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1 INTRODUCTION 

1 INTRODUCTION 

RA is a chronic multisystem disease of unknown cause. There are a variety of systemic 

manifestations, but the characteristic feature of RA is a persistent inflammatory 

synovitis, usually involving peripheral joints in a symmetric distribution. The hallmark 

of the disease is a change in joint integrity, which is due the potential of the synovial 

inflammation to cause cartilage damage and bone erosions. Although the destructive 

potential may be severe, the course of RA can be quite variable. Some patients may 

experience only a mild oligoarticular illness of brief duration with minimal joint 

damage, whereas others will have a relentless progressive polyarthritis with marked 

functional impairment.1 

1.1 Rheumatoid Arthritis 

For a better description and integration of the necessity of cytokine research in RA, the 

major goal of this study, this introduction refers to the terms “Mr Outside” and “Mr 

Inside” which were coined by Professors Georg Schett, MD (University of Erlangen, 

Erlangen, Germany) and Gary S. Firestein, MD (University of California San Diego, La 

Jolla, CA, USA) in a review article about the pathogenesis of RA, published in 2010.2 

This viewpoint perfectly outlines two basic theories, which are currently used by the 

research community to explain the events taking place in the painful joints of patients 

suffering from that chronic inflammatory arthropathy.  

The terms “Mr Outside” and “Mr Inside” refer to the two US college football stars 

Felix Blanchard and Glenn Davis, who have been nicknamed for their way of playing 

football. While “Mr Inside” was running directly towards the line of defense carrying 

the ball in his hands drawing all the attention, “Mr Outside” was circling around 

defense making it quite difficult for the other team to be prepared for both attacks. This 

strategy was successful in the 1940s. In RA pathophysiology, certain similarities to this 

strategy can be seen, thus leading to the “Inside-out” and the “Outside-in” hypotheses 

(Figure 1). 
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Figure 1: “Outside-in” and “Inside-out” hypotheses. Diagram illustrating the “Outside-in” (arthritis begins within the synovium) 

and “Inside-out” (arthritis begins in the bone and bone marrow) hypotheses of RA pathophysiology. Adapted from: Schett G. et al. 

Ann Rheum Dis 2010;69:787.2  

“Inside-out” means that immune abnormalities are initiated within the juxta-articular 

bone marrow and then progress outwards to induce synovial inflammation. The 

“Outside-in” hypothesis, in contrast, postulates that the disease process starts in the 

synovial membrane and then spreads to surrounding structures such as cartilage, 

ligaments, tendons, bone and other supportive tissues. For both hypotheses, evidence is 

at hand and they should not be regarded as mutually exclusive but as synergistic when it 

comes to explain the full development of this joint disease.2 

To further illustrate the pathogenesis of RA, it is important to describe the scenery in 

detail. A true joint is defined as a discontinuous bone connection made up by two or 

more bones, which are covered by hyaline articular cartilage at their communicating 

ends. The joint is surrounded by a joint capsule and, if needed, completed by special 

features such as ligaments, tendons, menisci and bursae (Figure 2).3 Each joint capsule 

has an inner surface called the synovial membrane, which produces synovial fluid 

serving as a lubricant for smooth joint motion and a nutrient for the articular cartilage. 

The joint capsule inserts into the bone surface near the cartilage-bone junction. Of note, 

arthritic bone erosions usually begin in this area (Figure 4). The synovial membrane is 

subdivided into two layers which can be discriminated into the lining layer, a stratum 

comprising two to three rows of closely packed cells (synoviocytes types I and II) 

interspersed with little matrix, and the sublining, a stratum with less cells, more 

connective tissue matrix and blood vessels.  
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Figure 2: True joint. Diagram (A) and radiograph (B) of a true joint. A representation of a synovial joint shows the articular cortex, 

which corresponds to the thin, white line (closed black arrow) within the joint capsule (closed white arrow), which is usually capped 

by articular cartilage (dotted white arrow). The bone immediately beneath the articular cortex is called subchondral bone (dotted 

black arrows). Inside the joint capsule are the synovial membrane and synovial fluid. Adapted from: Herring W. Learning radiology: 

recognizing the basics - 1st. ed. Copyright © by Mosby, Inc. an affiliate of Elsevier, p.252.4 

