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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Basic biology and epidemiology of dengue 

1.1.1 Dengue disease 

 

Dengue disease is probably the most important arthropod borne viral disease in 

terms of human morbidity and mortality. Up to one third of the world population is 

at risk of dengue infection. The disease is now highly endemic in more than 100 

tropical countries and the number of cases has been increased dramatically 

during the past decades (WHO, 2009). It remains a major health problem in 

South-east Asia, Central America and the Pacific region, representing one of 

major causes of child death in several countries (Monath, 1994). Among South-

east Asia countries, in the period of 2006-2008 Indonesia was reported to be the 

highest number of dengue with a total of 396196 cases and 3468 deaths case 

fatality rate (CFR) ~1%. The current situation of dengue in Indonesia is stratified 

by World Health Organization (WHO) as the highest epidemic category (WHO, 

2008). 

 

Dengue diseases especially dengue haemorrhagic fever (DHF) and dengue 

shock syndrome (DSS), are serious clinical conditions that occur almost 

exclusively in response to the secondary infection by dengue virus (DENV) 

(Henchal and Putnak, 1990; Thein et al., 1997). In reality, over than 99% of the 

cases of viral haemorrhagic fever worldwide reports are related instead to DHF 

(Rothman, 2004). 

 

Until recently, the highly domesticated Aedes aegypt mosquito represents the 

main vector for the transmission of DENV to human. However, recent 

observation showed that the strong ecological plasticity of Aedes albopictus has 

allowed a further spread of DENV throughout the world (Benedict et al., 2007). 

Moreover, the lack of proper diagnostics and inability to control mosquito 

populations make the disease to be prevalent and to be major public issue in the 
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developing countries. No preventative therapies such as vaccines or anti-viral 

treatments are currently available for dengue disease infections, despite its 

major impact on the world population (Warke et al., 2008). Geographical 

distribution of DENV is mostly found in the tropical and subtropical regions as 

shown in the Figure 1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. World distribution of dengue and Aedes aegypti in 2005 (CDC, 

2005). 

 

 

 

1.1.2 Clinical and pathological findings on dengue virus infection 

 

Four different serotypes of DENV (DENV-1, DENV-2, DENV-3, and DENV-4) of 

the genus Flavivirus have been discovered. The incubation period of DENV 

infection varies from 3-14 days (WHO, 1997). Infections by dengue virus 

produce a spectrum of clinical illness ranging from a non-specific viral syndrome 

to severe and fatal hemorrhagic disease.  
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Dengue fever (DF) is a mild, self-limiting febrile illness typically associated with 

the following symptoms: retro-orbital pain, myalgia, arthralgia, rash, hemorrhagic 

manifestations, leukopenia, and headache. Most of the infected persons recover 

after the acute febrile period without any specific treatment (Bhamarapravati, 

1989; Bhamarapravati et al., 1967; Burke et al., 1988; Gubler, 2006). There is a 

lower risk of death in DENV patients presenting clinical symptoms for DF. 

 

Dengue Haemorrhagic Fever (DHF) is an acute vascular permeability syndrome 

accompanied by abnormalities in haemostatis. The clinical features include 

plasma leakage, bleeding tendency, and liver involvement (Bhamarapravati, 

1989; Bhamarapravati et al., 1967; Burke et al., 1988; Henchal and Putnak, 

1990). After dengue virus infection, there is a continuum from mild DF to severe 

DHF or DSS. It has been estimated that 4-6% of individuals with second 

infection develop severe DHF disease (Halstead, 2007; Mackenzie et al., 2004). 

In the most severe cases, clinical deterioration is characterized by severe 

thrombocytopenia and selective vascular leakage (Oishi et al., 2007). 

Furthermore, according to severity, WHO has divided DHF into 4 grades (I-IV) 

(WHO, 1997). Grade I and grade II are a non-shock DHF. Grade III and grade IV 

are cases of DHF with shock (Malavige et al., 2004). The pathogenesis, 

especially the mechanistic steps toward the manifestation of DHF, is not clearly 

understood. 

 

Dengue shock syndrome (DSS) is associated with a very high mortality (a rate of 

9.3%, increasing to 47% in instances of profound shock). Acute abdominal pain 

and persistent vomiting are early warning signs of impending shock. Suddenly 

hypotention may indicate the onset of profound shock. Prolonged shock is often 

accompanied by metabolite acidosis which may precipitate disseminated 

intravascular coagulation or enhance ongoing disseminated intravascular 

coagulation, which in turn could lead to massive haemorrhage. DSS may be 

accompanied by encephalopathy due to metabolic or electrolyte disturbance 

(Malavige, 2004). 
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1.1.3 Pathogenesis of severe dengue virus infection 

 

It is generally believed that, as in the case for most flaviviruses infection, patients 

who acquire the dengue disease at the first time (primary infection) elicit lifelong 

protective immunity to homologous strains of DENV. Patients exposed for the 

second time (secondary infection) are usually susceptible to heterologous strains 

of DENV (Nielsen, 2009). The term secondary infection refers to the second 

infection by a different DENV strain of a patient who already has finished and 

cleared a first infection by DENV (WHO, 1997). In case of DENV, individuals are 

protected against reinfection with the same serotype but not against the other 

three serotypes that circulate globally. In fact, many epidemiological studies 

have demonstrated that the development of more severe DHF is associated with 

secondary infections with a heterotypic serotype (Burke et al., 1988; Guzman et 

al., 1990; Halstead et al., 1969; Sangkawibha et al., 1984; Thein et al., 1997), 

that led to the widely accepted hypothesis of antibody-dependent enhancement 

(ADE) of DENV infection (Halstead, 2003; Pang et al., 2007; Rothman and 

Ennis, 1999; Sullivan, 2001). 

 

ADE theory has been a long-term thought to play a central role on the 

pathogenesis of severe dengue infection (Halstead, 1970). This theory is based 

on the observations of severe DHF manifestation in children experiencing a 

secondary dengue virus infection which has a different serotype (heterologous) 

of the previous one (Halstead and O’Rourke, 1997). During secondary infection, 

subneutralizing antibodies recognize DENV and form antigen-antibody 

complexes. This complex is recognized by cells expressing Fc receptors (FcR) 

such as monocytes (Mady et al., 1991). This interaction leads to enhanced 

uptake of virus, resulting in an increased number of cells being infected by the 

virus (Littaua et al., 1990, Lei et al., 2001). ADE-mediated infection has been 

reported in many ribonucleic acid (RNA) viruses, including flavivirus and others 

(Suhrbier and La Linn, 2003). However, unlike these viruses, severe dengue 

infections have been uniquely associated with hemorrhage. This observation 

suggests that the hemorrhage found in DHF patients might not be completely 
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explained by the ADE hypothesis. Figure 2 shows the current model of DHF 

pathomechanism involving specific T cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Immunological model of DHF pathomechanism. DENV specific 
memory T cells are activated following a secondary infection of the host by 
different DENV serotype. The activated memory T cells rapidly express 
cytokines (such as tumor necrosis factor- TNF-and interferon (IFN-. 
Additionally, DENV specific antibodies increase the viral burden of virus-infected 
cells expressing Fc receptors by ADE mechanism. The increased number of 
viral on antigen presenting cells activates memory T cells. The accumulated 
production of cytokines by memory and naive T cells during a secondary 
infection along with complement activation enhances the effect on vascular 
endothelial cells and lead to plasma leakage (Rothman, 2003 with some 
modifications). 
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1.1.4 Virus structure 

 

Dengue virus belongs to the family Flaviviridae (from the Latin flavus, yellow), 

which includes yellow fever virus (YFV), Japanese encephalitis virus (JEV) and 

West Nile virus (WNV). DENV is an arthropod borne (Monath and Heinz, 1996) 

and is a small single-stranded RNA virus which comprised of four distinct 

serotypes (DENV 1-4). Its genome consists of a single open reading frame 

encoding for a large polypeptide which is cleaved by viral and host proteases in 

at least 10 discrete proteins. The N-terminal one quarter of the polypeptide 

encodes the structural proteins core (C), precursor membrane (prM/pM), 

envelope (E), and the remaining part contains seven nonstructural (NS) proteins, 

including large, highly conserved proteins NS1, NS3, and NS5 and four small 

hydrophobic proteins NS2A, NS2B, NS4A, and NS4B (Chambers, 1990; 

Henchal and Putnak, 1990; Zhang, 2003;). Figure 3 shows the gene organization 

of the Flavivirus and its resulting proteins and the location of the major targets of 

immune response. The DENV genome is a single-stranded sense RNA with a 

single open reading frame (ORF, top). The ORF is translated as a single 

polyprotein (middle) that cleavage by viral and host protease to yield the ten viral 

proteins (bottom) (Rothman, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flavivirus genome organization (Rothman, 2004) 
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The NS1 glycoprotein (Mr ~46 kDa) exists in a cell-associated, cell-surface, or 

extracellular nonvirion secreted form in infected mammalian cells (Wingkler, 

1989). In contrast, the remaining NS proteins are localized on the cytoplasmic 

side of the endoplasma reticulum (ER) membrane (Markoff et al., 1994; Falgout 

and Markoff, 1995). Several reports have demonstrated that NS1 is highly 

immunogenic and could induce the production of complement-fixing antibody. 

This antibody can cause a direct complement-mediated lysis of infected target 

cells via interaction with the cell-surface-associated form of NS1 (Costa et al., 

2007). The secretion of a viral NS1 protein that elicits protective immune 

response is an interesting phenomenon in Flavivirus biology. 

