t− s)P(T0 ∈ ds)

=

t∫
0

∞∫
0

Pδ1y1
(inf{u|Yu = 0} ≤ t− s)ps(y1

0, y1)dy1

∞∫
0

Pδ2y2
(inf{u|Yu = 0} ≤ t− s)ps(y2

0, y2)dy2P(T0 ∈ ds)

=

t∫
0

∞∫
0

FIG

(
t− s; 1− δ1

2
,

2

y1

)
fNCχ2

(
y1

s
; 1− δ1

2
,
y1

0

s

)
1

s
dy1

∞∫
0

FIG

(
t− s; 1− δ2

2
,

2

y2

)
fNCχ2

(
y2

s
; 1− δ2

2
,
y2

0

s

)
1

s
dy2

fIG

(
s; 1− δ

s
,

2

y0

)
ds.
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3.6 Examples

The next table shows the average S&P default rates.

years 1 2 3 4 5 6 7 8 9 10

rating

AAA 0.00 0.00 0.03 0.06 0.10 0.17 0.25 0.38 0.43 0.48

AA 0.01 0.03 0.08 0.16 0.27 0.39 0.53 0.65 0.75 0.85

A 0.05 0.15 0.28 0.44 0.62 0.81 1.03 1.25 1.52 1.82

BBB 0.37 0.94 1.52 2.34 3.20 4.02 4.74 5.40 5.99 6.68

BB 1.38 4.07 7.16 9.96 12.34 14.65 16.46 18.02 19.60 20.82

B 6.20 13.27 19.07 23.45 26.59 29.08 31.41 33.27 34.58 35.87

CCC 27.87 36.02 41.79 46.26 50.46 52.17 53.60 54.36 56.16 57.21

Table 3.1: Average S&P default rates [in %]

In order to calibrate the model to these values, there are four parameters
available (δ, y0, δ1, y

1
0). As examples we have chosen the ratings B and CCC.

Then the following parameters result from the calibration.

Parameters δ y0 δ1 y1
0

Rating

B 1.45 1.02 0.38 0.8

CCC 0.941 0.76 0.051 0.025

Table 3.2: calibration parameters

This leads to the following graphs where the long term default probabil-
ities are displayed.
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(a) Model and S & P default probabilities for B
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(b) Model and S & P default probabilities for CCC

Now we can compute the joint default probabilities for two B-rated firms
as well as for two CCC-rated firms. We get
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(c) Joint default probabilities for B-rated firms
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(d) Joint default probabilities for CCC-rated firms

With these results we can determine the default correlations, see 3.4.
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(e) Default correlation for B-rated firms
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(f) Default correlation for CCC-rated firms

Thus for the time horizon of one year we have a default correlation of
0.4027 for the B-rated firms and 0.5716 for the CCC-rated firms. For these
default correlations we can determine their respective implied asset correla-
tions, i.e., the correlation we have to plug into the normal copula such that
the resulting joint default probability equals the one we computed before,
i.e., we are looking for a ρ such that

P(T1 ≤ 1, T2 ≤ 1) = Φ2(Φ−1(P(T1 ≤ 1)),Φ−1(P(T2 ≤ 1)); ρ)
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where Φ2 denotes the two-dimensional normal distribution.
In the case of the two B-rated firms we have

0.0273 = Φ2(Φ−1(0.062),Φ−1(0.062); ρ).

Thus, in this case we get an implied asset correlation of

ρ = 0.73

3.6.1 Conclusions and Remarks

As we have seen within one rating class it is possible to fit approximately the
whole default probability term-structure. Since the Squared Bessel model is a
one-factor model the parameters δ and y0, i.e., the dimension and the starting
value of the common process have to remain unchanged for two obligors that
are assumed to depend on each other. Thus for two obligors within the same
rating class the model is able to produce high joint default probabilities. If
we fix one time horizon and fix the parameters of the common process it is
possible to fit default probabilities across different rating classes. But the
model is unfortunately not flexible enough to fit the whole term-structure or
even at least two different time horizons of two different rating classes with
fixed parameters δ and y0. The reason is that the range of possible term
structures is too narrow if we only vary the parameters of the individual
process.

3.7 Large Homogeneous Portfolio Approxima-

tion

Since in the structural Squared Bessel model, the ability to pay process is
composed of an individual and a common part, the default risk can be di-
vided into a systematic risk and an idiosyncratic risk. Thus, we can consider
a large homogenous portfolio of infinitely many issuers, where loosely speak-
ing, the idiosyncratic risk is diversified away. Based on the framework of
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the Merton model, introduced in (Merton, 1974), see section 1.1, Vasicek has
derived a simple closed-form solution for the loss distribution of an asymptot-
ically large, homogeneous portfolio in (Vasicek, 1987) and (Vasicek, 2002).
Though the limiting distribution in the Squared Bessel setting is far from
being available in closed form, nevertheless we can compare the shape of the
resulting distribution with the Vasicek distribution. In the first subsection,
the Vasicek approach will be introduced.

3.7.1 Vasicek Approach

As already mentioned, this approach is based on the Merton framework.
Thus, the asset value of every firm follows a geometric Brownian motion,
i.e., for firm i the dynamics of the asset value are given by

dV i
t = µiV

i
t dt+ σiV

i
t dW

i
t

where µi ∈ R and σi > 0 are constants and W i is a standard Brownian
motion. We assume that every issued bond matures at date T . That means,
a default of firm i happens if its firm value V i

T lies below the threshold Ki.
The firm value V i

T at time T is given by

V i
T = V i

0 exp

((
µi −

1

2
σ2
i

)
T + σiW

i
T

)
.

Thus, if τi denotes the default time of firm i, the default probability is

pi = P(τi = T ) = Φ(ci)

where

ci =
log
(
K
V i0

)
−
(
µi − 1

2
σ2
i

)
T

σi
√
T

.

That means, the probability of default is equal to the probability that a
standard normally distributed random variable Xi falls below a threshold ci.
In order to introduce a dependence structure, we assume that the standard
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Brownian motions all have pairwise instantaneous correlation ρ. Thus, for
two firms i and j, we have

Cor(Xi, Xj) = ρ.

This is fulfilled, if we set

Xi = Y
√
ρ+ Zi

√
1− ρ

where Y, Z1, Z2, ... are i.i.d. standard normally distributed random variables.
Then Y can be interpreted as a common factor and Zi represents the idiosyn-
cratic risk.
Now we consider a portfolio consisting of n loans. To simplify matters ev-
ery loan has an equal amount. Furthermore, every default probability is
assumed to be equal to p. The random variable Ln denotes the portfolio loss
as a percentage of the total portfolio:

Ln =
1

n

n∑
i=1

Li

where

Li = 1{Xi≤Φ−1(p)}.

If we condition on a realization of the common factor, Y = y, the expecta-
tion of the individual losses, i.e., the default probability conditional on the
realization is given by

p(y) = E(Li|Y = y) = E(1{Xi≤Φ−1(p)}|Y = y)

= P(Xi ≤ Φ−1(p)|Y = y)

= P(Y
√
ρ+ Zi

√
1− ρ ≤ Φ−1(p)|Y = y)

= P(y
√
ρ+ Zi

√
1− ρ ≤ Φ−1(p))

= P
(
Zi ≤

Φ−1(p)− y√ρ
√

1− ρ

)
= Φ

(
Φ−1(p)− y√ρ
√

1− ρ

)
.
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Conditional on a realization y of Y the Li are independent. That means, the
law of large numbers gives

P( lim
n→∞

Ln = p(y)|Y = y) = 1 (3.5)

Thus, for L := limn→∞ L
n we get

P(L ≤ x) = E(P(L ≤ x|Y ))

=

∞∫
−∞

P(L ≤ x|Y = y)φ(y)dy

=
3.5

∞∫
−∞

1{p(y)≤x}φ(y)dy

Since p(y) is a decreasing function, we get

P(L ≤ x) =

∞∫
−∞

1{y≥p−1(x)}φ(y)dy

=

∞∫
p−1(x)

φ(y)dy

= 1− Φ(p−1(x)) = Φ(−p−1(x))

= Φ

(√
1− ρΦ−1(x)− Φ−1(p)

√
ρ

)
.

3.7.2 Squared Bessel Approach

The main difference to the last approach is, that the Squared Bessel model
is a first passage model, i.e., if we also consider the interval [0, T ], a default
can happen at every time. As already shown in the last section, the default
time is given as

Ti = T0 + T̃i.