The “Outside” of the joint with respect to the mentioned theories is the synovial 

membrane, also called synovium. The physiological synovium does not possess 

epithelial structures like a delimiting membrane, cell-cell interfaces like tight junctions 

or a basal lamina. But apart from that most of the proteins which characterize an 

epithelium are present.5 The dominant cellular constituents are the fibroblast-like 

synoviocytes type II, also referred to as synovial fibroblasts (SFs) and the macrophage-

like synoviocytes type I. The functions of the synovium are to maintain viscosity of the 

synovial fluid, to filter molecules and to provide the inner area of the joint and the 

cartilage with oxygen and proteins. Nutrition of the cartilage is maintained by diffusion 

from the synovial fluid and synovial capillaries because healthy hyaline cartilage is 

devoid of blood vessels.3 Joints are usually under mechanical stress and small lesions 

arise frequently. In that case, SFs contribute to the process of repair. In RA, however, 

the physiological balance between repair and destruction is severely disturbed thus 

leading to irreversible damage of cartilaginous and bony structures.6,7 Beside SFs, 

synovial macrophages with a proportion of approximately 15% are present in the 

synovial membrane. Their major tasks are to phagocytise cell detritus, nonviable cells, 
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and bacteria and to function as antigen-presenting cells.5 In RA, they actively perpetuate 

the inflammatory state of SFs by for example releasing microparticles and are further 

involved in the chronicity of the inflammatory processes by secreting proinflammatory 

molecules such as tumor-necrosis factor (TNF-) α.8,9 

In terms of the hypotheses of Schett and Firestein, the bone, or rather the bone marrow, 

in contrast to the synovium represents the “Inside” of the joint. The bone itself contains 

three different cell types, namely osteoblasts, osteocytes, and osteoclasts. Osteoblasts 

are strongly active cells mainly producing collagen type I, the predominant extracellular 

matrix protein in the bone. In the phase of calcification, osteoblasts are walled into 

small lacunae and then termed osteocytes. Osteocytes, less productive than osteoblasts, 

maintain the extracellular matrix. Osteoclasts, which are motile, multinucleated, giant 

cells, act as opponents to anabolic osteoblasts by resorbing mineralized tissue.10 In RA, 

osteoclast-driven bone resorption is initiated by of one of the key pathways of 

physiological osteoclast activation, the receptor activator of nuclear factor (NF)-κB 

ligand (RANKL)-RANK-interaction. RANKL is expressed by a variety of cell types 

involved in RA pathophysiology, including T cells and SFs.11 The bone marrow itself is 

a central lymphoid organ and therefore highly capable of participating in processes of 

the immune system. In vitro, bone marrow cells show intense activity of tartrate-

resistant acid phosphatase (TRAP), a standard marker of osteoclasts.12 

Different imaging techniques are nowadays used to detect synovitis (“Outside-in”) or 

bone marrow edema (“Inside-out”) and other signs of early disease as far as possible. 

Besides being tools to support the diagnosis of RA, they can be used to monitor the 

effects of therapy, to detect silent progression (progressive joint destruction despite 

clinical response to therapy) and to draw conclusions about the steps of RA 

pathogenesis.  

Ultrasound (US) is broadly used to identify joint synovitis, either in gray scale mode 

only or with additional power Doppler mode (Figure 3). The activated synovium, also 

referred to as pannus, can be seen as thickening of the joint capsule. In addition, 

hyperperfusion of the synovium, a result of neoangiogenesis and dilatation of local 

vessels displayed by power Doppler imaging, and early erosive bone changes are 

readily detectable by US supporting the “Outside-in” theory. The major disadvantage 
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of this method is that visualization of events beneath the cortical bone surface is not 

feasible and therefore signs of “Inside-out” processes cannot be detected.  

 

Figure 3: Image of an ultrasound examination. Grey-scale mode displays thickened synovium and use of the power-doppler mode 

(green rectangle) detects hyperperfusion of the inflamed synovium of the wrist joint. r = radius, l = lunate bone, c = capitate bone, 

arrows = thickened synovium. With kind permission of L.G. Meier, MD, Rheumapraxis Hofheim, Germany. 