 

Clinical study observed the presence of secreted form of NS1 in serum of 

patients during dengue infection (Monath and Heinz, 1996). Furthermore, 

several studies found that DHF patients with a secondary infection developed 

frequently anti-NS1 antibodies indicating that these antibodies may associate 

with the pathomechanism of DHF and DSS (Kuno et al., 1990; Falconar, 1997; 

Valdes et al., 2000). Other studies indicated that anti-NS1 antibodies may confer 

protection against DENV (Henchal et al., 1985; Schlessinger et al., 1993). 

Meanwhile the use of anti-NS1 antibodies as predictor for DHF is focused of 

different clinical studies (Lemes et al., 2005). 
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1.2 Dengue disease and endothelial cells 

1.2.1 Cross-reaction of dengue antibodies with endothelial cells  

 

Dengue haemorrhagic fever is the main cause of mortality in dengue virus 

infection (Valdes et al., 2000). Haemorrhagic syndrome, a feature of DHF/DSS is 

a hematologic abnormality resulting from multiple factors, including 

thrombocytopenia, coagulopathy and vasculopathy related with dysfunction of 

platelet and endothelial cells (Rothman et al., 1999). The clinical symptoms of 

DHF/DSS, which include hemorrhage, thrombocytopenia, increased vascular 

permeability, decreased blood pressure, and hypovolemic shock, strongly 

indicate a disorganization of haemostasis system in this disease. 

 

Endothelial cells and platelets are known to play an important role in regulating 

vessel permeability and maintaining haemostasis (Kaiser et al., 1997). The most 

characteristic feature of DHF/DSS and the best indicator of disease severity is 

plasma leakage that results from structural damage of endothelial cells (Lei et 

al., 2001). Plasma leakage is caused by a diffuse increase in capillary 

permeability and manifests as any combination of hemoconcentration, pleural 

effusion, or ascites. It usually becomes evident on days 3-7 of illness, during 

which time dengue fever resolve (Bhamarapravati et al., 1967; Burke, 1988). 

Plasma leakage occurs systemically, progressing quickly, but will resolve within 

1 to 2 days in patients who receive appropriate fluid resuscitation. No 

subsequent tissue or organ dysfunction is observed. Although perivascular 

edema is obvious, however, no obvious destruction of vascular endothelial cells 

has been reported. It was previously thought that plasma leakage was due to 

altered vascular permeability rather than to structural destruction of endothelial 

cells. The functional alteration of endothelial cells is probably caused via by-

standard effects of cytokine or mediator release in dengue infection. The dengue 

virus can infect endothelial cells in vitro which lead to apoptosis as well as 

production of cytokines and chemokines such as IL-6, IL-8 and regulated upon 

activation normal T cell expressed and secreted (RANTES) (Avirutnan et al., 

1998; Huang et al., 2000) but no infection in biopsies of patients with DHF/DSS 

have been demonstrated. 
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Disturbance of platelet as well as endothelial cell functions by antibodies may 

initiate the clinical manifestations of thrombocytopenia and endothelial 

dysfunction. Lin et al (2002) reported that anti-NS1 antibodies can cross-react 

with non-infected endothelial cells and induce these cells to undergo apoptosis. 

Recent studies showed that anti-NS1 antibodies caused thrombocytopenia in in 

vitro as well as in in vivo mouse model (Chang et al., 2002; Sun et al., 2007). 

 

The endothelium acts as the primary barrier of the circulatory system could 

broadly affect the immune cell function and contribute to dengue pathology 

(Warke et al., 2003). The body releases cytokines that cause the endothelial 

tissue to become permeable which results in hemorrhage and plasma loss from 

the blood vessels. Cytokines are proteins secreted during innate and adaptive 

immunological responses, acting as inflammatory mediators or modulatory 

molecules during several haemorrhagic fevers (Marty et al., 2006). Clinical 

studies support a key role for cytokines in the DHF pathogenesis (Hober, 1993; 

Bethel, 1998; Green, 1999; Braga, 2001; Fink et al., 2006; Azeredo, 2006). 

Endothelial damage and activation were observed in the acute phase of dengue 

virus infection (Cardier et al., 2006; Sosothikul et al., 2007). Apoptosis in 

microvascular endothelial cells from lung and intestine tissues was observed in 

fatal cases of DHF/DSS (Limonta et al., 2007). However, in the recent years a 

number of studies have shown that infection with DENV induces apoptosis in 

vitro and also in vivo (Despres et al., 1996; Marianneau et al., 1999; Couvelard 

et al., 1999; Huerre et al., 2001; Lei et al., 2001). Anti-NS1 antibodies generate 

in mice has been shown to cross-react with human fibrinogen, platelets and 

endothelial cells (Falconar, 1997; Falconar, 2007). The cross reactivity of 

dengue patient sera with endothelial cells have also been demonstrated. 

Endothelial cells were more reactive with DHF/DSS patient sera than DF patient 

sera (Lin et al., 2004). 
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1.2.2 Dengue virus-induced anti-endothelial cell autoantibodies 

 

The binding reactivity of the sera of DHF/DSS with endothelial cells was 

detected by flow cytometric. There were higher percentages of endothelial cells 

reactive with DHF/DSS than those with DF patient sera. Further studies showed 

that platelet or endothelial cell binding activities were inhibited by pretreatment 

with dengue NS1. A molecular mimicry between the dengue virus and 

endogenous self-proteins was proposed to be one of the mechanisms for the 

induction of autoimmunity during dengue virus infection (Lin et al., 2003).  

 

 

 

1.2.3 Immunopathogenetic effects of dengue virus infection on 

endothelial cells  

 

Although the disruption of endothelial barrier is a hallmark of DENV infection, 

however, the exact mechanism is a quite few known. The endothelium is the 

target site for DENV infection-mediated pathology such as vascular permeability, 

capillary fragility (evidenced by positive tourniquet test done in patients), 

bleeding, and coagulopathy and hypovolemic shock during the acute phase of 

DHF/DSS. In vivo, the pathophysiology clinically observed is considered to be a 

result of both direct (viral infection) and indirect (pro-inflammatory cytokines, 

chemokines released by activated leukocytes) effects on endothelial cells. 

Apoptosis of endothelial cells caused by both virus infection and by anti-NS1 

antibodies has been proposed (Andrew, 1978; Avirutnan et al., 1998; Lin et al., 

2002; Huang et al., 2006). 

 

Recently, Cheng et al. (2009) reported several candidate antigens of anti-NS1 

antibodies by proteomic approach. However, the specific endothelial antigen 

reacting with anti-NS1 antibody is not known. Functional studies in the past 

demonstrated that anti-NS1 antibodies are able to cross-react with non-infected 

endothelial cells and trigger the intracellular signaling leading to the production of 

nitric oxide. Nitric oxide (NO) caused upregulation of p53 and Bax and down-
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regulation of pro- and anti-apoptotic factors Bcl-2 and Bcl-xL, respectively, which 

leads to cytochrome-c release and caspase-3 activation (Lin et al., 2002; Lin et 

al., 2004). The activation of caspase-3 has been identified as a key mediator of 

apoptosis of mammalian cells. Furthermore, nuclear factor-κB (NF-B) activation 

was found in endothelial cells after stimulation with anti-NS1 antibodies (Lin et 

al., 2002).  

 

Recently, Naidu et al. (2008) described a direct association between NF-B 

activation pathway and the induction of anti-apoptotic heme oxygenase-1     

(HO-1). Soares et al. (1998) demonstrated that HO-1 inhibits the expression of 

proinflammatory genes like TNF- or IL-1 associated with endothelial activation 

via a mechanism that is associated with the inhibition of NF-B activation 

resulting in the modulation of adhesion molecules like E-selectin, intercellular cell 

adhesion molecule (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). 

Furthermore, Foresti et al. (2003) described that NO potently up regulated HO-1 

in the presence of heme and heme metabolites. Several pathological states are 

characterized by increased NO production and liberation of heme. This 

synergism may ultimately increase the defensive abilities of endothelium to 

counteract cell apoptosis. 
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1.3 Heme Oxygenase (HO) 

1.3.1 Isoforms of HO 

 

Heme oxygenase catalyzes the first and rate-limiting step of heme degradation. 

HO breaks up the heme tetrapyrrole ring to yield equimolar amounts of biliverdin, 

carbon monoxide (CO) and iron (Figure. 3). Biliverdin, in turn, is converted into 

bilirubin by biliverdin reductase in a non-rate-limiting enzyme reaction (Maines, 

1997). Three HO isoforms have been discovered; HO-1, -2 and -3 (Tenhunen et 

al., 1968; Maines et al., 1986). However, the biological significance of a third 

isoform, HO-3, is unclear (McCoubrey et al., 1997).  

 

HO-1 and HO-2 are products of distinct genes. Both isoforms are highly 

conserved throughout evolution and are found in a wide range of organisms 

such as bacteria, fungi, plants and mammalians. Nucleotide sequence homology 

among mammalians (rat, mouse, and human) is >80% or >90% for HO-1 and 

HO-2, respectively (Maines, 1997).  

 

The homology between HO-1 and HO-2 genes is about 43%. The inducible HO-

1 isoform (also known as 32-kDa heat-shock protein), exhibits low basal gene 

expression levels in most cells and tissues. High gene expression levels of HO-1 

are detected in spleen and liver tissue macrophages (Kupffer cells) in which 

senescent erythrocytes are sequestered and destroyed. By contrast, the non-

inducible HO-2 form (36 kDa) exhibits high constitutive gene expression 

preferentially in brain and testis (Maines, 1988; Wagener et al., 1999; Otterbein 

and Choi, 2000). 