In order to be in accordance with the Vasicek approach, it is assumed that ev-
ery obligor has the same default probability over the considered time horizon,
i.e.,

pT = P(Ti ≤ T ) ∀i = 1, ..., n.
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If we consider the same portfolio again, the portfolio loss is given by

LnT =
1

n

n∑
i=1

Li

where

Li = 1{Ti≤T}.

If we condition on a realization of T0, i.e., T0 = s, the remaining random
variable T̃i is the time until the first hitting of zero after time s for the
idiosyncratic process Y i. The expectation of Li conditional on T0 = s is
given by

LT (s) = E(Li|T0 = s) = E(1{Ti≤T}|T0 = s)

= P(Ti ≤ T |T0 = s) = P(T0 + T̃i ≤ T |T0 = s)

= P(s+ T̃i ≤ T ) = P(T̃i ≤ T − s)

= Pδiy0
(inf{u|Y i

s+u = 0} ≤ T − s)

= EY is
(Pδi

Y is
(inf{u|Y i

u = 0} ≤ T − s))

=

∞∫
0

Γ
(

1− δi
2
, 2
y(T−s)

)
Γ
(
1− δi

2

) ps(y
i
0, y)dy.

Conditional on a realization s of T0 the Li are independent. That means, the
law of large numbers gives

P( lim
n→∞

LnT = LT (s)|T0 = s) = 1 (3.6)

Thus, for LT = limn→∞ L
n
T we get

P(LT ≤ x) = E(P(LT ≤ x|T0)

=

∞∫
0

P(LT ≤ x|T0 = s)P(T0 ∈ ds)

=
3.6

∞∫
0

1{LT (s)≤x}P(T0 ∈ ds)
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Since LT (s) is a decreasing function, we get

P(LT ≤ x) =

∞∫
0

1{s≥L−1
T (x)}P(T0 ∈ ds)

=

∞∫
L−1
T (x)

P(T0 ∈ ds) = P(T0 ≥ L−1
T (x))

= 1− P(T0 ≤ L−1(x))

= 1−
Γ
(

1− δ
2
, 2
y0L−1(x)

)
Γ
(
1− δ

2

) .

3.7.3 Comparison

In order to be able to compare these two approaches we use the parameters
from the last section for a B-rated obligor. In the Squared Bessel approach
we use the following parameters:

δ = 1.45 y0 = 1.02 δ1 = 0.38 y1
0 = 0.8

Then the resulting one-year default probability was given by p = 0.062 and
the implied asset correlation was ρ = 0.73. These two parameters will be
used for the Vasicek approach. Then the portfolio loss distribution function
in the Vasicek approach is given by
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(g) Vasicek loss distribution

In the Squared Bessel approach the portfolio loss distribution function
looks as follows
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(h) Squared Bessel loss distribution

To explain this result we have to take a look at the decreasing functions
p : R → [0, 1] in the Vasicek approach and L : R+ → [0, 1] in the Squared
Bessel approach. We have
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(i) The decreasing function p in the Vasicek approach

and
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(j) The decreasing function L in the Squared Bessel approach

Thus at the lower bound we have in the Vasicek approach

p(s)→ 1 for s→ −∞

and then
P(p(Y ) ≤ 1) = P(Y ≥ −∞)) = 1.

In the Squared Bessel approach we have

L(0) = FIG(1, 1− δ1

2
,

2

y1
0

) = 0.57
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and thus we have

P(L(T0) ≤ 0.57) = P(T0 ≥ L−1(0.57)) = P(T0 ≥ 0) = 1.

That means the portfolio loss does not exceed 0.57 with probability 1.
Due to the common shock-like behavior of the model the probability that the
common process survives the fixed time horizon is bigger than zero. Thus
the probability that no default occurs at all is even higher. Since this is
an unfavorable property for a large pool approximation the squared Bessel
model is not suited to serve as an alternative to the Vasicek approach.



Chapter 4

Alternative models

In this chapter we present two ideas for alternative approaches which may
overcome the drawbacks of the Squared Bessel model. In order to assess the
quality of the models and most notably the possibility to be calibrated, fur-
ther research is necessary. In this rather introductory chapter in both models
we take geometric Brownian motions as a basis for the ability to pay process,
since this is sufficient to explain the functionality of these approaches.

4.1 A Structural Markov Switching Model -

Single Event Case

4.1.1 The Default Time

In the Squared Bessel model of the last chapter, the ability to pay processes
were defined as

X i
t = Y i

t + Y T0
t i ∈ I = {1, ..., n}

92
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with

Y i
t = Y i

0 +

t∫
0

δids+

t∫
0

2
√
Y i
s dW

i
s

Yt = Y0 +

t∫
0

δds+

t∫
0

2
√
YsdWs

defined on a probability space (Ω,F ,P) with filtration
Ft = σ (((W i

s)i∈I ,Ws), 0 ≤ s ≤ t).
The default time was defined to be the first time the process X i

t hits zero,
i.e.,

Ti = inf{t ≥ 0|X i
t = 0}.

Since this stopping time can only happen after the common process Yt has
reached zero, Ti can be written as

Ti = T0 + T̃i

where
T0 = inf{t ≥ 0|Yt = 0}

and
T̃i = inf{t ≥ 0|Y i

T0+t = 0}.

As already mentioned, the default event is triggered by the first hitting time
of the common process. This can also be described by a single event process
ξt with

ξt = 1{T0≤t}.

Thus a default is only possible on the event {ξt = 1} and we get

Ti = inf{t ≥ 0|(Y i
t = 0) ∧ (ξt = 1)}.

The single event process, determined by the common process describes two
possible states of the economy:

• {ξt = 0} means no default is possible at all
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• {ξt = 1} means default is possible.

For the next approach, the underlying single event process ξt is not neces-
sarily dependent on the first hitting time of a stochastic process. For sake of
simplicity, the jump time of the process ξt will be assumed to be exponentially
distributed, i.e.,

ξt = 1{T≤t}

with

P(T ≤ t) = 1− exp(−λt).

Again the values of ξt represent the states of the economy, i.e., at the jump
time the economy deteriorates. But in this approach the jump event does not
trigger the default of an obligor. It just increases the probability of default,
i.e., the main difference to the Squared Bessel model is that a default can
also happen before the jump time T . The increase of the default probability
at the jump time can be implemented through a change of the parameters of
the asset value process. That means, the asset value processes are assumed to
be geometric Brownian motions, where the drift and the volatility parameter
take different values depending on the values of ξt, i.e.,

dX i
t = µi(ξt)X

i
tdt+ σi(ξt)X

i
tdW

i
t

with

µi(0) = µi0 µi(1) = µi1

σi(0) = σi0 σi(1) = σi1.

To formalize these assumptions, the Brownian motions (W i
t )i∈I are defined

on a probability space (ΩW ,FW ,PW ) with the filtration
FWt = σ ((W i

s)i∈I , 0 ≤ s ≤ t). Obviously X i
t is not adapted to FWt , thus

we define another probability space (Ωξ,F ξ,Pξ) with the filtration F ξt , such
that ξt is F ξt -adapted. From these probability spaces we can define a new
probability space (Ω,F ,P) with the filtration Ft, where
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• Ω := ΩW × Ωξ

• Ft := FWt
∨
F ξt

• P := PW ⊗ Pξ.

Since under these assumptions, X i
t is a Ft-adapted process, any first passage

time of X i
t will be a Ft stopping time, we can define the default time as the

first passage time of X i
t of a constant barrier Ki, i.e.,

Ti = inf{t ≥ 0|X i
t ≤ Ki}.

In order to determine the default probability, i.e., P(Ti ≤ t), we have to
consider the cases {ξt = 0} and {ξt = 1}, i.e., if the process ξt has already
jumped before the time t or not. Thus, we get for the default probability

P(Ti ≤ t) = E(P(Ti ≤ t|ξt))

= E
(
P(Ti ≤ t|ξt = 0)1{ξt=0} + P(Ti ≤ t|ξt = 1)1{ξt=1}

)
= E

(
P(Ti ≤ t|ξt = 0)1{ξt=0}

)
+ E

(
P(Ti ≤ t|ξt = 1)1{ξt=1}

)
.

First, we consider the case ξt = 0:
The probability P(Ti ≤ t|ξt = 0) is equal to the probability distribution
function of the first passage time T 0

i with

T 0
i = inf{t ≥ 0|X i,0

t ≤ Ki}

where X i,0
t solves the following stochastic differential equation

dX i,0
t = µ0

iX
i,0
t dt+ σ0

iX
i,0
t dW i

t

and

X i,0
0 = X i

0.
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Thus, we have

E
(
P(Ti ≤ t|ξt = 0)1{ξt=0}

)
= E

(
P(T 0

i ≤ t)1{ξt=0}
)

= P(T 0
i ≤ t)E(1{ξt=0}) = P(T 0

i ≤ t)P(ξt = 0)

= P(T 0
i ≤ t)P(T > t).