Conventional radiography (CR) is the most widely used imaging modality. Four stages 

of radiographic progression of RA are defined according to Steinbrocker et al.13 Plain x-

ray studies show signs of inflammation such as tissue swelling surrounding the affected 

joint, bone loss of three distinct forms (generalized osteoporosis distal from diarthrodial 

joints, periarticular osteopenia adjacent to inflamed joints, and erosions of marginal and 

subchondral bone at the bone-pannus interface12), and derangement of joint integrity at 

later stages of the disease (Figure 4). First signs of arthritis are periarticular osteopenia 

and, if present clinically, also tissue swelling. Only later in the course of the disease 

erosions are present, mainly close to where the synovial membrane inserts near the 

cartilage-bone junction. From this viewpoint, “Inside-out” might start before “Outside-

in”. However, x-rays cannot reveal the active inflammatory processes in synovial tissue 

and therefore this method still cannot distinguish which one of the two theories 

represents the beginning of the disease. 
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Figure 4: Four stages of radiographic progression of RA. Radiographs of the metacarpophalangeal and proximal interphalangeal 

joints displaying the radiographic stages of disease defined by Steinbrocker et al.13 Soft tissue swelling and periarticular 

decalcification (A), small erosions and subchondral cysts (B), large erosions and subluxation (C), mutilation and destruction (D). 

With kind permission of the Department of Diagnostic Radiology, Kerckhoff-Klinik Bad Nauheim, Germany. 

In recent years, a substantial amount of knowledge about disease initiation, duration and 

progression was gained by the implementation of magnetic resonance imaging (MRI) 

and its comparison to histological examinations. The most important finding of these 

studies was that so-called bone marrow edema in MRI is an independent predictor of 

progression to bone erosion.14 Furthermore, histopathological analysis of these regions 

revealed lymphocyte infiltration replacing fatty bone marrow with a kind of 

inflammatory tissue consisting of mature B cells and activated T cells, both forming 

aggregates.15–18 To explain the role of theses aggregates and to draw conclusions about 

their consequences, Schett and Firestein name pathophysiological implications, namely: 

(a) B cell growth and T cell survival, (b) forming of endothelial cells, and (c) expression 

of proinflammatory cytokines such as TNF-α, interleukin- (IL-) 6 and IL-8 maintaining 

and spreading inflammation.2,19–22 MRI studies and subsequent analysis of bone marrow 

activities support the impact of the “Inside-out” theory by implementing facts about the 

way activated bone marrow might influence or initiate synovitis. Yet, it is still critical to 

discriminate whether osteitis or synovitis appears first taking into account that the 

respective MRI findings are usually seen simultaneously.  
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Figure 5: Magnetic resonance imaging of RA. MRI of the wrist, at baseline (A, B) and 1-year follow-up (C). A, Baseline coronal 

short-tau inversion recovery (STIR) image showing bone marrow edema in the capitate (thick arrow) and the lunate and trapezoid 

(thin arrows). (B), Baseline T1-weighted image without MRI erosion but with a hypointense signal corresponding to the bone 

marrow edema in (A) in the capitates (arrow). (C), T1-weighted image at 1-year follow-up, showing erosive progression in the 

capitate (arrow). Erosive progression was also seen in the trapezoid and the lunate, even though not optimally displayed in the 

presented slices. Adapted from: Haarvaldsholm EA et al. Ann Rheum Dis 2008;67:799.14  

Even if the comparison between football strategies and hypotheses on RA 

pathophysiology might not be obvious at first sight, the underlying concepts are 

noteworthy for the development of scientific strategies in the investigation of RA 

pathogenesis. To discover specific cellular and molecular pathways, which are operative 

locally in RA synovium will be important for our understanding of this disease. In the 

past, investigation of the role of proinflammatory cytokines like TNF-α, IL-1 or IL-6 

lead to the development of new therapeutic, so-called “biologic” agents, which have 

improved the outcome of our patients substantially.23–26 Development of new and 

innovative therapies or improvement of therapeutic regimens needs extensive basic 

science effort to deal with the complexity of the immune processes which form the basis 

of this disease. As depicted above, imaging studies have revealed certain disease 

characteristics and their value is definitely high in terms of diagnostic and therapeutic 

decisions, but only in combination with histopathological studies their full significance 

could be unfolded. Hence, in vitro studies concentrating on central cell types acting in 

RA, such as RASFs, which were investigated in this study, need to be performed in 

order to identify new targets in the pathophysiological microcosmos of RA and to 

determine whether “Inside-out” or “Outside-in” has to be blocked to ameliorate disease 

activity. 

1.2 Diagnosis 

Indeed, synovitis is the hallmark of the disease, but diagnosis of RA requires more than 

detecting synovitis. Until 2010, the classification criteria of the American College of 
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Rheumatology (ACR) from 1987 were used by clinicians to classify RA (Table 1).27 

The impressive improvement of therapeutic strategies and development of new effective 

agents in the last years raised the question whether these criteria are still up-to-date. 
Table 1: 1987 ACR criteria for the classification of acute arthritis of RA. 