 

 

 

1.3.2 Functional significance of HO-1 

 

HO-1 is upregulated by heme, or heme-containing compounds, and also by non-

heme containing compounds that increase the cellular production of reactive 

oxygen species (ROS) in different cells and tissues (Immenschuh and Schröder, 
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2006). Due to this large array of stress stimuli that induce HO-1 gene 

expression, HO-1 has been considered for many years to serve cytoprotective 

functions against oxidative stress (Vile and Tyrell, 1994). In addition, HO-1 has 

been recognized to have anti-inflammatory effects (Poss and Tanegawa, 1997; 

Yachie et al., 1999). Different regulatory mechanisms such as modulation of 

proinflammatory cytokines and activation of T-cells by HO-1 have been observed 

(Otterbein et al., 2003; Kapturczak et al., 2004; Brusko et al., 2005).  

 

The broad spectrum of substances that induce HO-1 suggests that various 

signaling pathways are involved in the regulation of HO-1 gene such as mitogen-

activated protein kinases, protein kinase C, cAMP-dependent protein kinase A, 

or cGMP-dependent protein kinase G (Immenschuh and Ramadori, 2000). 

 

Several studies have been done in regards to the regulation of HO-1 gene 

expression by different stimuli that increase the cellular ROS production 

(Applegate et al., 1991; Choi and Alam, 1996). It has been shown that 

scavengers of ROS such as N-acetyl -cysteine (NAC) inhibit the magnitude of 

HO-1 induction by oxidative stress (Lautier et al., 1992). These findings indicate 

that an increase of intracellular ROS and, thereby, the activation of redox-

dependent signaling pathway play a crucial role for the regulation of HO-1 gene 

expression.  

 

Although the exact mechanism of redox signaling targeted by ROS is not solved 

yet, changes of the cellular redox state seem to be responsible for the 

modification of specific regulatory protein kinases and phosphatases leading to 

the alteration in the regulation of gene expression (Finkel, 1998). 
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Figure 4. The enzymatic reaction catalyzed by heme oxygenase enzymes. 

 

 

 

1.3.3  Physiological function of HO-1 

Antioxidant enzyme levels are sensitive to oxidative stress. Both increased and 

decreased levels have been reported in different disease in which an 

enhancement of ROS is a cause or a consequence of the illness (Gebicki, 1997).  

Major functions of HO enzyme activity comprise degradation of the prooxidant 

heme and production of CO and bilirubin, thereby providing protection of organs 

and tissue against oxidative stress (Abraham et al., 1988; Maines, 1997). More 

recently, accumulating evidence indicates that HO-1 is an important modulator of 

the inflammatory response possibly via the generation of the second messenger 

gas CO (Otterbein et al., 2000; 2003). An anti-inflammatory function of HO-1 has 

been shown in experimental models of acute complement-dependent pleurisy 

and heme-induced inflammation of various organs (Willis et al., 1996; Wagener 

et al., 1999). However, modulation of HO-1 may not only serve as a therapeutic 

target in inflammatory disease, but also has therapeutic implications in organ 

transplantation. HO-1 has been demonstrated to play a protective role in several 
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experimental transplantation models, in which elevated HO activity prevents the 

development of vascular lesions, intra-graft apoptosis, ischemia/reperfusion 

injury, and significantly prolongs allograft survival (Soares et al., 1998; Hancock 

et al., 1998; Amersi et al., 1999; Immenschuh and Ramadori, 2000). 

 

 

 

1.3.4 Signaling pathway of HO-1 

 

Stimulation of the HO-1 gene by most, if not all, stimuli is primarily controlled at 

the transcriptional level.  A variety of regulatory elements (RE) and transcription 

factors (TF) have been demonstrated to be involved in this process (Choi and 

Alam 1996). The broad spectrum of substances  that induce HO-1 suggests that 

various signaling pathways are involved in the regulation of this gene such as 

mitogen-activated protein kinases (MAPK), protein kinase C (PKC), cAMP-

dependent protein kinase A (PKA), or cGMP-dependent protein kinase G (PKG) 

(Immenschuh and Ramadori, 2000). 
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1.4 Objectives of the study 

 

Understanding the role of anti-NS1 antibodies binding on endothelial cells and its 

functional signaling consequence during dengue virus infection may help to 

understand the cause of vascular leakage in DHF patients which may have 

therapeutic benefits. 

 

The objectives of this study were (1) to study the regulation of the anti-

inflammatory gene, HO-1 on human umbilical vein endothelial cells (HUVEC) 

after stimulation with anti-NS1 antibodies derived from DHF patients, (2) to 

identify the prominent cellular signaling pathway that was activated or regulated 

by HO-1 gene, and (3) to characterize the target antigen on endothelial cell 

surface that recognized by anti-NS1 antibodies. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

 

2.1  Materials 

2.1.1  Chemicals and reagents 

 

Acrylamide/bisacrylamide 30%,    Roth, Karlsruhe, Germany 

Bromophenol blue      Merck, Darmstadt, Germany 

Bovine serum albumin (BSA)   Serva, Heidelberg, Germany 

Cell culture lysis reagent 5x    Promega, Madison, WI, USA 

Chloroform       Roth, Karlsruhe, Germany 

Dimethylsulfoxid (DMSO)     Sigma-Aldrich, Munich, Germany 

Dithiothreitol       Sigma-Aldrich, Munich, Germany 

Dry milk       Sucofin, Zeven, Germany 

Ethanol (100%)     Roth, Karlsruhe, Germany 

Ethidium bromide      Dianova, Hamburg, Germany 

Ethylenediamine tetraacetic acid (EDTA)  Merck, Darmstadt, Germany 

Extract of yeast powder     Merck, Darmstadt, Germany 

Glycerol       Sigma-Aldrich, Munich, Germany 

Glycin       Sigma-Aldrich, Munich, Germany 

Glycogen       Roche, Basel, Switzerland 

Methanol       Roth, Karlsruhe, Germany 

Penicillin/Streptomycin     Merck, Darmstadt, Germany 

Phenol       Sigma-Aldrich, Munich, Germany 

PMSF       Merck, Darmstadt, Germany 

Ponceu S       Serva, Heidelberg, Germany 

Potassium acetate      Sigma-Aldrich, Munich, Germany 

Sodium acetate      Merck, Darmstadt, Germany 

Sodium dodecyl sulfate (SDS)    Sigma-Aldrich, Munich, Germany 

Tetra-methylethylendiamine    Serva, Heidelberg, Germany 

Tris base       Sigma-Aldrich, Munich, Germany 

Triton-100       Sigma Aldrich, Munich, Germany 
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Yeast extracts      Difco, Detroit, MI, USA 

Tween 20       Sigma-Aldrich, Munich, Germany 

 

All other standard reagents were from Sigma-Aldrich, if not indicated otherwise. 

 

 

2.1.2  Pharmacological compounds 

 

Bacitracin       Sigma-Aldrich, MO, USA 

H2DCFDA       Sigma-Aldrich, Munich, Germany 

Fluorescent labeled albumin   Sigma Alrich, MO, USA 

Fibronectin       Sigma-Aldrich, Munich, Germany 

Heme        Sigma- Alrich, Munich, Germany 

LY294002       Calbiochem, La Jolla, CA, USA 

N-acetylsystein Sedico Pharmaceutical, Cairo, 

Egypt 

Protein G sepharose CL-4B bead   Pharmacia, Uppsala, Sweden 

Phorbol 12-myristate 13-acetate (PMA)   Sigma-Aldrich, Munich, Germany 

SB203580       Calbiochem, La Jolla, CA, USA 

Sulfo-NHS-Kc Biotin  Thermo Scientific, Rockford, IL, 

USA 

TNF-α       Roche, Basel, Switzerland 

TPA        Sigma-Aldrich, Munich, Germany 

Wortmannin        Calbiochem, La Jolla, CA, USA 

 

 

2.1.3 Markers 

 

Rainbow TM protein molecular weight   Amersham, Freiburg, Germany 

Biotin Marker      Cell Signaling, Beverly, MA, USA 
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2.1.4  Kits 

 

Annexin V Kit BD Pharmingen, San Diego, CA, 

USA 

BCA protein assay kit Thermo Scientific, Rockford, IL, 

USA. 

ECL cheluminescence kit Calbiochem, Darmstadt, 

Germany 

Pure Melon™ gel IgG purification kit  ThermoScientific, Rockford, IL, 

USA. 

Chemiluminescence detection system   Millipore, Billerica, MA, USA 

 

 

2.1.5  Materials of cell culture 

 

Dulbecco’s Modified Eagle’s medium   Gibco, Grand Island, NY, USA 

Endothelial cell basal medium (EBM)  PromoCell, Heidelberg, Germany 

Fetal bovine serum (FBS)     Biochrom KG, Berlin, Germany 

Fetal calf serum (FCS)     Biochrom KG, Berlin, Germany 

Ficoll-Paque       Amersham, Freiburg, Germany 

Gentamycin       PromoCell, Heidelberg, Germany 

Hepes       Gibco, Gaithersburg, MD, USA 

RPMI 1640       Gibco, Gaithersburg, MD, USA 

Sodium-pyruvate      Gibco, Gaithersburg, MD, USA 

Trypsin-EDTA (1X) (w/o Ca & Mg)   Gibco, Grand Island, NY, USA 

Tissue culture dish 6 cm     Falcon, Heidelberg, Germany 

Tissue culture flash      Falcon, Heidelberg, Germany 

Tissue culture 6-well plate  

(surface area 9.6 cm2)  Greiner, Frickenhausen, 

Germany 

Transwell  Costar, Cole Parmer, IL, USA 
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2.1.6  Cell cultures 

 

HUVEC human endothelial cells   ATCC, Walkerville, MD, USA 

Eahy 926 ECV304 human endothelial cells  ECCC, Braunschweig, Germany 

U 937 monocytic cells line     ATCC, Manassas, VA, USA 

 

 

 

2.1.7  Antigen and antibodies 

Primary antibodies: 

 

Mab anti-NS1 (clone DN 2)    Abcam, Cambridge, UK 

Mab againts HO-1     Stressgen, Victoria, BC, Canada 

GAPDH      HyTest, Turku, Finland 

PDI-antibody clone 77     Abcam, La Jolla, CA, USA 

RL 90 mab against PDI     Novus Biological, CA, USA 

 

Mabs against PECAM-1 (clone GI18), CD177 (7D8), and CD31 were produced 

and characterized in our laboratory. 