Now we consider the case ξt = 1:
This means, the jump of ξt has already occurred, i.e., T ≤ t. Thus, we have
to differentiate, if the default happened before the jump or vice versa. We
get

E
(
P(Ti ≤ t|ξt = 1)1{ξt=1}

)
= E

(
P(Ti ≤ t|T ≤ t)1{T≤t}

)
= E

(
(P(Ti ≤ T |T ≤ t) + P(T < Ti ≤ t|T ≤ t))1{T≤t}

)
.

On the set {T ≤ t}, the probability P(Ti ≤ T ) is equal to the probability
distribution function of T 0

i evaluated at the random time T , whereas due to
the strong Markov property of the two-dimensional process (Xt, ξt), the prob-
ability P(T < Ti ≤ t) equals the product of the probability P(T 0

i > s) and
the probability distribution function of the first passage time T 1

i evaluated
at t− T with

T 1
i = inf{t ≥ 0|X i,1

t ≤ Ki}

where X i,1
t solves the following stochastic differential equation

dX i,1
t = µ1

iX
i,1
t dt+ σ1

iX
i,1
t dW i

t

and

X i,1
0 = X i

T .
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Thus, we have

E
(
P(Ti ≤ t|ξt = 1)1{ξt=1}

)
= E

(
P(Ti ≤ t|T ≤ t)1{T≤t}

)
= E

((
P(T 0

i ≤ t) + P(T 0
i > s)PXi

T
(T 1

i ≤ t− T )
)
1{T≤t}

)
= E

P(T 0
i ≤ T ) + P(T 0

i > s)

∞∫
0

Py(T 1
i ≤ t− T )pi(T,X i

0, y)dy

1{T≤t}


=

t∫
0

P(T 0
i ≤ s) + P(T 0

i > s)

∞∫
0

Py(T 1
i ≤ t− s)pi(s,X i

0, y)dy

 fT (s)ds

where pi(s, ·, ·) is the transition density function of the process X i
t and fT is

the probability density function of the jump time T .
Altogether, we have

P(Ti ≤ t)

= P(T 0
i ≤ t)P(T > t)

+

t∫
0

P(T 0
i ≤ s) + P(T 0

i > s)

∞∫
0

Py(T 1
i ≤ t− s)pi(s,X i

0, y)dy

 fT (s)ds.
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At full length, the default probability is given as

P(Ti ≤ t)

=

[
Φ

 log
(
Ki
Xi

0

)
−
(
µ0
i − 1

2
(σ0

i )
2
)
t

σ0
i

√
t


+

(
Ki

X i
0

) 2µ0
i

(σ0
i )2
−1

Φ

 log
(
Ki
Xi

0

)
+
(
µ0
i − 1

2
(σ0

i )
2
)
t

σ0
i

√
t

] · exp(−λt)

+

t∫
0

([
Φ

 log
(
Ki
Xi

0

)
−
(
µ0
i − 1

2
(σ0

i )
2
)
s

σ0
i

√
s


+

(
Ki

X i
0

) 2µ0
i

(σ0
i )2
−1

Φ

 log
(
Ki
Xi

0

)
+
(
µ0
i − 1

2
(σ0

i )
2
)
s

σ0
i

√
s

]

+

[
1− Φ

 log
(
Ki
Xi

0

)
−
(
µ0
i − 1

2
(σ0

i )
2
)
s

σ0
i

√
s


+

(
Ki

X i
0

) 2µ0
i

(σ0
i )2
−1

Φ

 log
(
Ki
Xi

0

)
−
(
µ0
i − 1

2
(σ0

i )
2
)
s

σ0
i

√
s

]

×
∞∫

0

[
Φ

 log
(
Ki
y

)
−
(
µ1
i − 1

2
(σ1

i )
2
)

(t− s)

σ1
i

√
t− s


+

(
Ki

y

) 2µ1
i

(σ1
i )2
−1

Φ

 log
(
Ki
y

)
+
(
µ1
i − 1

2
(σ1

i )
2
)

(t− s)

σ1
i

√
t− s

]

1

yσ0
i

√
2πs

exp

−
(

log
(

y
Xi

0

)
−
(
µ1
i − 1

2
(σ0

i )
2
)
s
)2

2(σ0
i )

2s

 dy

λ exp(−λs)ds.

4.1.2 Joint Default Probability

In this subsection we will determine the joint default probability of two firms.
As already mentioned, the single event process ξt influences both firm values.
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Conditioned on the process ξt we can consider the case that the two firms
are independent of each other and the case that the underlying Brownian
motions are correlated.
Analog to the one-dimensional case we get

P(T1 ≤ t, T2 ≤ t)

= P(T 0
1 ≤ t, T 0

2 ≤ t)P(T > t)

+

t∫
0

(
P(T 0

1 ≤ s, T 0
2 ≤ s)

+

∞∫
0

∞∫
0

Py1,y2(T 1
1 ≤ t− s, T 1

2 ≤ t− s)

×p1,2
s ((X1

0 , X
2
0 ), (y1, y2))dy1dy2

)
fT (s)ds.

If the two firm value processes are independent conditional on ξt, we have

P(T 0
1 ≤ t, T 0

2 ≤ t) = P(T 0
1 ≤ t)P(T 0

2 ≤ t)

Py1,y2(T 1
1 ≤ t− s, T 1

2 ≤ t− s) = Py1(T 1
1 ≤ t− s)Py2(T 1

2 ≤ t− s).

Due to the independence the transition probability density is given by

p1,2
s ((X1

0 , X
2
0 ), (y1, y2)) = p1

s(X
1
0 , y1)p2

s(X
2
0 , y2).

If the firm values are correlated, we can use the results from (Zhou, 1997).

4.1.3 A Hybrid Model

So far, the single event process only changed the parameters of the firm value
processes at its jump time, which was interpreted as a sudden deterioration
of economy. Now this concept is extended such that this event can also cause
a sudden default of a firm independent of the actual value of its firm value
process. That means, we have to introduce Bernoulli variables, that indicate
the sudden default for every obligor and are revealed at the jump time of the
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single event process:

Yi =

1 with probability pi

0 with probability 1− pi.

where every Yi is FT -measurable. With the same notations as in the last
subsections, we have to distinguish now between three cases for the default
time:

Ti =


T 0
i if T 0

i ≤ T

T if Yi = 1

T 1
i + T if Yi = 0.

The default probability is then given by

P(Ti ≤ t)

= P(T 0
i ≤ t)P(T > t)

+

t∫
0

(
P(T 0

i ≤ s)

+P(T 0
i > s)

pi + (1− pi)
∞∫

0

Py(T 1
i ≤ t− s)pis(X i

0, y)dy

)fT (s)ds.

4.2 Random drift

4.2.1 Model Description

In this chapter, the firm value process follows a geometric Brownian motion,
defined on a probability space (Ω,F ,P) with

• Ω := Ωµ × ΩW

• F := Fµ ⊗FW

• P := Pµ ⊗ PW .
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The filtration F = (Ft)t≥0 is given by

Ft = Fµ ⊗FWt

where FWt is the natural filtration of the Brownian motionWt. Furthermore,
the Brownian motion Wt is independent of Fµ, i.e.,

Wt(ω1, ω2) = Wt(ω2) for (ω1, ω2) ∈ Ω.

The drift µ is a random variable on the probability space (Ω,Fµ,Pµ) and is
revealed at time 0. Thus, a path of V satisfies

Vt(ω1, ω2) = V0 +

t∫
0

µ(ω1)Vsds+

t∫
0

σVsdWs(ω2).

The default time is again defined as the first passage time of the constant
barrier K, i.e.,

T = inf{t ≥ 0|Xt ≤ K}.

Conditional on a realization µ0 of the random variable µ, we get the following
default probability

P(T ≤ t|µ = µ0)

= Φ

 log
(
K
V0

)
−
(
µ− 1

2
σ2
)
t

σ
√
t

+

(
K

V0

) 2µ

σ2−1

Φ

 log
(
K
V0

)
+
(
µ− 1

2
σ2
)
t

σ
√
t

 .