Criterion Definition 

1. Morning stiffness Morning stiffness in and around the joints, lasting at least 1 hour 
before maximal improvement 

2. Arthritis of 3 or more joint areas At least 3 joint areas simultaneously have had soft tissue swelling 
or fluid (not bony overgrowth alone) observed by a physician. The 
14 possible areas are right or left PIP, MCP, wrist, elbow, knee, 
ankle, and MTP joints 

3. Arthritis of hand joints At least 1 area swollen (as defined above) in a wrist, MCP, or PIP 
joint 

4. Symmetric arthritis Simultaneous involvement of the same joint areas (as defined in 2) 
on both sides of the body (bilateral involvement of PIPs, MCPs, or 
MTPs is acceptable without absolute symmetry)  

5. Rheumatoid nodules Subcutaneous nodules, over bony prominences, or extensor 
surfaces, or in juxtaarticular regions, observed by a physician  

6. Serum rheumatoid factor Demonstration of abnormal amounts of serum rheumatoid factor 
by any method for which the result has been positive in <5% of 
normal control subjects 

7. Radiographic changes Radiographic changes typical of RA on posteroanterior hand and 
wrist radiographs, which must include erosions or unequivocal 
bony decalcification localized in or most marked adjacent to the 
involved joints (osteoarthritis changes alone do not qualify) 

For classification purposes, a patient shall be said to have RA if he/she has satisfied at least 4 of these 7 criteria. Criteria 1 through 
4 must have been present for at least 6 weeks. Patients with 2 clinical diagnoses are not excluded. Designation as classic, definite, 
or probable RA is not to be made.27,28 

The first limitation of these criteria is a poor sensitivity and specificity for classifying 

patients with early inflammatory arthritis who in fact have RA and a second limitation 

is that they fail to identify very early arthritis in patients who in the course of the disease 

develop RA. Two of the seven criteria - erosive joint disease and extraarticular 

manifestations - describe late changes, which are in part prevented by modern 

treatment. Furthermore, the 1987 criteria do not include anti-citrullinated peptide 

antibodies (ACPAs) and acute-phase reactants, which are both used in clinical practice 

to assess and define the prognosis and the severity of disease. In the 1987 criteria, only 

rheumatoid factors (RF) are listed as laboratory parameters. However, their sensitivity 

and specificity compared to ACPAs are lower and the criteria fail to mention that the 

level of RFs have an impact on disease prognosis. Higher levels (thrice as much as the 

laboratory standard) have been shown to be associated with a more severe disease 

progression. ACPAs show a good sensitivity and very good specificity (79% and 97%) 

compared to RF (78% und 62%).29 Acute-phase reactants reflect the inflammatory state 

regularly seen in patients with a disease flare. In a joint working group from the ACR 

and the European League Against Rheumatism (EULAR) new classification criteria 



 

 
 9 

 

1 INTRODUCTION 

were devised in September 2010.30 The new set of criteria consists of four criteria, 

which are evaluated in patients in whom presence of synovitis in at least one joint has 

been confirmed. An alternative diagnosis, which explains synovitis better than RA, e.g. 

reactive arthritis, should be excluded (Table 2). 
Table 2: The 2010 ACR-EULAR classification criteria for RA. 

Criterion Score 

A. Joint involvement  

1 large joint 0 

2-10 large joints 1 

1-3 small joints (with or without involvement of large joints) 2 

4-10 small joints (with or without involvement of large joints) 3 

>10 joints (at least 1 small joint) 5 

B. Serology (at least 1 test result is needed for classification)  

Negative RF and negative ACPA 0 

Low-positive RF or low-positive ACPA 2 

High-positive RF or high-positive ACPA 3 

C. Acute-phase reactants (at least 1 test result is needed for classification)  

Normal CRP and normal ESR 0 

Abnormal CRP or abnormal ESR 1 

D. Duration of symptoms  

<6 weeks 0 

≥6 weeks 1 
Score-based algorithm: add score of categories A–D. A score of ≥6/10 is needed to classify a patient as having 

definite RA.30,31 
 

Of note, if a patient presents with negative RF and ACPA the sensitivity of the 2010 

criteria decreases significantly leaving the treatment decision open to the physician.32 

Therefore, use of the 2010 criteria in patients having synovitis for more than 6 weeks 

does not necessarily answer the challenging question whether early treatment, as 

recommended for patients with a worse prognosis, is required or not. 