Purified IgG was isolated from secondary dengue infected patient sera and 

healthy donor sera.  

 

 

Secondary antibodies  

 

Goat anti-rabbit IgG-HRP  Acris Antibodies, Hiddenhausen, 

Germany  

Goat anti-mouse IgG-HRP  Acris Antibodies, Hiddenhausen, 

Germany 

Goat anti-human IgG-HRP  DPC Biermann, Bad Nauheim, 

Germany 

Rabbit anti-mouse IgG-HRP Acris Antibodies, Hiddenhausen, 

Germany 
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Goat anti-mouse FITC    Invitrogen, Carlsbad, CA, USA 

Streptavidin horseradish peroxidase Amersham Life Science, 

Arlington, IL, USA 

 

Antigen 

 

NS1 antigen  Prospec-Tanytechno Gene, 

Rehovot, Israel 

 

2.1.8 Other materials 

 

3 mm Whatman paper  Schleicher and Schuell, Dassel, 

Germany 

Lumi-LightPLUS western blotting substrate  Roche, Mannheim, Germany 

Polyvinylidene fluoride membranes (PVDF)  Millipore, Bedford, MA, USA 

 

 

2.1.9  Instruments 

 

AMAXA electroporation system    Amaxa, Koln, Germany 

Blotting-semidry Whatman    Biometra, Göttingen, Germany 

Centrifuge: RC5C      Sorvall, Wiesloch, Germany 

Densitometry Alpha Innotech, San Leandro, 

CA, USA 

ELISA reader     Bio-rad, Munich, Germany 

FACS Calibur BD Pharmingen, San Diego, CA, 

USA 

Fluorometry       Beckmann, Munich, Germany 

Fluorescence microplate reader  Bio-Tek, Bad Friedrichshall, 

Germany 

Fluorchem FC2 gel documentation system Bio-Tek, Bad Friedrichshall, 

Germany 

Hettich Rotixa/RP      Hettich, Tuttlingen, Germany 
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Hettich Mikro 22R      Hettich, Tuttlingen, Germany 

Electrophoresis apparatus     Bio-Rad, Munich, Germany 

Incubator CO2      Heraeus, Hanau, Germany 

Laminair HB2448      Heraeus, Hanau, Germany 

Microscope Axiovert 10     Zeiss, Oberkochen, Germany 

Spectrophotometer      Beckmann, Munich, Germany 

Nanodrop spectrophotometer  Biocompare, San Francisco, CA, 

USA 
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2.2 Methods 

2.2.1 Sample collection 

 

Serum samples were obtained from the Cipto Mangunkusumo Hospital, Jakarta 

Indonesia. The serum samples were collected from confirmed cases of dengue 

virus infected patients (n=16) during dengue outbreak in 2007. Serum samples 

were selected from patients who were classified as having secondary dengue 

virus infection according to the WHO criteria (WHO, 1997). All serological 

characterizations to identify dengue virus infection and to discriminate between 

primary and secondary infection were done at the Cipto Mangunkusumo 

Hospital, Jakarta. WHO evaluated diagnostic test (Panbio Dengue IgM Capture 

ELISA and Panbio Dengue Duo Casette) was used. Serum samples from 

healthy donors were used as control (n=5).  

 

 

 

2.2.2 IgG purification 

 

IgG was isolated from serum samples using Immuno Pure Melon™ gel IgG 

purification kit. 500 µl Melon gel was added to the column and centrifuge as 

recommended by the manufacturer. After washing with 300 µl purification buffer, 

500 µl of diluted serum in gel purification buffer (1:10) was added to the gel and 

mixed end-over-end for 5 minutes. The gel then centrifuged and purified IgG was 

then collected in a collection tube. IgG concentration was determined by a 

nanodrop spectrophotometer.  

 

 

 

2.2.3 Determination of anti-NS1 antibodies by solid phase ELISA 

 

Antibody against NS1 antigen in patient sera was analyzed by the solid phase 

ELISA, according to Vasquez et al. (1997). Microtiter wells were coated with 

50 µl of recombinant NS1 antigen (5 µg/ml) in 0.1 M bicarbonate buffer, pH 9.5. 
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After blocking with 1% BSA in phosphate-buffered saline (PBS), diluted serum 

sample (1:50 in blocking buffer) was added and incubated for 1 h at 37oC. Wells 

were washed 5 times with 200 µl PBS 0.1% Tween 20 phosphate-buffered 

saline tween (PBST), 100 µl of horse radish peroxidase labeled goat anti-human 

IgG was added for 1 h at 37oC. Reaction was measured in ELISA reader. 

Sample was considered positive if the OD492 > 0.3. 

 

 

 

2.2.4 Cell culture preparation 

 

HUVEC were cultured in fresh endothelial basal medium (EBM) supplemented 

with hydrocortisone (1 mg/ml), gentamycin sulphate (50 mg/ml), amphotericin-B 

(1 μl/ml), and 2% fetal calf serum (FCS). Human monocytic cells line U937 were 

grown in Dulbecco’s modified eagle’s medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS), 100 IU/ml penicillin and 100 μg/ml streptomycin. 

Human EA.hy 926 endothelial cells line was maintained in DMEM supplemented 

with 10% FCS and 100 IU/ml penicillin and 100 μg/ml streptomycin. Cell cultures 

were maintained until confluence at 37oC in a controlled environment of 100% 

humidity and 5% CO2. 

 

 

 

2.2.5 Cell culture stimulation  

 

Aliquots of HUVEC in six-well flat bottom plates containing 2 ml EBM were 

stimulated with different concentrations of mab anti-NS1 (2-20 µg/ml) and 

different time periods (1-48 h). After washing with 0.9% NaCl, cells were lysed 

with 200 µl lysis buffer containing 50 mM tris, 150 mM NaCl, 1% triton x-100 and 

2 mM phenylmethylsulfonyl fluoride (PMSF). The endothelial cell lysate was then 

centrifuged for 5 min at 13.000 g at 4oC and the protein concentration of the 

supernatant was determined by bicinchoninic acid (BCA) protein assay kit. 

Endothelial proteins were used for western blotting (see 2.2.6). 
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For the analysis of sera from dengue virus infected patients, purified IgG from 

dengue virus infected patient (10 µg/ml) was added either to HUVEC or U937 

cells for 18 h. Heme (10 µg/ml in DMSO) was used as a positive control. In some 

experiment, HUVEC were treated with mab anti-NS1 (10 µg/ml) and DHF IgG 

(10 µg/ml) in the presence of NS1 antigen (10 µg/ml). 

 

In some experimental setting, HUVEC were treated with phosphatidylinositol 

3-kinase (pI3K) inhibitors (wortmannin, LY294002 and p38 inhibitor, SB203580 

in a concentration of 10 µM for 30 min prior to incubation with mab anti-NS1 (10 

µg/ml) and DHF IgG (10 µg/ml) for 18 h. 

 

In some experimental setting, HUVEC were growth as mentioned above until 

confluence. After confluence HUVEC were stimulated with 4 µl 2 mM bacitracin 

and mab anti-RL-90 (10 µg/ml) for 18 h and lysed.  

 

 

 

2.2.6  Western blotting analysis 

 

Total endothelial protein (5 µg) was incubated for 5 min at 95oC using non 

reduced loading buffer. Total endothelial protein was separated on 12% sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 

electroblotted onto polyvinylidene difloride (PVDF) membranes. After blocking 

with Tris-buffer saline containing 5% skim milk, 50 mM Tris-HCl (pH 7.6), 

150 mM NaCl, and 0.1% Tween 20 for 1 h at room temperature, membranes 

were incubated with antibody against HO-1 (1:2,000 dilution), detected with 

peroxidase labelled goat anti-rabbit IgG (dilution 1:10,000) The enhanced 

chemiluminescent (ECL) chemiluminescent kit detection system was applied for 

detections; as recommended by the manufacturer. 

 

In the control experiment strips were stained with antibody against 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH; dilution 1:10,000). The 

signals were visualized with the Fluorchem FC2 gel documentation system. 
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2.2.7 Immunoprecipitation 

 

Human EA.hy 926 endothelial cells were maintained in DMEM supplemented 

with 10% FCS, 100 IU/ml penicillin, and 100 μg/ml streptomycin. After 

confluence, 2 x 108 cells were washed three times with PBS and incubated with 

1 ml Sulfo-NHS_LC Biotin (1 mg/ml) for 30 min on ice. Labeled cells were 

resuspended in 200 µl lysis buffer containing 50 mM tris, 150 mM NaCl, 

1% triton x-100, and 2 mM phenylmethylsulfonyl fluoride (PMSF). 

 

After centrifugation at 10,000 g for 10 min, cell lysates were precleared for 30 

min with 50 μl of 20% protein G-Sepharose CL-4B beads in the presence of 

33.3 µl normal human serum for 30 min. Aliquots of 50 µl precleared cell lysates 

were incubated with 5 µg/ml control mouse IgG (mab 7D8; 5 µg/ml), mab anti-

NS1 (DN 2; 5 µg/ml), anti PDI RL-90; 5 µg/ml, anti-PECAM-1 (clone Gi18, 

5 µg/ml), or 50 µl human serum overnight at 4oC.  