Thus, in order to determine the default probability, we have to take the
expectation with respect to the drift µ, i.e.,

P(T ≤ t) = E(P(T ≤ t|µ))

=

∫
Ωµ

P(T ≤ t|µ(ω1))Pµ(dω1)

=

∞∫
−∞

P(T ≤ t|µ = µ0)fµ(µ0)dµ0

where fµ is the probability density of the drift µ.
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4.2.2 Examples

In the following examples, we will assume, that the drift µ is Gamma-
distributed. The default probabilities will be calibrated to the following
cumulative average default rates

years 1 2 3 4 5 6 7 8 9 10

rating

AAA 0.00 0.00 0.03 0.06 0.10 0.17 0.25 0.38 0.43 0.48

AA 0.01 0.03 0.08 0.16 0.27 0.39 0.53 0.65 0.75 0.85

A 0.05 0.15 0.28 0.44 0.62 0.81 1.03 1.25 1.52 1.82

BBB 0.37 0.94 1.52 2.34 3.20 4.02 4.74 5.40 5.99 6.68

BB 1.38 4.07 7.16 9.96 12.34 14.65 16.46 18.02 19.60 20.82

B 6.20 13.27 19.07 23.45 26.59 29.08 31.41 33.27 34.58 35.87

CCC 27.87 36.02 41.79 46.26 50.46 52.17 53.60 54.36 56.16 57.21

Table 4.1: Average S&P default rates [in %]

The first graph shows the average default rates for the rating CCC, the
calibrated default probability for a deterministic drift with the following pa-
rameters:

µ = 0.0441

σ = 0.0188
K

V0

= 0.795

The dashed line shows the default probability with random drift with the
following parameters:

E(µ) = 0.13

V ar(µ) = 0.08

σ = 0.22
K

V0

= 0.78
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(k) PDs for CCC

The second graph shows the average default rates for the rating B, the
calibrated default probability for a deterministic drift with the following pa-
rameters:

µ = 0.02

σ = 0.2
K

V0

= 0.65

The dashed line shows the default probability with random drift with the
following parameters:

E(µ) = 0.185

V ar(µ) = 0.08

σ = 0.22
K

V0

= 0.7
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(l) PDs for B

The third graph shows the average default rates for the rating BBB,
the calibrated default probability for a deterministic drift with the following
parameters:

µ = 0.04

σ = 0.17
K

V0

= 0.45

The dashed line shows the default probability with random drift with the
following parameters:

E(µ) = 0.11

V ar(µ) = 0.002

σ = 0.17
K

V0

= 0.6
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(m) PDs for BBB

4.2.3 Joint Default Probability

The random drift µ can also be used to increase the dependence between
two obligors. The strongest dependence can be achieved, if the two firms
are assumed to have exactly the same random drift µ. If the two firm value
processes are independent conditional on the drift, we get

P(T1 ≤ t, T2 ≤ t)

= E(P(T1 ≤ t, T2 ≤ t|µ))

= E(P(T1 ≤ t|µ)P(T1 ≤ t|µ)).

The next two graphs show the joint probability and the default correlation
for two CCC-rated firms with identical parameters and two B-rated firms as
in the above examples.
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(n) Joint PDs for CCC

In this figure the upper dots show the average default rates for CCC. The
dashed line shows the calibrated default probabilities for a random drift and
the continuous line shows the calibrated default probabilities for a determin-
istic drift. The lower dashed line shows the joint default probabilities for
two firms with the same random drift. The dots show the associated default
correlation. The continuous line shows the joint default probability in the
case of independence.



4.2. RANDOM DRIFT 107

(o) Joint PDs for B

In this figure the upper dots show the average default rates for B. The
dashed line shows the calibrated default probabilities for a random drift and
the continuous line shows the calibrated default probabilities for a determin-
istic drift. The lower dashed line shows the joint default probabilities for
two firms with the same random drift. The dots show the associated default
correlation. The continuous line shows the joint default probability in the
case of independence.



Chapter 5

The Role of Copulas

in the CreditRisk+TMFramework

In chapter 3 we used Squared Bessel processes for our first passage time
model. These processes belong to the family of square root processes, also
known as Cox-Ingersoll-Ross processes. As we already mentioned, these pro-
cesses are often used as intensity processes in reduced form models, see (Duffie
and Singleton, 2003). In order to consider a static model, i.e., with a fixed
time horizon, the Poisson process can be substituted by a Poisson variable.
The intensity process can be substituted by its invariant distribution. In this
case, the invariant distribution of a Cox-Ingersoll-Ross process is the Gamma
distribution. This leads directly to the well-known CreditRisk+TMmodel.
The following chapter depicts and to some degree explains in greater de-
tail the major part of an already published article (see (Ebmeyer et al.,
2007)). The article was a contribution to a textbook about copulas and
their application in finance, edited by Jörn Rank from d-fine, see (Rank,
2007). In our article we tried to emphasize the importance of copulas in the
CreditRisk+TMmodel and presented a kind of large portfolio approximation
in order to get a measure for diversification.

108
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5.1 Introduction

In this section we shortly present the CreditRisk+TMmodel developed by
(CSFP, 1997) in its original setting. Therefore, we consider a finite set of
obligors, denoted by I = {1, ...,m}, each of whom is characterized by his
exposure ν̃l ∈ (0,∞) and his expected probability of default p̄l ∈ (0, 1) for
any l ∈ I . Then the loss is expressed as the integer multiple of a basic loss
unit ν0, i.e. νl = b ν̃l

ν0
c. Furthermore Dl denotes obligor l’s default variable,

defined as

Dl =

 1 if obligor l defaults

0 otherwise.

So the portfolio loss variable L̃, expressed in multiples of the basic loss
unit is given as

L̃ :=
m∑
l=1

Dl νl, (5.1)

For a given default probability pl, we get for the probability generating
function of Dl for z ∈ [−1, 1]

E(zDl) = plz + (1− pl) = 1 + pl(z − 1).

For small default probabilities the following approximation can be used:

1 + pl(z − 1) ≈ exp(pl(z − 1)).

Since this is the probability generating function of a Poisson distributed
random variable, in CreditRisk+ every Bernoulli default indicator Dl is now
replaced by a Poisson random variable Nl with stochastic intensity pl(γ).
Thus, the portfolio loss variable is now being defined as

L :=
m∑
l=1

Nlνl. (5.2)

The reason for performing this approximation is that the resulting probability
generating function for the portfolio loss variable has a much simpler form
than for the original loss variable. The default probability pl(γ) of each
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obligor is a random variable, whose realization depends linearly on a set
of d ≥ 1 systematic risk factors, denoted by γ = (γ1, ..., γd)

>. Each γk is
an almost surely strictly positive random variable satisfying E(γk) = 1 and
V ar(γk) = σ2

k. We get

pl(γ) = p̄l ·
d∑

k=1

wlk γk for any 1 ≤ l ≤ m. (5.3)

In the standard CreditRisk+ approach the risk factors γ1, ..., γd have a
Gamma distribution and are independent of each other.

Definition 5.1.1 A random variable γ is called Gamma-distributed with
shape parameter α and scale parameter β, i.e. γ ∼ Γ(α, β) if its probability
distribution function is given as follows

P (γ ≤ x) =

∫ x

0

1

βα Γ̄(α)
tα−1 e−

t
β dt, x ≥ 0,

where Γ̄(α) =
∫∞

0
e−xxα−1dx denotes the Gamma Function. Its expectation

is given as E(γ) = αβ and its variance as V ar(γ) = αβ2

In this case, the parameters of the k-th systematic risk factor are

αk =
1

σ2
k

and βk = σ2
k.

As already mentioned, the concept of the probability generating function
plays a central role in the CreditRisk+ model. Since the portfolio loss vari-
able is expressed in integer multiples of the basic loss unit, its probability
generating function can be represented as

G(z) =
∞∑
n=0

P(L = n)zn.

Due to the Poisson approximation, the probability generating function can
be represented in a closed analytical form, such that the coefficients can
be determined with numerical algorithms. For the probability generating
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function of the portfolio loss we obtain

E(zL) = E(E(zL|γ)) = E
(
E(z

∑m
l=1Nlνl |γ)

)
= E

(
m∏
l=1

E((zνl)Nl |γ)

)
= E

(
m∏
l=1

epl(γ)(zνl−1)

)
= E

(
e
∑m
l=1

∑d
k=1 p̄lw

k
l γk(zνl−1)

)
= E

(
e
∑d
k=1 Pk(z)γk

)
with

Pk(z) =
m∑
l=1

wlkp̄l(z
νl − 1) ∀ k = 1, ..., d.