The 2010 criteria account more for earlier stages of disease than the 1987 criteria and 

thus underline the importance of an early diagnosis and an early, aggressive treatment 

of RA. Nevertheless, the diagnosis of RA is still based on clinical signs and symptoms 

and the physician’s experience since both sets of criteria have been established for 

classification but not diagnostic purposes. 
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1.3 Synovial fibroblasts 

RASFs are key players in the complex intercellular network of RA.33 Several studies 

have led to the understanding that RASFs compared to healthy SFs differ in 

morphology and behaviour. Intracellular signaling cascades are activated, apoptotic 

responses delayed, the expression cluster of adhesion molecules is altered and enhanced 

production of matrix-degrading enzymes is observed. Thus, RASFs have adopted an 

aggressive phenotype which actively mediates joint erosion and cartilage destruction.34–

37 Their role as resident cells in the hyperplastic RA synovium is well explored, but 

recent studies indicate that RASFs are capable of leaving their natural environment thus 

spreading RA to other joints.38 

Healthy synovial lining consists of 1-3 cell layers, but in RA this is increased to 10-15 

cell layers, containing predominantly RASFs and macrophages.34–37 Though non-

immune cells by nature, fibroblasts of the hyperplastic synovium develop several 

immunological properties during the course of the disease such as expression of human 

leukocyte antigen (HLA-) DR molecules and synthesis of inflammatory cytokines.35,36 

The activation of RASFs is detectable early after disease onset. However, the 

mechanisms underlying this permanent activation are only partly understood. Studies in 

the severe combined immunodeficient (SCID) mouse model of RA showed that 

activation of RASFs is in some ways independent of the presence of inflammatory 

cells35, so that up to now the process of RASF activation is thought to be based upon 

multiple factors: (a) attachment to articular cartilage matrix via adhesion molecules34–

36,39; (b) stimulation by growth factors such as fibroblast growth factor (FGF), 

transforming growth factor (TGF)-β, vascular endothelial growth factor (VEGF), 

platelet-derived growth factor (PDGF) and insulin-like growth factor 2 (IGF2)35,40–44; 

(c) indirect cell-cell interaction through microparticles released from other activated or 

apoptotic cells of the synovium45–48; (d) dysregulation of proto-oncogenes and tumor-

suppressor genes such as p53, p21 and c-Myc35,36; (e) epigenetic alterations such as 

hyperacetylated and hypomethylated DNA as well as expression of distinct microRNAs 

(miRs) including miR-146a and -15549–52. Beside these factors, interactions of RASFs 

with the immune system play a central role in the perpetuation of the inflammation and 

chronic activation of the synovium. These interactions are represented by two distinct 

mechanisms: (a) inflammatory cytokines like TNF-α, IL-1, IL-6, and IL-17 enhance 
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and possibly stabilize the activated phenotype of RASFs34–36; (b) cell-cell interactions 

between RASFs and lymphocytes as well as endothelial cells are mediated by adhesion 

molecules such as vascular cell adhesion molecule (VCAM)-1 or intercellular adhesion 

molecule (ICAM)-1.35 Furthermore, interaction with exogenous and in part endogenous 

ligands with (Toll-like receptors (TLR), of which TLR-2, -3 and -4 are expressed on 

RASFs, leads to increased expression of proinflammatory and matrix-degrading factors 

such as VEGF, IL-6, IL-8, MMPs-1, -2 and -13 and RANKL.53,54 

RASFs do not only maintain a long-term hyperplastic growth of synovium in RA by 

contributing to the influx and proliferation of proinflammatory cells as well as by 

altered apoptosis and proliferation rates, but also actively degrade and invade cartilage 

and mediate cartilage and bone erosion. RASFs in contrast to other synovial cells 

strongly produce matrix-degrading enzymes. MMP is an umbrella term for different 

proteinases with distinct functions including collagenases, stromelysins, gelatinases, and 

membrane-type (MT) MMPs, whereas cathepsins represent a separate type of matrix-

component degrading enzymes.55 RASFs are the main source for MMP-1, -2, -3, -9, -

10, -13 and cathepsin K and L.34–37 MT1-MMP (MMP14) and MT3-MMP (MMP-16) 

and to a lesser extent MT2-MMP (MMP-15) and MT-4 (MMP-17) are also expressed in 

RASFs cleaving matrix components and activating other MMPs. The balance between 

MMPs and their inhibitors, tissue inhibitors of metallo-proteinases (TIMPs) is disturbed 

in RA. The levels of TIMPs found in RA synovium are not sufficient to exert 

counteracting effects. By expressing RANKL, a stimulator of osteoclastogenesis and 

cathepsin K, RASFs also influence bone erosion.  