 

Immunocomplexes were washed five times with immunoprecipitation buffer (IPB; 

10 mM Tris HCl at pH 7.4). Bound proteins were released by boiling in SDS 

buffer for 5 minutes at 95oC. After centrifugation at 10,000 g for 2 min, samples 

were analyzed by SDS-PAGE and blotted on PVDF membrane as described 

above. Membrane was incubated with 8.3 µl streptavidin horseradish peroxidase 

secondary antibody (1:8,000 dilution) for 30 min at room temperature. After 

washing, precipitated protein was detected by using ECL chemiluminescence kit 

as recommended by the manufacturer. 

 

In some experimental setting a preclearing procedure prior to 

immunoprecipitation was performed. The cell lysates for immunoprecipitation 

were prepared as described above. After centrifugation at 10,000 g for 10 min, 

cell lysates were precleared for 30 min with 50 μl of 20% protein G-Sepharose 

CL-4B beads in the presence of 33.3 µl normal human serum for 30 min. 

Aliquots of 50 µl precleared cell lysates were incubated with 10 µl DHF IgG 

(5 µg/ml). Preclearing with DHF Ig was repeated 3 times. After preclearing, the 

cell lysates were incubated with mab anti-PDI and anti-CD31 (as control) at 4oC 
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overnight. Immunocomplexes were washed five times with washing buffer (IPB; 

10 mM Tris HCl at pH 7.4). Bound proteins were released by boiling in SDS 

buffer for 5 minutes at 95oC. After centrifugation at 10.000 g for 2 min, samples 

were analyzed by SDS-PAGE and blotted on PVDF membrane as described 

above. Membrane was incubated with 8.3 µl streptavidin horseradish peroxidase 

secondary antibodies (1:8,000) for 30 min at room temperature. After washing, 

precipitated protein was detected by using an enhanced ECL 

chemiluminescence kit as recommended by the manufacturer. 

 

 

 

2.2.8 Flow cytometry analysis 

2.2.8.1 Analysis of cells apoptosis  

 

HUVEC were treated with mab anti-NS1 (10 µg/ml) and DHF (10 µg/ml) for 18 h. 

After washing with PBS, cells were resuspended in binding buffer (10 mM 

Hepes, 140 mM NaCl, and 2.5 mM CaCl2, pH 7.4). Aliquots of 2 x 104 cells were 

incubated with 5 µl fluorescein labeled annexin V in 100 µl binding buffer at room 

temperature for 15 min in the dark. Labelled cell were analyzed by flow 

cytometry. 

 

 

 

2.2.8.2 Analysis of ROS production 

 

For the measurement of ROS in HUVEC, the green fluorescence dye (5,6-

carboxy-2',7'-dichlorodihydrofluoresceine diacetate (carboxy-H2DCFDA) in 

ethanol was used as recommended by the manufacturer. Aliquots of HUVEC in 

six-well flat bottom plates containing 2 ml EBM were stimulated with 10 µg/ml of 

mab anti-NS1 and incubated for 18 h. Subsequently, 3 µl of 10 μM carboxy-

H2DCFDA was added for 20 min. As positive control, 10 μM 

tetradecanoylphorbol 13-acetate (TPA) was used. The cells were washed 3 

times with PBS (pH 7.4 at 37°C). The presence of fluorescent dye in cells was 
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detected with flow cytometry. In addition, the inhibition of ROS production with 

NAC was measured by flow cytometry. In brief, aliquots of HUVEC in six-well flat 

bottom plates containing 2 ml EBM were treated with different NAC 

concentrations (10-30 mM/ml) for 30 min. After washings with 0.9% NaCl, cells 

were further incubated with fresh serum free EBM and then stimulated with mab 

anti-NS1 (10 µg/ml) and patient IgG (10 µg/ml) for 18 h. 

 

 

 

2.2.8.3 Analysis of antibody binding on endothelial cells 

 

In some experiments, HUVEC cells were untreated or treated with 2 µg/ml TNF-

 for 1 h. Cells were washed using EBM serum free medium and incubated with 

mab anti-NS1(10 µg/ml) and DHF IgG (10 µg/ml) for 18 h. After stimulation cells 

were washed using cold PBS and incubated with fluorescein conjugated 

secondary antibodies and analyzed by flow cytometry. 

 

 

 

2.2.9  Analysis of endothelial permeability 

 

For the measurement of endothelial permeability, HUVEC were grown on 

gelatin-coated Costar transwell and were treated with mab anti-NS1 (10 µg/ml) 

and patient IgG (10 µg/ml) for 18 h. Thereafter, fluorescent labeled albumin 

(40 ng/ml) was added to the luminal chamber. After a period of times, samples 

were collected from the bottom of chambers and analyzed by fluorometry. 
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2.2.9  Quantification analysis 

 

Signals from Western blots were evaluated by videodensitometry scanning and 

quantification with Imagequant software. The relative densities of bands were 

expressed as fold-induction normalized to GAPDH from at least three 

independent experiments.  

 

 

 

2.2.10  Statistical analysis 
 

Statistical difference was analyzed by Student’s t test and presented as mean 

values ± S.E. from at least three independent experiments. A value of p ≤ 0.05 

was considered as was statistically significant. 
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CHAPTER 3 

RESULTS 

 

 

3.1 Anti-NS1 antibodies in dengue virus infected patients 

 

The presence of anti-NS1 antibodies in the serum of patients with secondary 

infection from both DF and DHF patients during acute infection was analyzed 

using a solid phase ELISA. Sample was considered positive if the OD492 value > 

0.3. 

 

Anti-NS1 antibodies were detected in eight (50%) serum samples from DF/DHF 

patients (Table 1). Anti-NS1 antibodies were detected only in patients with 

secondary type of infection, while all serum samples from healthy donors were 

negative (Table 2). The result also demonstrated that the presence of anti-NS1 

antibodies of DHF patients is greater than DF patients. Anti-NS1 antibodies were 

detected in six serum samples of DHF patients with secondary infection, while 

anti-NS1 antibodies of DF patients with secondary infection were detected only 

in two serum samples. 
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Table 1. Determination of anti-NS1 antibodies of DF and DHF patients by solid 

phase ELISA. Sample was considered positive if the OD492 > 0.3. 

 

 

 

 

 

 

Sample 

Code 

Dengue Virus Infection 

Category 

Anti-NS1 antibodies 

(OD492 value) 

D1 DHF stadium I 0.738 

D2 DHF stadium I 0.979 

D3 DHF stadium I 0.191 

D4 DHF stadium I 0.979 

D5 DHF stadium I 0.228 

D6 DF 0.639 

D7 DF 0.294 

D8 DHF stadium I 1.284 

D9 DHF stadium I 0.260 

D10 DHF stadium I 0.297 

D11 DHF stadium I 0.218 

D12 DHF stadium II 0.856 

D13 DHF stadium I 1.373 

D14 DHF stadium I 0.228 

D15 DF 0.268 

D16 DHF stadium I 0.764 
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 Table 2. Determination of anti-NS1 antibodies of healthy donors by solid phase 

ELISA. Sample was considered positive if the OD492 > 0.3. 

 

 

 

 

 

 

3.2  The influence of anti-NS1 antibodies on the regulation of HO-1 

 

To investigate the mechanism of how HO-1 expression is regulated on 

endothelial cells, the expression of HO-1 in HUVEC that were treated with mab 

anti-NS1, IgG from DHF patient with positive NS1 (DHF IgG) by immunoblotting 

were examined, IgG from healthy donor (normal IgG) was run as control. As 

shown in Figure 5A, treatment HUVEC with mab anti-NS1 and DHF IgG 

markedly-increased HO-1 protein expression in a dose-dependent manner with a 

maximum of 10 µg/ml. In addition, anti-NS1 antibody-induced HO-1 protein 

levels in time-dependent with a maximum level of expression after 18 h (Figure 

5B). These results indicate that anti-NS1 antibodies in dengue virus infected 

patients are capable to upregulate the anti-apoptotic HO-1 protein expression on 

endothelial cells. 

 

 

Sample 

Code 

Dengue Virus Infection 

Category 

Anti-NS1 antibody 

(OD492 value) 

N1. Healthy donor  0.128 

N2. Healthy donor 0.179 

N3. Healthy donor  0.056 

N4. Healthy donor  0.079 

N5. Healthy donor  0.104 
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Figure 5. Influence of anti-NS1 antibodies on HO-1 upregulation in HUVEC. 

HUVEC were treated with mab anti-NS1, DHF IgG, and normal IgG in different 

antibody concentrations (A) and different stimulation times (B).  
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For comparison, the effect of these stimuli in endothelial was also determined on 

IgG from DHF patient with negative NS1 that run parallel with IgG from DHF 

patient with positive NS1, and mab anti-NS1. Heme and normal IgG were used 

as positive and negative control, respectively. No upregulation was observed 

when endothelial cells were treated with purified IgG from sera DHF patients 

without anti-NS1 antibodies. In contrast, significance upregulation was detected 

with purified IgG containing anti-NS1 antibodies. Similar result was obtained with 

mab anti-NS1 (Figure 6). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 6. Anti-NS1 antibodies induce HO-1 upregulation in HUVEC. No 
upregulation was observed when cells treated with purified IgG from serum of 
DHF patient without anti-NS1 antibodies. In contrast, significance upregulation 
was detected with purified IgG containing anti-NS1 antibody. Similar result was 
obtained with mab anti-NS1. The relative band densities were expressed as fold-
induction, normalized to GAPDH band from three independent experiments.  
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To verify the specificity of HO-1 upregulation in endothelial cells, human 

monocytic cells line U937 were treated with IgG from DHF patient with negative 

NS1, IgG from DHF patient with positive NS1, and mab anti-NS1. Positive and 

negative controls were heme and normal IgG, respectively. No upregulation of 

HO-1 by mab anti-NS1 or DHF IgG was observed in these cells (Figure 7). 