Then due to the independence of the systematic risk factors, we get

E(zL) = E
(
e
∑d
k=1 Pk(z)γk

)
=

d∏
k=1

E
(
ePk(z)γk

)
=

d∏
k=1

(1− σ2
kPk(z))

− 1

σ2
k

= exp

(
log

(
d∏

k=1

(1− σ2
kPk(z))

− 1

σ2
k

))

= exp

(
d∑

k=1

log
(
1− σ2

kPk(z)
)− 1

σ2
k

)

= exp

(
−

d∑
k=1

1

σ2
k

log

(
1− σ2

k

m∑
l=1

wlkp̄l(z
νl − 1)

))
. (5.4)

In the original document, the Panjer recursion scheme is used to compute
the probabilities P(L = n). Since this algorithm is numerically unstable,
(Haaf et al., 2004) propose a numerically stable method, where the probabil-
ity generating function has to result from a series of convoluted operations
on the polynomials Pk(z). These operations are:

• Multiplication with a scalar

• Addition of a constant
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• Addition of polynomials

• log and exp

For log and exp we consider two polynomials P (z) and Q(z)

P (z) =
∞∑
n=0

pnz
n and Q(z) =

∞∑
n=0

qnz
n

so that P (z) = exp(Q(z)). With Taylor expansion we get for the coefficients

pn =
n∑
k=1

k

n
pn−kqk and p0 = exp(q0).

For Q(z) = log(P (z)) follows

qn =
1

p0

(
pn −

n−1∑
k=1

k

n
pn−kqk

)
Then the probability generating function in the form of 5.4 satisfies these
conditions and thus the coefficients can be computed using the algorithm
proposed in (Haaf et al., 2004).

5.2 The CreditRisk+ Default Copula

As already mentioned the default variable of obligor l in the CreditRisk+TM

model is represented by a Poisson random variable Nl. Thus the default of
obligor l coincides with the event {Nl ≥ 1}. That means, we can identify the
default indicator Dl with the indicator function 1{Nl≥1}, i.e.,

Dl =

1 if Nl ≥ 1

0 if Nl = 0

In this section we will determine the joint distribution of the random vector of
default indicators D = (D1, ..., Dm)> and figure out the copula that describes
its dependence structure. For this we first have to clarify the relationship of
multivariate distribution functions and copulas. First of all we have to define
copulas:
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Definition 5.2.1 A d-dimensional copula C : [0, 1]d → [0, 1] is a joint dis-
tribution function such that every marginal distribution is uniform on the
interval [0, 1].

The relationship of multivariate distribution functions and copulas is estab-
lished by the following theorem:

Theorem 5.2.2 (Sklar) Consider a d-dimensional distribution function F
with marginals F1, ..., Fd. There exists a copula C, such that

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (5.5)

for all xi in [−∞,∞], i = 1, ..., d. If Fi is continuous for all i = 1, ..., d then
C is unique, otherwise C is uniquely determined only on RanF1×...×RanFd,
where RanFi denotes the range of the distribution function Fi.

On the other hand, consider a copula C and univariate distribution func-
tions F1, ..., Fd. Then F as defined in equation 5.5 is a multivariate distribu-
tion function with marginals F1, ..., Fd.

An important family of copulas are the Archimedean copulas. A n-dimensional
Archimedean copula can be written as follows:

C(u1, ..., un) = φ−1

(
n∑
i=1

φ(ui)

)
for all 0 ≤ u1, ..., un ≤ 1 and the function φ satisfies

• φ(1) = 0

• ∀u ∈ (0, 1) φ′(u) < 0 ,i.e., φ is decreasing

• ∀u ∈ (0, 1) φ′′(u) ≥ 0 ,i.e., φ is convex

The function φ is called generator.
A bivariate example of an Archimedean copula is the Clayton copula. The
generator of the Clayton copula is given by

φ(x) =
1

Θ

(
x−Θ − 1

)
with Θ > 0
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Then we have
φ−1(x) = (Θx+ 1)−

1
Θ

and the resulting bivariate Clayton copula is

C(u1, u2) =
(
u−Θ

1 + u−Θ
2 − 1

)− 1
Θ

A short introduction to copulas is given in (Schmidt, 2007). For a deeper
survey we refer to (Nelsen, 2006).

Now we return to the default indicator Dl. Conditioned on the set of
systematic factors γ we get

P(Dl = 0|γ) = P(Nl = 0|γ) = e−pl(γ)

and thus

P(Dl = 1|γ) = P(Nl ≥ 1|γ) = 1− P(Nl = 0|γ)

= 1− e−pl(γ)

Here we consider just one systematic risk factor, i.e., d = 1, so we have

P (Dl = 1|γ) = 1− e−p̄lγ.

It follows

P(Dl = 1) = E(P(Dl = 1|γ)) = 1− E(P(Dl = 0|γ))

= 1− E(e−p̄lγ) = 1 −
∫ ∞

0

e−p̄l x gα,β(x) dx

= 1 − Lγ(p̄l) (5.6)

where Lγ(p̄l) denotes the Laplace Transform of the random variable γ eval-
uated at p̄l. Now let Fl denote the distribution function of Dl, i.e., Fl(x) =

P(Dl ≤ x). For x ≥ 1 it is obvious that

Fl(x) = P(Dl ≤ x) = 1.

For 0 ≤ x < 1 we get

Fl(x) = P(Dl ≤ x) = P(Dl = 0) = Lγ(p̄l)
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Thus

Fl(x) =

 Lγ(p̄l) for 0 ≤ x < 1

1 for x ≥ 1.

Then the joint distribution function F : [0,∞)n → [0, 1] of the indicator
random vector D = (D1, ..., Dm)> is given as

F (x1, ..., xm) = P(D1 ≤ x1, ..., Dl ≤ xm)

= E(P(D1 ≤ x1, ..., Dm ≤ xm|γ))

= E(P(D1 ≤ x1|γ) · ... · P(Dm ≤ xm|γ))

= E
(
e−p̄11[0,1[(x1)γ · ... · e−p̄m1[0,1[(xm)γ

)
= E

(
e(−

∑m
l=1 p̄l1[0,1[(xl)) γ

)
= Lγ

(
m∑
l=1

p̄l1[0,1[(xl)

)
.

Now for 0 ≤ xl < 1 we have

p̄l = L −1
γ (Lγ(p̄l)) = L −1

γ (Fl(xl))

and since Lγ(0) = 1 for xl ≥ 1 we get

0 = L −1
γ (1) = L −1

γ (Fl(xl))

and thus

F (x1, ..., xm) = Lγ

(
m∑
l=1

L −1
γ (Fl(xl))

)
Since Lγ(·) is a convex, decreasing function satisfying L −1

γ (1) = 0 we have

F (x1, ..., xm) = φ−1

(
m∑
l=1

φ(Fl(xl))

)
= C(F1(x1), ..., Fm(xm))

with an Archimedean copula C with generator φ(·) ≡ L −1
γ (·). Since

Lγ(x) = (1 + β x)−
1
β ,
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we see that Lγ(x) is the inverse of the generator of the Clayton copula. Thus
we may write the joint default copula of the CreditRisk+TM model as

C(u1, ..., um) =

(
1 − m +

m∑
i=1

u−βi

)−1/β

which is the m - dimensional extension of the Clayton copula, or the Cook–
Johnson copula.

5.3 The Compound Gamma Model

In the original setup the systematic risk factors are assumed to be indepen-
dent so that default correlations between different obligors may only implic-
itly be defined by assigning positive weights to one or more common risk
factors. In this section, an approach proposed by (Giese, 2004) is presented,
where this shortcoming is overcome. Here, the systematic risk factors are
assumed to be Compound Gamma distributed. That means, conditional on
some realization {γ0 = s} of an additional Gamma-distributed random vari-
able γ0, the factors γ1, ..., γd are independent and Γ(αks, βk)-distributed for
k = 1, ..., d. Thus, a Compound Gamma distributed random vector is defined
as follows

Definition 5.3.1

A nonnegative d - dimensional random vector γ = (γ1, ..., γd)
> is called Com-

pound Gamma distributed, if its distribution function is absolutely con-
tinuous with density

fγ(t1, ..., td) =

∞∫
0

d∏
k=1

gαk·s,βk(tk) gα0,β0(s) ds, (t1, ..., td) ∈ Rd
+,

where each gαk,βk(·) denotes the density of a Gamma variate with parameters
(αk, βk) ∈ (0,∞)2 satisfying αk = 1/βk for k = 0, ..., d.

Again we set
E(γk) = 1 for k = 1, ..., d
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such that αk = 1
βk
. Then the following lemma delivers the covariance matrix

of a Compound Gamma distributed random vector.

Lemma 5.3.2 The covariance matrix (Cγ)k,l=1,...,d for a Compound Gamma
distributed random vector (γ1, ..., γd) is given as follows

Cγ
k,l = Cov(γk, γl) = δk,lβk + β0 ∀k, l = 1, ..., d

where δk,j denotes Kronecker’s delta function

δk,j =

 1 for k = j

0 for k 6= j.