Thickening of synovial lining as described above leads to a microenvironment, which 

lacks sufficient oxygen supply and is therefore called hypoxic. The local hypoxia, 

particularly at sites of cartilage or bone invasion, stimulates certain proangiogenic and 

chemotactic factors in RASFs, namely angiogenin, angiopoietin-1, FGF-2, inhibitor of 

DNA binding-2 (ID-2), hypoxia-inducible transcription factor (HIF)-1a and VEGF56–62, 

which contribute to increased vessel formation (neoangiogenesis is detectable by US, cf. 

Figure 3) and activation of the endothelium leading to enhanced cell migration.  

Cell migration is a physiological process to maintain tissue homeostasis and to deal with 

conditions such as wound healing, immune defense and matrix-remodelling.63,64 Several 

cell types actively contribute to this process, including lymphocytes, macrophages, 
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fibroblasts and endothelial cells. Fibroblasts and macrophages are able to migrate 

locally within a tissue to sites of damage. Chemokines and adhesion molecules play an 

important role in this process and certain features of this process are well characterized 

such as the temporary change from a “resting” to an “activated” phenotype. Under 

pathophysiological conditions like in RA, chronic inflammation not only leads to an 

increased migration of inflammatory cells to the site of inflammation but also resident 

cells like SFs can acquire the potential for long distance migration comparable to tumor 

metastasis.38 The potential of RASFs to migrate from one affected joint to another has 

been shown in the SCID mouse model of RA.38 This might be one explanation for the 

clinical spreading of the disease when patients after brief periods of early mono- or 

oligoarthritis progress to develop severe and chronic polyarthritis. 

In summary, RASFs require a variety of inflammatory and other stimuli to convert into 

an activated phenotype. Once activated and during chronic inflammation in RA, RASFs 

become the key cell type of the inflamed synovium by cross-talking with other 

inflammatory cells, attaching to and degrading cartilage and promoting bone erosion as 

well as contributing to synovial neoangiogenesis and therefore supporting increased cell 

invasion via activated endothelial cells and potentially spreading the disease from one 

joint to the another. 

1.4 Adipokines 

The so-called adipokines, also referred to as adipocytokines, are secretory products of 

preadipocytes and mature adipocytes, but their production is not restricted to this cell 

type. The fact that different mesenchymal cells, e.g. fibroblasts and adipocytes, derive 

from mesenchymal stem cells, explains why they are able to produce similar 

cytokines.65 Adipokines have been reported to be involved in energy homeostasis, 

appetite/satiety, reproduction, and insulin sensitivity and influence neuroendocrine, 

endothelial, immunological, hematological, angiogenetic, and vascular functions in an 

endocrine, paracrine, and autocrine manner. Different adipokines are currently 

discussed as new targets for therapeutic intervention in different diseases with a 

background of atherosclerosis and inflammation. Mature adipocytes after several steps 

of differentiation are characterized by the production of highly specific late markers of 

differentiation such as adiponectin collagenous repeat-containing sequence of 26-kDa 

protein (CORS-26), resistin, leptin and visfatin.65 While adiponectin has been 
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characterized as having anti-inflammatory properties in atherosclerosis, in RA it is 

regarded as a proinflammatory cytokine, as are resistin, leptin and visfatin. In contrast, 

CORS-26 appears to be anti-inflammatory. For this project, visfatin and leptin were of 

particular interest. 

1.4.1 Visfatin 
Visfatin was originally described in 1994 as a novel human pre-B cell colony-enhancing 

factor (PBEF) by Samal et al.66 The novel gene coding for visfatin/PBEF was isolated 

from a human peripheral blood lymphocyte cDNA library. It is composed of 11 exons 

and 10 introns, spanning over 34.7 kb of genomic DNA. The predominant mRNA for 

visfatin was approximately 2.4 kb long and coded for a 52-kDa secreted protein.66 The 

3’ untranslated region showed multiple TATT motifs (thymine, adenine) usually 

associated with cytokine and oncogene messages.67 The analysis of the quaternary 

protein structure revealed that visfatin is a dimeric protein set up by two identical 499 

amino acid chains.68 This observation is confirmed by the characterization of the crystal 

structure of rat visfatin.69 Kim et al. showed that rat visfatin forms a homodimer of two 

identical proteins of 491 amino acids in length. Further analysis of this protein revealed 

no evidence that it might form higher-order oligomers.70 Each visfatin monomer 

contains 19 β-strands and 13 α-helices arranged into two structural domains. The first 

structural domain consists of a seven-stranded antiparallel β-sheet, two antiparallel β-

strands, and an α-helix bundle. The second structural domain is a variant of the classical 

(β/α)8-barrel (Figure 6).  