 

 

 
Figure 7. Anti-NS1 antibodies did not induce HO-1 upregulation in U937 
cells. There was no upregulation of HO1 when U937 cells were treated with 
purified IgG from serum of healthy donor, DHF IgG NS1 negative, DHF IgG NS1 
positive, mab anti-NS1 antibodies. The relative band densities were expressed 
as fold-induction, normalized to GAPDH band from three independent 
experiments.  
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3.3  Inhibition of anti-NS1 antibody-mediated HO-1 induction by NS1 

antigen 

 

To investigate whether HO-1 upregulation induced by anti-NS1 antibodies alone 

or by antigen-antibody complex, NS1 antigen was used as an inhibitor. 

Upregulation of HO-1 was detected when endothelial cells were stimulated with 

both NS1 antigen and mab anti-NS1. In contrast, NS1 antigen blocked the anti-

NS1 antibodies binding on endothelial cells and abolished the upregulation of 

HO-1 activity, no upregulation of HO-1 was detected when endothelial cells were 

stimulated with both NS1 antigen and anti-NS1 antibody, simultaneously 

(Figure 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 8. Inhibition of anti-NS1 antibody-mediated HO-1 induction by NS1 
antigen. HUVEC were treated with DHF IgG (10 µg/ml) and mab anti-NS1 
(10 µg/ml) in the absence or presence of purified NS1 antigen (10 µg/ml) for 
18 h. After cell lysed, HO-1 expression was analyzed as described in figure 
above. The relative band densities were expressed as fold-induction, normalized 
to GAPDH band from three independent experiments. 
 



Results 37 

 

 

3.4  Anti-NS1 antibodies activate HO-1 via pI3K pathway 

 

The pI3K signaling pathway has recently been demonstrated to be involved in 

the induction of HO-1 gene expression (Martin et al., 2004). To evaluate the 

regulatory role of this pathway for the anti-NS1 antibody-dependent induction of 

HO-1 expression various pharmacological inhibitors were tested. Upregulation of 

HO-1 expression by anti-NS1 antibodies was markedly reduced by pretreatment 

with the pI3K inhibitors, LY294002, and wortmannin (Figure 9).  

 

By contrast, pretreatment with the p38 inhibitor SB203580 did not affect anti-NS1 

antibody-dependent induction of HO-1. These data suggest that the pI3K 

signaling pathway plays a major regulatory role for the induction of HO-1 by anti-

NS1 antibody. HO-1 induction is a crucial mechanism of resistance against 

oxidative stress, and understanding the signaling pathways involved in HO-1 

induction will help develop new strategies for the prevention and treatment of 

diseases associated with oxidative stress. The data suggest that the pI3K 

signaling pathway plays a major regulatory role for the induction of HO-1 by anti-

NS1. 
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Figure 9. Anti-NS1 antibodies activate HO-1 on endothelial cells via pI3K 
pathway. HUVEC were incubated with different pI3K inhibitors LY294002 
(10 μM/ml), wortmannin (10 μM/ml) and p38 inhibitor SB203580 (10 μM/ml) for 
30 min prior to incubation with mab anti-NS1 and DHF IgG for 18 h. Cells were 
lysed and HO-1 expression was analyzed by immunoblotting as described. The 
relative band densities were expressed as fold-induction, normalized to GAPDH 
band from three independent experiments.  
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3.5  Anti-NS1 antibodies increase accumulation of cellular ROS  

 

In order to investigate the signaling pathway on anti-NS1 antibody-induced 

apoptosis, ROS production was monitored in HUVEC. The histograms and the 

percentages of ROS production are shown in Figure 10. Treatment with anti-NS1 

antibodies and DHF IgG caused a prominent increased of ROS expression as 

demonstrated by both the percentages of positive cells and the mean 

fluorescence intensity from flow cytometry. In the control experiment, no positive 

staining was observed with normal IgG. Pretreatment HUVEC with NAC 

decreased ROS expression in these cells. NAC is cysteine analog commonly 

used to treat acetaminophen overdose (Kelly, 1998), NAC can protect against 

ROS through the restoration of intracellular glutathione (Juurlink and Paterson, 

1998; Ratan et al., 1994).  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 10. Anti-NS1 antibodies induce ROS production on endothelial cells. 
HUVEC were stimulated with DHF IgG (10 µg/ml) and mab anti-NS1 (10 µg/ml) 
for 18 h in the presence or absence of NAC (30 mM), TPA was run as positive 
control. Thereafter, membrane-permeable fluorescence dye carboxy-H2DCFDA 
was added and incubated for 20 min.  
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To determine whether ROS as potential secondary messengers would be 

involved in HO-1 upregulation in HUVEC, the effect of antioxidant NAC on anti-

NS1 antibodies induction of HO-1 was examined. Pretreatment with NAC 

decreased anti-NS1 antibody-dependent HO-1 upregulation in a dose-dependent 

manner (Figure 11). This result suggests the involvement of ROS on the 

induction of HO-1 by anti-NS1 antibodies. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Effect of NAC on HO-1 upregulation induced by anti-NS1 
antibodies. HUVEC were treated with NAC at concentrations of 10, 20, and 
30 mM for 30 min prior to incubation with mab anti-NS1 and DHF IgG. Cells 
were lysed and analyzed by immunoblotting as described. The relative band 
densities were expressed as fold-induction, normalized to GAPDH band from 
three independent experiments.  
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3.6  Anti-NS1 antibodies induce apoptosis of endothelial cells 

 

The ability of anti-NS1 antibodies to induced endothelial cells apoptosis should 

be tested. HUVEC were treated with mab anti-NS1, DHF IgG. Mab anti-CD177 

and normal IgG were run as controls. Cells apoptosis was measured using flow 

cytometry, the histograms and the percentages of apoptotic cells are shown in 

Figure 12. Cells apoptosis was inducible by mab anti-NS1 and DHF IgG. In the 

control, normal IgG and mab anti-CD177 did not induce cell apoptosis. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Anti-NS1 antibodies induce apoptosis of endothelial cells. 
HUVEC were treated with mab anti-NS1 (2 µg/ml), and DHF IgG (2 µg/ml). As 
negative controls, mab anti-CD177 (5 µg/ml) and normal IgG (5 µg/ml) were 
used. After incubation for 18 h cells were analyzed by flow cytometry.  
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3.7  Anti-NS1 antibodies binding onto endothelial cells  

 

To characterize the binding site of anti-NS1 antibodies, flow cytometry analysis 

with resting and activated endothelial cells was performed. The histograms and 

the percentages of binding cells are shown in Figure 13. DHF IgG reacted with 

primary HUVEC as well as with endothelial cell line EaHy. These reactions 

increased after stimulating these cells with TNF-. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 13. Flow cytometry analysis of anti-NS1 antibodies binding onto 
endothelial cells. HUVEC and Eahy cells were treated with DHF IgG (10 µg/ml) 

and mab anti-NS1 (10 µg/ml) before and after stimulation with TNF(2 µg/ml). 
After washing bound IgG was detected using fluorescence labeled secondary 
antibody by flow cytometry. Isotype control was run in parallel. 
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3.8  Anti-NS1 antibodies of DHF patients react with PDI antigen on 

endothelial cells 

 

To investigate the binding of anti-NS1 antibodies to protein disulfide isomerase 

(PDI) on endothelial cells, immunoprecipitation of biotinylated Eahy cells with 

mab anti-NS1, anti-PDI, and DHF IgG was performed. Anti-NS1 antibodies 

bound to membrane protein at molecular weights 62-72 kDa, corresponding to 

the molecular weight of PDI (Figure 14). Similar band was also found by 

immunoprecipitation with anti-PDI. To confirm the identity of PDI preclearing 

experiments were performed.  

 

 

 

 
 
 
 
 
 

 

 
 
 
Figure 14. Immunoprecipitation analysis of anti-NS1 antibodies with 
endothelial cells. A) Eahy cells were labelled with biotin, lysed and precipitated 
with mab anti-NS1 (5 µg/ml), anti-PDI (5 µg/ml), normal IgG (5 µg/ml), and DHF 
IgG (5 µg/ml). Immunoprecipitates were separated on 7.5% SDS-PGE under 
reducing conditions. After blotting, antigens recognized by antibodies were 
visualized by streptavidin chemiluminescence system. B) Biotin labelled Eahy 
cell lysates were precipitated extensively (three times) with DHF IgG (5 µg/ml). 
Precleared cell lysates were then precipitated with anti-PDI or anti-CD31 as 
control.  
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After preclearing with IgG from DHF patients, cells lysates were precipitated with 

anti-PDI or mab anti-CD31. Whereas specific band for CD31 was detected, no 

PD1 protein could be precipitated by anti-PDI. This result demonstrates that 

antibody in DHF patients react with PDI on endothelial cells. 
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3.9 Inhibition of PDI abolishes HO-1 upregulation mediated by anti-NS1 
antibodies 

 
To further investigate the binding mechanism between anti-NS1 antibodies and 

PDI, bacitracin was applied as PDI inhibitor (Swiatkowska et al., 2000). 