Proof: We have

Cov(γk, γl) = E(Cov(γk, γl|γ0)) + Cov(E(γk|γ0),E(γl|γ0))

Since the risk factors are conditionally independent, we get

E(Cov(γk, γl|γ0)) = 0

and thus for k 6= l

Cov(γk, γl) = Cov(E(γk|γ0),E(γl|γ0))

= Cov(αkγ
0βk, αlγ

0βl)

= αkβk︸︷︷︸
=1

αlβl︸︷︷︸
=1

Cov(γ0, γ0)

= V ar(γ0) = β0.

For k = l we get

V ar(γk) = E(V ar(γk|γ0)) + V ar(E(γk|γ0))

= E(αkγ0β
2
k) + V ar(αkγ0βk)

= αkβ
2
kE(γ0) + α2

kβ
2
kV ar(γ0)

= βk + β0.
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�

According to definition 5.3.1 the marginal distribution function Fαk,βk(·) of
some single systematic risk factor γk is given as

Fαk,βk(x) :=

x∫
0

∞∫
0

gαk s,βk(t) gα0,β0(s) ds dt for any x ∈ [0,∞). (5.7)

Denoting the joint distribution of (γ1, ..., γd) by Fγ, i.e.

Fγ(x1, ..., xd) =

x1∫
0

· · ·
xd∫

0

fγ(t1, ..., td) dt1 · · · dtd,

then the copula Function describing the joint distribution is given as

C(u1, ..., ud) = Fγ(F
−1
α1,β1

(u1), ..., F−1
αd,βd

(ud)), (u1, ..., ud) ∈ [0, 1]d.

We shall henceforth impose the following assumption:

Assumption 5.3.3

The default variables Nl, l ∈ {1, ...,m} are pairwise independent conditional
on σ(γ), i.e., the σ–algebra generated by γ = (γ1, ..., γd)

>.

The portfolio loss distribution can again be computed with the recursion
scheme introduced in (Haaf et al., 2004). Therefore, the probability gener-
ating function must have a similar form as in 5.4. In this case, we get

E(zL) = E
(
e
∑d
k=1 Pk(z)γk

)
= E

(
E
(
e
∑d
k=1 Pk(z)γk |γ0

))
= E

(
d∏

k=1

E
(
ePk(z)γk |γ0

))

= E

(
d∏

k=1

(1− βkPk(z))
− γ0
βk

)

= E

(
exp

(
log

(
d∏

k=1

(1− βkPk(z))
− γ0
βk

)))

= E

(
exp

(
γ0 log

(
d∏

k=1

(1− βkPk(z))
− 1
βk

)))
.
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This is the moment generating function of the gamma distributed random
variable γ0 evaluated at

log

(
d∏

k=1

(1− βkPk(z))
− 1
βk

)
.

Thus

E

(
exp

(
γ0 log

(
d∏

k=1

(1− βkPk(z))
− 1
βk

)))

=

(
1− β0 log

(
d∏

k=1

(1− βkPk(z))
− 1
βk

))− 1
β0

= exp

(
− 1

β0

log

(
1 + β0

d∑
k=1

1

βk
log (1− βkPk(z))

))
.

5.4 The Characteristic Function

The purpose of this section is to derive the Characteristic Function φ(·) of
the loss variable defined in (5.2). Note that by its very definition, we have

φ(t) := E
(
eit L

)
for any t ∈ R.

To evaluate the above integral, it is convenient to first consider the conditional
Characteristic Function φγ(·) of L, defined as

φγ(t) := E
(
eit L

∣∣∣∣ γ ) for any t ∈ R.

To this end, fix some t ∈ R and set

z := eit.
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By successively exploiting the conditional independence of the Poisson de-
fault variables, we may rewrite φγ(t) as

φγ(t) = E
(
zL |γ

)
= E

(
z
∑m
l=1 Nlνl

∣∣∣∣ γ )
= E

(
m∏
l=1

(zνl)Nl
∣∣∣∣ γ
)

=
m∏
l=1

E
(

(zνl)Nl
∣∣∣∣ γ )

=
m∏
l=1

epl(γ)(zνl−1)

= e
∑m
l=1(

∑d
k=1 p̄lw

l
kγk)(zνl−1)

= e
∑d
k=1 Pk(z) γk , (5.8)

where

Pk(z) :=
m∑
l=1

wlk p̄l (z
νl − 1) for any k ∈ {1, ..., d}.

The above defined polynomial Pk(·) will henceforth be called the sector poly-
nomial of sector k. It is merely an elegant and condensed way of summarizing
the possibly highly complex exposure distribution within a given sector. To
obtain the unconditional Characteristic Function, we merely integrate over
all realizations of γ, or formally,

φ(t) =

∫
Rd+

φs1,...,sd(t) fγ(s
1, ..., sd) ds1 · · · dsd

=

∫
Rd+

(
e
∑d
k=1 Pk(z) sk

)
fγ(s

1, ..., sd) ds1 · · · dsd.

We shall summarize the above sequence of equations with the following
Lemma:
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Lemma 5.4.1 The Characteristic Function φ(·) of the portfolio loss variable
L is given as

φ(t) = E
(
eit L

)
= E

(
e
∑d
k=1 Pk(eit) γk

)
=

∫
Rd+

(
e
∑d
k=1 Pk(eit) sk

)
fγ(s

1, ..., sd) ds1 · · · dsd.

5.5 The Limit Distribution

The purpose of this section is to examine the limiting loss distribution which
results after a specific replication process. In the n - th stage of replication,
we consider the same types of obligors, but instead of a single obligor of
a certain type, there are n obligors, each of whom has an exposure equal
to 1/n - times his original exposure. Each clone of a particular obligor is
considered as being a conditionally independent copy of the original obligor
and is associated with the same expected probability of default and the same
sector allocation. The resulting sequence of portfolios is often associated with
diversification, since concentration of exposures in single obligors is reduced
step by step and the idiosyncratic part of the portfolio risk is slowly diversified
away.

Formally, we are interested in the limiting distribution of the sequence of
random variables (Sn)n∈N defined as

Sn :=
1

n

n∑
j=1

Lj for any n ≥ 1, (5.9)

where each Lj is a precise copy of the original portfolio L. In order to study
the limiting behavior of the distribution corresponding to each Sn, we shall
make use of the following result, known as Lévy’s Continuity Theorem:

Lemma 5.5.1 (Lévy’s Continuity Theorem)

Let (Fn)n∈N be a sequence of distribution functions, whose associated charac-
teristic functions are given respectively as (ϕn(·))n∈N. If (ϕn(·))n∈N converges
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pointwise to some function ϕ∗(·) and if ϕ∗(·) is continuous at t = 0, then there
exists a distribution function F , such that Fn −→ F weakly as n → ∞ and
the characteristic function associated with F is ϕ∗(·).

For a complete proof see for example (Feller, 1971). As mentioned before,
after exactly n portfolio replications, the corresponding portfolio Sn consists
exactly of n clones of the original set of obligors, each of whom has a credit
exposure equal to 1/n-times his original exposure. More precisely, instead of
m obligors with exposures {ν1, ..., νm} as considered in the original portfolio
L, the portfolio Sn consists of n ·m obligor with exposures{

ν1

n
, ...,

ν1

n︸ ︷︷ ︸
n times

, . . . ,
νm
n
, ...,

νm
n︸ ︷︷ ︸

n times

}
.

Each of the first n clones of some obligor l in the original portfolio L has the
same probability of default pl(γ), with

pl(γ) = p̄l ·
d∑

k=1

wlk γk,

that is, each clone underlies the same systematic risk factors as the corre-
sponding obligor in the original portfolio. If we wish to set up the character-
istic function of Sn, then we first have to determine the corresponding sector
polynomials. For sector k, it is obviously given as Pk

n(z), where

Pk
n(z) =

n∑
j=1

m∑
l=1

wkl p̄l (z
1
n
νl − 1)

=
m∑
l=1

nwkl p̄l (z
1
n
νl − 1) for any z ∈ C. (5.10)

Just as in the case of the original portfolio, we may set up the characteristic
function φn(·) of the portfolio Sn. For any given n ∈ N, it is given as

φn(t) = E
(
eit Sn

)
(5.11)

=

∫
Rd+

(
e(
∑d
k=1 Pk

n(eit) sk) fγ(s1, ..., sd)
)
ds1 · · · dsd
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for any given t ∈ R.
In order to study the pointwise limit of (φn(t))n∈N, note first that the expan-
sion of the complex exponential function reads

eit =
∞∑
j=0

(it)j

j!
for any t ∈ R,

so that in particular

n (eit
νl
n − 1) = n

(
(1 + it

νl
n
− 1 ) + O(

1

n2
)

)
for any t ∈ R.