 
Figure 6: Ribbon diagram of visfatin showing the two monomers forming the visfatin homodimer in complex with the anti-cancer 

agent APO866. The two monomers are shown in slate and green (structural domain A) and in blue and pale green (structural domain 

B), respectively. The APO866 molecule is shown in red. Adapted from: Kim MK et al. J Mol Biol 2006;362(1):69.71 
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Up to now, visfatin has been found to act as a cytokine66, a chemokine72, a hormone73, 

and an intracellular enzyme74. But the full spectrum of both, the intra- and extracellular 

effects of this molecule, remains an area of active investigation. Nonetheless, there is 

growing data available demonstrating the role of visfatin in physiological as well as 

pathophysiological conditions. 

Samal et al., who first described visfatin as a cytokine-like molecule lacking a signal 

peptide, found that it had no activity on B cell precursors alone, but in the presence of 

stem cell factor and IL-7 it showed synergistic effects on pre-B cell colony formation. 

No effect was found with cells of myeloid or erythroid lineages. In 2002, Rongvaux et 

al. discovered that visfatin, whose expression was found to be up-regulated in activated 

lymphocytes, is in fact a cytosolic enzyme involved in the nicotinamide adenine 

dinucleotide (NAD+) biosynthesis as nicotinamide phosphoribosyltransferase (NAMPT 

or NMPRTase).75 NAMPT belongs to the dimeric class of type II 

phosphoribosyltransferases and is the rate-limiting enzyme of the NAD+ salvage 

pathway recycling nicotinamide mononucleotide (NMN) from nicotinamide (NM, 

Figure 7). 

 
Figure 7: Cyclic metabolic pathway of NAD+ salvage from NM. ATP is required for the synthesis of NAD+ from NMN. PRPP = 

phosphoribosyl pyrophosphate. Adapted from: Takahashi R et al. J Biochem 2010;147(1):96.68  

 

NAD+ is an essential coenzyme which is also consumed by NAD+-dependent sirtuin 

(Sir)-2 deacetylases.76 Sir2 enzymes cleave NM from NAD+ in the first step of their 

reaction, and NM is then used as a precursor for NAD+ synthesis through the NAD+ 

salvage pathway.70 NAD+ is synthesized via two major pathways, de novo synthesis and 

the salvage pathway. Both pathways merge on the last metabolic step which is catalyzed 

by a NMN-ATPase.69 This is of importance since several conditions require great 
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amounts of NAD+ and are associated with an increase of NAMPT activity, namely: (a) 

sustained poly(ADP)-ribosylation activity; (b) mitogenic stimulation of human T cells, 

and (c) protein deacetylase activity during vascular smooth muscle cell maturation77–80, 

all of which are to be found in activated synovium in RA.  

Besides the finding that visfatin acts as an intracellular enzyme, its potential 

physiological function as a hormone is controversial. In 2005, Fukuhara et al. 

discovered that visfatin is abundantly expressed by visceral in contrast to subcutaneous 

fat in both humans and mice and therefore renamed it visceral fat cytokine (“visfatin”). 

Thus, the terms “visfatin”, “NAMPT” and “PBEF” refer to the same protein. They also 

showed that it exerts insulin-mimicking effects by binding to the insulin receptor at a 

site different from the binding site of insulin.73 Several independent studies reported as 

well that visfatin has insulin-like effects.72,81,82 However, investigators in academia and 

industry were unable to reproduce their results and by reporting errors of their work, the 

study was retracted from Science in 2007.83 

Quite more evident are the findings, which describe visfatin as a cytokine involved in 

inflammatory conditions. Several studies found an increase of visfatin expression in a 

model of acute lung injury and clinical and experimental sepsis suggesting that visfatin 

might serve as a novel biomarker of inflammatory conditions.84,85 In inflammatory 

bowel diseases such as Crohn’s disease or ulcerative colitis, visfatin was detected in the 

epithelium of colonic biopsy specimens where its mRNA expression was increased.86 