Pretreatment of HUVEC cells with bacitracin and RL-90 caused inhibition of anti-

NS1 antibody-induced HO-1 upregulation on protein level as shown in Figures 

15 and 16, respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Inhibition of PDI with bacitracin abolishes HO-1 upregulation 
mediated by anti-NS1 antibodies. HUVEC were incubated for 30 min in the 
absence or presence of 4 µl bacitracin (2 mM). After washing cells were treated 
with mab anti-NS1 (10 µg/ml), DHF IgG (10 µg/ml) or heme (1 µM) as control for 
18 h. Cells were lysed and HO-1 expression was analyzed by immunoblotting as 
described. The relative band densities were expressed as fold-induction, 
normalized to GAPDH band from three independent experiments.  
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Figure 16. Inhibition of PDI with RL-90 abolishes HO-1 upregulation 
mediated by anti-NS1 antibodies. HUVEC were incubated for 30 min in the 
absence or presence of 10 µg/ml mab RL-90 against PDI. After washing cells 
were treated with mab anti-NS1 (10 µg/ml), DHF IgG (10 µg/ml) and heme 
(1 µM) as control for 18 h. Cells were lysed and HO-1 expression was analyzed 
by immunoblotting as described. The relative band densities were expressed as 
fold-induction, normalized to GAPDH band from three independent experiments.  
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3.10  Permeability disturbance of endothelial cells by anti-NS1 antibodies 
 
To investigate whether anti-NS1 antibodies increasing endothelial permeability, 

labelled markers (albumin-FITC) through tightly confluent HUVEC monolayers 

were measured. Stimulation of HUVEC with mab anti-NS1 or IgG from DHF 

patients IgG increased transendothelial migration of albumin FITC in comparison 

to HUVEC treated with isotype control 7D8 (mab anti-CD177) or normal human 

IgG (Figure 16). 

 

Figure 17. Analysis of endothelial permeability with anti-NS1 antibodies. 
HUVEC were grown for 2 days on collagen-coated Transwell filters to 
confluence, then incubated with PBS buffer (control), isotype control (mab 7D8; 
10 µg/ml), normal IgG (10 µg/ml), DHF IgG (10 µg/ml) and mab anti-NS1 
(10 µg/ml) for 18 h. Fluorescence labeled albumin (Albumin-FITC; 40 ng/ml) 
were then added in to the upper chamber. Transwell were measured by 
fluorescence reader and expressed as percentage of the total albumin-FITC. 
Data represent means ± S.E from at least three independent experiments. 
Student’s t tests: *P<0.05 vs normal IgG.  
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CHAPTER 4 

DISCUSSION 

 

 

4.1 Anti-NS1 antibodies cause accumulation of cellular ROS, apoptosis, 
and permeability disturbance on endothelial cells  

 

Dengue haemorrhagic fever is the main cause of mortality in dengue virus 

infection (Valdes et al., 2000). Haemorrhagic syndrome, a feature of DHF is a 

hematologic abnormality resulting from multiple factors, including 

thrombocytopenia, coagulopathy and vasculopathy related with 

destruction/dysfunction of platelet and endothelial cells (Rothman et al., 1999). 

Although the exact pathomechanism is not very well defined, available data 

strongly suggest that in the most cases of DHF immune mediated mechanism 

play also an important role in the destruction of platelets and disturbance of 

endothelial function (Lin et al., 2006; Lei et al., 2008). 

 

It is well known, that antibodies against DENV can augment secondary DENV 

infection through the phenomenon called antibody-dependent enhancement 

(ADE) (Morens et al., 1994; Anderson et al., 1997). At certain concentration, 

sub-neutralizing antibodies against DENV form antigen/antibody complexes, 

which are recognized by monocytes via Fc receptors (Mady et al., 1991), leading 

to enhanced virus uptake, resulting in an increased number of virus infected cells 

(Littaua et al., 1990, Lei et al., 2001). These antibodies are IgG subclass and 

recognized DENV structural proteins such as E and prM peptides (Henchal, et 

aI, 1985). 

 

Several evidences indicated a mechanism of molecular mimicry in which 

antibodies against non-structural protein NS1 of DENV (anti-NS1 antibodies) can 

also cross react with platelet and endothelial cells, and thereby may induce 

platelet destruction and endothelial disturbance in DHF patients (Falconar et al., 

1997, Lin et al., 2004). Interestingly, Lin et al (2004) showed a strong cross-

reaction between sera from DHF/DSS with endothelial cells, but not with sera 
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from DF patients. In line with these observations, we found by the use of solid 

phase ELISA that anti-NS1 antibodies derived during acute phase of DHF 

reacted strongly with NS1 antigen as comparison to sera from DF patients.  

 

Recent study demonstrated that anti-NS1 antibodies recognize an 

immunodominant RGD- and ELK/KLE motifs of NS1 molecule, which is present 

on human clotting factors (fibrinogen, factor VII, IX, X) as well as on cell 

adhesion molecules, particularly integrin such as IIb3, v3 (Chang et al., 

2002; Falconar, 2007). However, direct binding of anti-NS1 antibodies to these 

adhesive molecules have not been well documented (Wiwanitkit, 2006).  

 

Recently Cheng et al. (2008) found that anti-NS1 antibodies react with several 

proteins on Human microvascular endothelial cells (HMEC-1) endothelial cell line 

including ATP synthase beta chain, PDI, vimentin, and heat shock protein 60. To 

identify the target antigen on endothelial cells recognized by anti-NS1 antibodies, 

we performed immunoprecipitation with surface labelled HUVEC, and found that 

anti-NS1 antibodies from DHF patients reacted with membrane protein of 62-72 

kDa corresponding to the apparent molecular weight of PDI. By the use of pre-

clearing experiment approach we could definitely identified PDI as the target 

antigen of anti-NS1 antibodies. This is in accordance with the recent study 

reported by Cheng et al. (2009). The authors demonstrated that anti-NS1 

antibodies recognized PDI on platelet surface causing inhibition of platelet 

aggregation induced by ADP. Further analysis showed that anti-NS1 antibodies 

bound to amino acid residues 311-330 of DENV NS1, which shares sequence 

homology with the thioredoxin domain of PDI.  

 

Interestingly, PDI has been shown to play a role on the regulation of integrin 

activation (Essex et al., 2006). Swiatkowska et al. (2008) showed that 

modulation of the thiol isomerase activity of PDI by divalent manganese cation 

leads to PDI/vβ3 integrin complex formation resulting in integrin-transition; from 

resting to the ligand-competent state. This mechanism may explain the 
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phenomenon of integrin co-precipitation by anti-NS1 antibodies under certain in 

vitro experimental conditions. 

 

After the identification of PDI as target antigen of anti-NS1 antibodies, there was 

any question about the functional consequence of this antibody binding for 

endothelial cell function(s). The results above were found that incubation of 

HUVEC with purified anti-NS1 from DHF IgG resulted in significance increased 

production of cellular ROS which could be specifically inhibited by the anti-

oxidant drug, NAC.  

 

It is possible that also endothelial cells contribute to ROS production during a 

dengue infection (Gil et al., 2004). It is well known that ROS can initiate and 

regulate the transcription and activation of large series of mediators in cells 

which culminate in common mechanism of cell damage including apoptosis and 

necrosis (Gil et al., 2004). ROS attack polyunsaturated fatty acid and initiative 

lipid per-oxidation which can ultimately lead to a loss or alteration of cell 

membrane function (Rothman and Ennis, 1999; Kurane and Takasaki, 2001). In 

fatal cases of DHF and DSS, cell apoptosis process of endothelial cells from 

lung and intestine tissue was observed (Limonta et al., 2007). 

 

In accordance to the previous observations described by Lin and co-workers (Lin 

et al., 2003), in this study was found that anti-NS1 antibodies can induce 

endothelial cells to undergo apoptosis. These findings suggest that ROS-

modulated endothelial cells apoptosis may disturb endothelial barrier and 

contribute thereby to the pathogenesis of vascular leakage in DHF patients. 

Indeed, we observed that treatment of endothelial cells with anti-NS1 antibodies 

caused increased penetration of fluorescence labelled albumin indicating 

leakage of barrier function of these cells which may result in spontaneous 

haemorrhage and plasma loss from the blood vessels. However, it has been 

suggested that the increased vascular permeability observed in DHF is caused 

by a malfunction rather than a structural destruction of endothelial cells 

(Rothman and Ennis, 1999; Kurane and Takasaki, 2001). 
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Generation of ROS has been detected when endothelial cells were stimulated by 

cytokines (Matsubara et al., 1986), a process which commonly occurs during 

dengue infection (Anderson et al., 1997). The cytokine secretion of dengue 

infected cells may result in activation of non-infected endothelial cells (Anderson 

et al., 1997; Halstead, 2007; Basu and Chaturvedi, 2008). High levels of TNF-α, 

IL-6 and IL-8 were measured in sera of patients with DHF/DSS (Hober et al., 

1993; Avirutnan et al., 1998; Raghupathy et al., 1998). This study showed that 

treatment of endothelial cells with TNF increased the expression of PDI on the 

cell surface. The up-regulation of PDI surface expression could facilitate the 

binding of anti-NS1 antibodies to endothelial cells, and in turns accelerate ROS 

production; a process which may decline the fate of DHF spectacularly.  

 

In line with this observation was found that inhibition of ROS production with the 

antioxidant NAC reduced basal HO-1 expression in these cells. NAC is cysteine 

analog commonly used to treat acetaminophen overdose (Kelly, 1998), NAC can 

protect against reactive oxygen species through the restoration of intracellular 

glutathione (Ratan et al., 1994; Juurlink and Paterson, 1998).  
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4.2 Anti-NS1 antibodies regulate the anti-apoptotic HO-1 on endothelial 
cells via activation of pI3K  

 

On the other hand, several reports indicate that HO-1 has a cytoprotective role 

by its ability to break down the pro-oxidant heme to the powerful anti-oxidants 

products biliverdin and bilirubin (Yi and Hazel, 2005). This effect has been 

demonstrated under both in vitro (Vile and Tyrell, 1994; Abraham et al., 1995) 

and in vivo conditions (Nath et al., 1992; Otterbein et al., 1995).  