It follows that

lim
n→∞

n (eit
νl
n − 1) = i t νl for any given t ∈ R. (5.12)

It is now straightforward to write down the pointwise limit of the sequence
of sector polynomials:

Lemma 5.5.2

For any t ∈ R and k ∈ {1, ..., d}, the sequence (Pk
n(eit))n∈N converges in C

to ELk · it where ELk is defined as follows

ELk := E(
m∑
l=1

wkl Nl νl ) =
m∑
l=1

wkl νl E[ E(Nl |σ(γ) ) ]

=
m∑
l=1

wkl νl E( pl(γ) ) =
m∑
l=1

wkl p̄l νl. (5.13)

Proof: Fix k ∈ {1, ..., d} and t ∈ R and note that

lim
n→∞

Pk
n(eit) = lim

n→∞

m∑
l=1

wlk p̄l n(eit
νl
n − 1) (5.14)

=
m∑
l=1

wlk p̄l lim
n→∞

n (eit
νl
n − 1)

=
m∑
l=1

wlk p̄l νl it

= ELk · it.
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�

The above Lemma together with the Dominated Convergence Theorem now
quite naturally lead to the limiting distribution of the sequence (Sn)n∈N:

Proposition 5.5.3 (Limit Distribution)

The sequence (Sn)n∈N defined in (5.9) converges in distribution to the random
variable

S∗ :=
d∑

k=1

ELk · γk. (5.15)

That is, for any x ∈ (0,∞), we have

lim
n→∞

P (Sn ≤ x) = F (x) :=

∫
D(x)∩Rd+

fγ(s1, ..., sd) ds1 · · · dsd,

where the set D(x) denotes the hyperplane in Rd defined as

D(x) :=

{
s = (s1, ..., sd)

> ∈ Rd

∣∣∣∣ d∑
k=1

sk · ELk ≤ x

}
.

Proof: Applying equation (5.8) to the portfolio Sn entails that

E
(
eit Sn

∣∣∣∣ γ ) = e
∑d
k=1 Pn(eit) γk .

for any t ∈ R. Moreover, according to Lemma 5.5.2, we have

lim
n→∞

Pk
n(eit) = ELk it

for any k, which, by the continuity of the complex exponential function,
implies that

lim
n→∞

E
(
eit Sn

∣∣∣∣ γ ) = lim
n→∞

e
∑d
k=1 Pk

n(eit) γk = eit
∑d
k=1 ELk γk .

Next, note that since |eit Sn| ≤ 1, we also have∣∣∣∣E( eit Sn ∣∣∣∣ γ ) ∣∣∣∣ ≤ 1,
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so that the Dominated Convergence Theorem implies that

lim
n→∞

φn(t) = lim
n→∞

E
(

E
(
eit Sn

∣∣∣∣ γ ))

= E
(

lim
n→∞

E
(
eit Sn

∣∣∣∣ γ ))
= E

(
eit

∑d
k=1 ELk γk

)
which is the characteristic function of the random variable S∗ defined in
(5.15). �

Thus, the entire remaining risk in the limiting portfolio is of systematic
nature and is solely driven by the joint distribution of the sector risk factors
γ1, ..., γd. The case d = 1 is particularly intuitive:

lim
n→∞

P

(
Sn
EL

≤ x

)
= Fα1,β1(x).

Put differently, as the degree of diversification increases step by step, the
distribution of the random variable Sn/EL approaches the distribution of
the underlying systematic risk factor. This may alternatively be formulated
as follows:

Corollary 5.5.4

Referring to the case d = 1, for any given confidence level α ∈ (0, 1) we have

lim
n→∞

P (Sn ≤ E(Sn | γ1 = qα(γ1)) ) = α, (5.16)

where
qα(γ1) := inf{x ≥ 0 | P ( γ1 ≤ x ) ≥ α }

denotes the α - quantile of γ1.

That is, in a large and well-diversified portfolio, the expected loss of the
portfolio times the quantile of the underlying factor is already a good estimate
for the quantile of the corresponding portfolio, or formally

EL · qα(γ1) ≈ qα(L).
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Equivalently, the fraction qα(L)/EL is equal to the quantile of the univariate
risk factor distribution. The next Corollary refers to the remaining risk in
the portfolio as measured by its variance:

Corollary 5.5.5

The variance V (S∗) of the limiting portfolio S∗ is given as

V (S∗) =
d∑

k,j=1

ELk ELj Cov(γk, γj)

The proof follows immediately from the representation (5.15).

5.5.1 The Case of Bernoulli - Default Variables

The purpose of this section is to deliver the arguments for the foregoing con-
vergence result to hold if we replace the assumption of a Poisson distributed
default variable by the assumption of a Bernoulli default variable. Recall that
the above convergence result was formulated for the portfolio loss variable

L =
m∑
l=1

Nl νl

where each Nl is Poisson distributed with stochastic intensity pl(γ). As
previously remarked this approximation is made for computational reasons,
since the probability generating function has a particularly simple form. The
above convergence result does not depend however on this choice. Since the
detailed arguments are quite similar to the Poisson case, we will only sketch
the results. So consider the random variable

L̃ =
m∑
l=1

Dl νl

where Dl denotes the Bernoulli indicator variable

Dl =

 1 if obligor l defaults

0 otherwise,

with E(Dl|γ) = pl(γ) for any l ∈ I . Henceforth, we shall make the following
assumption which is supposed to parallel Assumption 5.3.3:
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Assumption 5.5.6

The default variables Dl, l ∈ {1, ...,m} are pairwise independent conditional
on σ(γ).

For a single obligor l, the conditional characteristic function φ̃lγ(·) reads

φ̃lγ(t) := E
(
eitDl νl

∣∣∣∣ γ )
= pl(γ) eit νl + 1 − pl(γ). (5.17)

for any t ∈ R. By Assumption 5.5.6, the single default variables Dl are
conditionally independent, so that the conditional characteristic function of
the loss variable L̃ is given as

φ̃γ(t) := E
(
eit L̃

∣∣∣∣ γ) =
m∏
l=1

φ̃lγ(t) ∀ t ∈ R.

Thus, the unconditional characteristic function φ̃(·) is the integral of the
above expression and given as

φ̃(t) := E
(
eit L̃

)
=

∫
Rd+

m∏
l=1

(
1 + (eitνl − 1)p̄l

d∑
k=1

wlksk

)
fγ(s1, ..., sd)ds1 · · · dsd.

As in the previous section, we are interested in the limiting distribution of
the sequence (S̃)n∈N, defined as

S̃n :=
1

n

n∑
j=1

L̃j for any n ∈ N, (5.18)

where each L̃j is a copy of L̃ with the same conventions as in the previous
section. Analogously, we wish to examine the pointwise limit of the sequence
of characteristic functions (φ̃n(t))n∈N, where

φ̃n(t) := E
(
eit S̃n

)
(5.19)

=

∫
Rd+

m∏
l=1

(
1 + (eit

νl
n − 1)p̄l

d∑
k=1

wlksk

)n

fγ(s1, ..., sd)ds1 · · · dsd.
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To this end, we shall make use of the following elementary Lemma:

Lemma 5.5.7

For any sequence (zn)n∈N of complex numbers, we have

lim
n→∞

zn = z =⇒ lim
n→∞

(1 + zn/n)n = ez.

Proof: For any complex number ζ satisfying |ζ| < 1, the principal value of
log(1 + ζ) has the power series expansion

log(1 + ζ) =
∞∑
n=1

(−1)n−1 ζ
n

n

so that for |ζ| ≤ 1/2 we have

| log(1 + ζ)− ζ| ≤ |ζ|2

2
+
|ζ|3

3
+ ...

≤ |ζ|2

2
(1 + |ζ|+ |ζ|2 + ...) =

|ζ|2

2

1

1− |ζ|
≤ |ζ|2.

Now suppose that zn → z ∈ C. Since there exists some n0 with
∣∣ zn
n

∣∣ ≤
1
2
∀n ≥ n0, the above implies that

n ( log(1 + zn/n)) = n
(
(zn/n) + O(1/n2)

)
= zn + O(1/n) → z

so that
(1 + zn/n)n = exp(n log(1 + zn/n)) → exp(z).

�

The next assertion is the analogue of Proposition 5.5.3 adapted to the present
modified setup:

Proposition 5.5.8

The sequence of random variables (5.18) converges in distribution to the ran-
dom variable

S∗ =
d∑

k=1

ELk γk.
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Proof: Consider first the sequence of conditional characteristic functions

φ̃ns1,...,sd(t) := E
(
eit S̃n

∣∣∣∣ γ = (s1, ..., sd)

)
n = 1, 2, ...

for some fixed t ∈ R. From the definition of S̃n it is clear that

φ̃ns1,...,sd(t) =
m∏
l=1

(
1 + (eit νl/n − 1) p̄l

d∑
k=1

wlk sk

)n

for any n ∈ N. We wish to derive the limit of the sequence (φ̃ns1,...,sd(t))n∈N

as n→∞. To this end, note that by an argument similar to (5.12), we have

lim
n→∞

n (eit νl/n − 1) p̄l

d∑
k=1

wlk sk = it νl p̄l

d∑
k=1

wlk sk

so that by Lemma 5.5.7, we have

lim
n→∞

φ̃ns1,...,sd(t) =
m∏
l=1

lim
n→∞

(
1 + (eit νl/n − 1) p̄l

d∑
k=1

wlk sk

)n

=
m∏
l=1

eit νl p̄l
∑d
k=1 w

l
k sk

= eit
∑m
l=1 νl p̄l (

∑d
k=1 w

k
l sk)

= eit
∑d
k=1 ELk sk . (5.20)

Note further that since ∣∣∣∣ eit S̃n ∣∣∣∣ ≤ 1 for any n ∈ N,

we also have

∣∣ φ̃ns1,...,sd(t) ∣∣ =

∣∣∣∣E(eit S̃n ∣∣∣∣ γ = (s1, ..., sd)

) ∣∣∣∣ ≤ 1
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for any n ∈ N. Thus the Dominated Convergence Theorem implies that

lim
n→∞

φ̃n(t) = lim
n→∞

∫
Rd+

φ̃ns1,...,sd(t) fγ(s1, ..., sd) ds1 · · · dsd

=

∫
Rd+

lim
n→∞

φ̃ns1,...,sd(t) fγ(s1, ..., sd) ds1 · · · dsd,

=

∫
Rd+

eit
∑d
k=1 ELk sk fγ(s1, ..., sd) ds1 · · · dsd,

which proves the assertion. �

Thus, the result does not depend on the particular form of the default vari-
ables and holds for the Bernoulli case as well.

5.6 Measuring Diversification

In this section we wish to relate the foregoing results to a particular measure
of diversification. In order to measure the distance of a given portfolio from
its maximum degree of diversification, it is tempting to compare an appro-
priate risk measure applied to the original portfolio with the corresponding
risk measure applied to the limiting portfolio S∗. For a given confidence
level, one may for example consider the quantile or the economic capital of
some given credit portfolio and relate it to the quantile or economic capital
of the corresponding limit portfolio to get an information about how much
of the portfolio risk is made up of idiosyncratic risk and how much is due
to pure systematic risk and thus not diversifiable. Such a comparison yields
the theoretic potential of a given portfolio to reduce its risk by dividing large
exposures into smaller ones with different obligors.

Formally, we shall consider a risk measure as a mapping ρ : L 0(P )→
[0,∞), where L 0(P ) denotes the set of measurable and real-valued functions
on some fixed probability space (Ω,F , P ). A risk measure ρ is called
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(i) positively homogeneous, if ρ(cX) = cρ(X) for any c > 0 and X ∈
L 0(P );

(ii) subadditive, if ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X, Y ∈ L 0(P );

(iii) translation invariant, if ρ(X +a) = ρ(X) +a for any X ∈ L 0(P ) and
a ∈ R+;

(iv) monotonic, if X ≥ Y in L 0(P ) implies ρ(X) ≥ ρ(Y ).

A risk measure which satisfies all of the above–mentioned items is commonly
called a coherent risk measure (cf. (Artzner et al., 1999)). Recall that the
quantile of a given loss distribution is no coherent risk measure as it lacks
the property of subadditivity. Instead of considering the economic capital of
some portfolio, we shall consider the expected shortfall as the relevant risk
measure and examine the sequence of shortfall values corresponding to the
sequence (S̃n)n∈N defined in (5.18).

Given a confidence level α ∈ (0, 1), the expected shortfall of the original
portfolio L̃ is defined as

ESα(L̃) :=
1

1− α

(
E
[
L̃1{L̃>qα(L̃)}

]
+ qα(L̃){P (L̃ ≤ qα(L̃))− α}

)
(5.21)

where

qα(L̃) := inf{x ≥ 0 |P (L̃ ≤ x ) ≥ α }

denotes the α - quantile of L̃. Meanwhile, it is well-known that Expected
Shortfall defines a coherent risk measure (cf. (Acerbi and Tasche, 2002)) .
For the sequel, it is useful to rewrite the representation (5.21) in terms of an
integral as

ESα(L̃) =
1

1− α

1∫
α

qθ(L̃) dθ. (5.22)

For a derivation of the above formula we refer again to (Acerbi and Tasche,
2002). As previously mentioned, in order to gain some insight in how much
of the portfolio risk is of idiosyncratic nature, it may be useful to relate the
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risk of the original portfolio to the risk of the limit portfolio in the sense of
Proposition 5.5.8. So define

κ(L̃) :=
ESα(S∗)

ESα(L̃)
. (5.23)

Moreover, let Fn(·) denote the distribution function of S̃n, i.e.,

Fn(x) := P ( S̃n ≤ x ) for any x ≥ 0.

The following assertion states that the expected shortfall of the limit portfolio
S∗ is the limit of the sequence of shortfall values along the sequence (S̃n)n∈N.

Proposition 5.6.1

Given a confidence level α ∈ (0, 1), the sequence (S̃n)n∈N of portfolios defined
in (5.18) satisfies

lim
n→∞

ESα(S̃n) = ESα(S∗). (5.24)

Moreover, we have

0 ≤ ESα(S∗)

ESα(L̃)
≤ 1. (5.25)

Proof: We wish to show that (5.24) holds. Fix an arbitrary confidence level
θ ∈ (0, 1) and let

qθ(S̃n) := inf{x ≥ 0 | P (S̃n ≤ x) ≥ θ }

denote the θ – quantile of the portfolio S̃n. We claim that

lim
n→∞

qθ(S̃n) = qθ(S
∗). (5.26)

To see this, choose an arbitrary r > 0 and pick x > 0, such that

qθ(S
∗) − r < x < qθ(S

∗).

The above inequalities imply that F (x) < θ and since Fn(x) → F (x), there
exists n0 ∈ N, such that

Fn(x) < θ for all n ≥ n0.
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Thus, it follows that

qθ(S
∗) − r < x ≤ qθ(S̃n) for all n ≥ n0

and hence,

qθ(S
∗) ≤ lim inf

n→∞
qθ(S̃n) (5.27)

since r > 0 was arbitrary. Next, choose u ∈ (θ, 1) and let r > 0. Pick some
x ≥ 0, such that

qu(S
∗) < x < qu(S

∗) + r.

It follows that

θ < u < F (x) and θ < Fn(x) for n sufficiently large.

We may thus conclude that for n sufficiently large, we have

qθ(S̃n) ≤ x < qu(S
∗) + r

and thus,

lim sup
n→∞

qθ(S̃n) ≤ qu(S
∗).

Letting u→ θ, we may conclude that

lim sup
n→∞

qθ(S̃n) ≤ qθ(S
∗). (5.28)

Collecting (5.27) and (5.28), it follows that

lim
n→∞

qθ(S̃n) = qθ(S
∗).

From the definition of the portfolio S̃n, it follows that

S̃n =
1

n

n∑
i=1

L̃i =
1

n

n∑
i=1

m∑
l=1

Dl νl ≤
m∑
l=1

νl < ∞
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for any n ∈ N. Thus, the Dominated Convergence Theorem implies that

lim
n→∞

ESα(S̃n) =
1

1− α
lim
n→∞

1∫
α

qθ(S̃n) dθ

=
1

1− α

1∫
α

lim
n→∞

qθ(S̃n) dθ (5.29)

=
1

1− α

1∫
α

qθ(S
∗) dθ = ESα(S∗)

which proves the first assertion. Finally, since ESα is positively homogeneous
and subadditive, we have

ESα(S̃n) = ESα

(
1

n

n∑
i=1

L̃i

)
≤ 1

n

n∑
i=1

ESα(L̃i) = ESα(L̃)

for any n ∈ N, so that ESα(S∗) = limn→∞ESα(S̃n) ≤ ESα(L̃) as well and
the assertion is proved.
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