 

HO-1, an inducible heme-degrading enzyme, exerts a potent anti-inflammatory 

effect through the production of carbon monoxide and bilirubin. Expression of 

HO-1 is up-regulated by multiple stress stimuli and the enzymatic products of 

this reaction has not only antioxidant cytoprotective, but also anti-inflammatory 

functions (Kyriakis et al., 2001; Orozco et al., 2007; Pamplona et al., 2007; 

Chora et al., 2007; Chung et al., 2008). 

 

Major functions of HO-1 comprise the degradation of the pro-oxidant heme and 

the production of bilirubin, which provide protection of tissue and organs against 

oxidative stress (Abraham et al., 1988; Maines et al., 1997). More recently, HO-1 

turns to be an important modulator of the inflammatory response possibly via the 

generation of second messenger gas CO (Otterbein et al., 2002; 2003). 

Accumulation data indicate that modulation of HO-1 may not only serve as 

therapeutic target for heme-induced inflammation diseases (Willis et al., 1996; 

Wagener et al., 2001), but also has therapeutic implications in organ 

transplantation. Several studies demonstrated that the induction of HO-1 activity 

prevents the development of vascular lesions, intra-graft apoptosis, and 

significantly prolongs allograft survival (Soares et al., 1998; Hancock et al., 1998; 

Immenschuh and Ramadori et al., 2000).  

 

Recently Iwasaki et al. (2010) demonstrated that the ligation of HLA class I 

antigen on endothelial cells by low concentration of HLA class I antibodies 

protects endothelial cell against complement destruction by induction of HO-1 

gene in a PI3K/Akt dependent manner.  
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The present study found that purified anti-NS1 antibodies from DHF patients 

caused specific induction of HO-1 in endothelial cells which can be inhibited by 

soluble recombinant NS1 antigen underlying the importance of this mechanism 

in endothelial cells. In addition, we could demonstrate that pI3K signaling 

pathway is also involved in the HO-1 regulation mediated by anti-NS1 antibody. 

Treatment of HUVEC cells with specific pI3K inhibitors (LY294002 and 

Wortmanin) blocked significantly anti-NS1 antibodies-mediated HO-1 

expression. In addition, stimulation of endothelial cells with anti-NS1 antibodies 

caused an elevation of Akt-phosphorylation, which was specifically inhibited by 

pI3K inhibitors.  

 

It is known that HO-1 is inducible during the oxidative stress caused for example 

by different substances which are able to modify intracellular glutathione levels 

(Applegate and Philip, 1991). In line with this observation, this study found that 

inhibition of ROS production with the antioxidant NAC resulted in dose-

dependent reduction of basal HO-1 expression.  

 

NAC is a cysteine analog commonly used to treat acetaminophen overdose 

(Kelly, 1998). Studies in the past documented that NAC protects cells against 

ROS through the restoration of intracellular glutathione (Ratan et al., 1994; 

Juurlink & Paterson, 1998). Treatment with NAC results in a rapid recovery of 

reduced glutathione level in brain and reduction of oxidative stress following in 

traumatic brain injury (Juurlink and Paterson, 1998; Xiong et al., 1999).  

 

In this study it was found that Anti-NS1 antibodies increased the generation of 

intracellular ROS and up-regulated the expression of HO-1, and suppressed by 

the pretreatment with NAC. It is likely that NAC acts as a scavenger for some 

specific anti-NS1 antibody-induced oxidative reaction that triggers HO-1 

induction.  
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Figure 18. Possible mechanism of endothelial leakage induced by anti-NS1 

antibodies. In one site, binding of anti-NS1 antibodies to endothelial cell surface 

via PDI causes ROS production leading to apoptosis and integrin activation 

(v3) which may result in disturbance of cellular haemostasis. Another side, 

this interaction induces consequently down stream signalling via pI3K signalling 

pathway which resulted in the upregulation of the anti-apoptotic HO-1. Thus, the 

balance between ROS secretion and the production of HO-1 (anti-apoptotic) 

induced by anti-NS1 antibodies is important for the regulation of vascular 

leakage and for the prevention of irreversible endothelial damage in DHF 

patients.  

 

 

 

 



Discussion 55 

 

 

In overall, this information provides new insight into the molecular mechanism of 

antibody mediated endothelial disturbance in DHF. This knowledge may help us 

to define a new therapeutic strategy for the patients with DHF. 
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CHAPTER 6 

SUMMARY  

 

 

Dengue haemorrhagic fever (DHF) is characterized by thrombocytopenia, 

increased vascular permeability and haemorrhage. The antibody against NS1 of 

the dengue virus seems to play a role in the pathogenesis of dengue virus 

disease due to its cross-reaction with endothelial cells. Recently, it has been 

demonstrated that anti-NS1 antibodies induced endothelial cells to undergo cell 

apoptosis. However, the exact mechanism underlying this antibody-mediated cell 

apoptosis is not well-known. 

 

In this study, the influence of anti-NS1 antibodies of DHF patients on the 

regulation of HO-1 in HUVEC was investigated. Sera derived from DHF patients 

with or without anti-NS1 antibodies were analyzed. Incubation of HUVEC with 

purified anti-NS1 antibodies from dengue virus infected patients caused HO-1 

upregulation in a time and dose manner which was attenuated by the NS1 

antigen. This upregulation was not observed with IgG from patients without NS1 

antibodies. Furthermore, reduction of HO-1 was observed, when HUVEC were 

pretreated with pI3K pathway inhibitors (LY294002 and wortmannin) prior to 

stimulation with anti-NS1 antibodies. In contrast, no inhibition was detectable 

with p38 MAPK inhibitors (SB203580). These results indicate that the pI3K 

signaling pathway plays a major regulatory role for the induction of HO-1 by anti-

NS1. 

 

In addition, stimulation of HUVEC with anti-NS1 antibodies induced the 

production of ROS, induced endothelial cell apoptosis, and increased cell 

permeability. These mechanisms probably contribute to the pathomechanism of 

vascular leakage and haemorrhage, which is often clinically observed in dengue 

fever patients.  
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Protein disulfide isomerase (PDI) was found expressed on the endothelial 

surface as a target antigen for anti-NS1 antibodies by the use of 

immunoprecipitation approaches and flow cytometry analysis.  

 

Taken together, this study indicates that anti-NS1 antibodies bind to endothelial 

cells via PDI as a surface target protein. This interaction leads to production of 

ROS which can induce cell apoptosis and disturbance of endothelial cell 

permeability. On the other hand, ROS initiates the induction of the anti-apoptotic 

gene HO-1 via the pI3K signalling pathway. Thus, the balance between ROS 

(apoptotic) and HO-1 (anti-apoptotic) production induced by anti-NS1 antibodies 

may have significance as the cause of vascular leakage in some DHF patients.  
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CHAPTER 6 

ZUSAMMENFASSUNG 

 

 

Das Dengue Hämorrhagische Fieber (DHF) geht mit Thrombozytopenie, 

erhöhter Gefäßpermeabilität und Blutungen einher. Der Antikörper gegen das 

Nicht-Struktur-Protein NS1 des Dengue Virus scheint in der Pathogenese der 

Erkrankung eine Rolle aufgrund seiner Kreuzreaktion mit Endothelzellen zu 

spielen. Kürzlich wurde gezeigt, dass anti-NS1 in Endothelzellen Apoptose 

veranlasst. Der genaue Mechanismus hierfür ist jedoch nicht bekannt. 

 

In dieser Studie untersuchten wir den Einfluss von NS1-Antikörpern von DHF-

Patienten auf die Regulierung von HO-1 in HUVEC in vitro. Die Inkubation von 

HUVEC mit gereinigtem anti-NS1-IgG verursachte einen dosisabhängigen 

Anstieg von HO-1, der mit IgG von Patienten ohne NS1-Antikörper nicht 

beobachtet wurde. Dagegen wurde eine Abnahme von HO-1 beobachtet, wenn 

die PI3K-Signalkaskade-Inhibitoren LY294002 oder Wortmannin vor der 

Behandlung mit anti-NS1 verabreicht wurden. Im Gegensatz dazu war ein 

solcher Effekt nicht mit dem p38 MAPK-Inhibitor SB203580 feststellbar. Diese 

Ergebnisse zeigen die Beteiligung von PI3K an der Signalkaskade des anti-NS1-

vermittelten HO-1-Anstiegs. 

 

Zusätzlich veranlasste die Behandlung von HUVEC mit dem anti-NS1-Antikörper 

die Produktion von ROS, die Zunahme von Apoptosen und eine erhöhte 

Permeabilität der Endothelzellen. Diese Mechanismen tragen wahrscheinlich 

zum Pathomechanismus der stark erhöhten Gefäßpermeabilität bei, die klinisch 

bei Dengue Fieber-Patienten öfter zu beobachtenist.  

 

Als Gegenmechanismus verursacht ROS aber über die Induktion von HO-1 via 

PI3K/Akt-Signalkaskade (siehe oben) auch eine anti-apoptotische Wirkung. So 

kann das Gleichgewicht zwischen der direkten Wirkung von ROS 

(Apoptoseinduktion) und anti-apoptotischer Wirkung des anti-NS1-Antikörpers 
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über HO-1 wichtig für die Ausprägung der Gefäßpermeabilitätserhöhung bei 

DHF-Patienten sein. 

 

Weiterhin konnte in dieser Arbeit als Zielantigen der anti-NS1-Antikörper auf 

Endothelzellen die Protein-Disulfidisomerase (PDI) nachgewiesen werden. 
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