Nemeth et al. and Ognjanovic et al. found elevated visfatin expression in acutely 

stressed human amniotic membrane, in pre-term membrane and in human amniotic 

epithelial cells by exogenous and endogenous inflammatory stimuli in vitro.87,88 

Moreover, Dahl et al. showed that visfatin was expressed by lipid-loaded macrophages 

which were located within unstable atherosclerotic plaques and suggested that visfatin 

potentially plays a role in plaque destabilization.89 Visfatin was also expressed in 

cultured chondrocytes of patients with osteoarthritis and its expression was further 

enhanced by stimulation with IL-1β.90 Moreover, visfatin was found to be upregulated 

during activation of immune cells such as monocytes, macrophages, dendritic cells, T 

and B cells, but its enhanced expression was not limited to these cells. Increased 

expression could also be detected in amniotic cells, chondrocytes, SFs and endothelial 

cells under the influence of inflammatory stimuli.91 In patients with RA, visfatin was 
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found to be elevated in plasma, synovial fluid and synovial tissue and its expression 

correlated with the degree of inflammation, clinical disease activity and radiographic 

joint damage.91  

In summary, visfatin is a very interesting molecule to be studied and its pathogenic role 

in several immune-mediated diseases needs to be further understood. It acts as a 

cytokine-like molecule in the extracellular microenvironment of activated and inflamed 

tissues and as an intracellular enzyme in the NAD+ salvage pathway, which indeed is of 

great interest in cancer research. A specific inhibitor of enzyme activity, APO866, has 

been developed as an anti-cancer agent and has anti-tumoral, anti-metastatic and strong 

anti-angiogenic activities (Figure 6).92 With regard to RA, several findings link visfatin 

to the imbalance of pro- versus anti-inflammatory cytokines and classify it as an 

adipokine with proinflammatory and immune-modulating properties. Hence, the 

definition of its role in RA needs further efforts. Some authors do already suggest that it 

is a potential therapeutic target for RA and that an inhibition of NAD+ metabolism with 

APO866 may be efficacious in immune-mediated inflammatory disorders.91,93–95 

1.4.2. Leptin 

In 1994, Zhang and colleagues decoded the obese (ob) gene and found the obese protein 

which is nowadays called leptin.96 It is a 16-kDa non-glycosylated peptide hormone, 

which is mainly produced by adipocytes. Structurally, the four-helix bundle of leptin 

shows homologies to the type I cytokine superfamily which led to the conclusion that 

leptin belongs to this family of molecules.97 The discovery of leptin directed the 

traditional view of white adipose tissue as a storage tissue of triglycerides with low or 

no endocrine role towards an endocrine organ regulating energy homeostasis, 

metabolism and inflammatory processes.65 Circulating leptin levels are directly 

correlated with the adipose tissue mass. Leptin acts as a satiety factor on the 

hypothalamus inducing a decrease in food intake and an increase in energy 

consumption. Long believed to be a potential therapeutic drug in obesity, the expected 

effect failed to appear. An explanation for this phenomenon might be that high levels of 

leptin in obese individuals lead to a reduced response, which is mainly due to an 

impaired transport of leptin across the blood brain barrier.  
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Leptin signals via specific leptin receptors (Ob-R), which are encoded by the diabetes 

(db) gene and belong like leptin itself to the class I cytokine receptor superfamily which 

also includes the receptors for IL-6, leukemia inhibitory factor (LIF), ciliary 

neurotrophic factor (CNTF), oncostatin M (OSM), granulocyte-colony stimulating 

factor (G-CSF) and the ubiquitously expressed gp130.98–100 By alternative splicing of 

the db gene, six receptor isoforms have been discovered so far and they differ in terms 

of cytoplasmic domain length. There are one soluble form (Ob-Re), four short forms 

(Ob-Ra, -Rc, -Rd, -Rf) and one long-functional isoform (Ob-Rb), whose expression is 

almost ubiquitous.101–103 The classical signaling pathway of leptin is activated via 

binding of leptin to its Ob-Rb-receptor. The cytoplasmic domain of the Ob-Rb receptor 

shares a Janus Kinase (JAK) like all other members of the cytokine I receptor 

superfamily. JAK-2 activation leads to phosphorylation of the cytoplasmic receptor 

residues then acting as binding sites for different transcription factors which include 

signal transducers and activators of transcription (STAT)-1, -3 and -5.104–108 Of interest, 

leptin-induced STAT-3 activation leads to an upregulation of the suppressor of cytokine 

signaling (SOCS)-3 which in return inhibits leptin signaling, thus providing an 

inhibitory feedback loop.109,110 Besides the classical signaling pathway, alternative 

pathways have been described to be involved in leptin signaling including activation of 

Ras, 5’-monophosphate kinase (AMPK), stearoyl-CoA desaturase 1 (SCD-1), protein 

kinase C (PKC), nitric oxide synthase (NOS), phosphoinositid (PI)-3 kinase, mitogen-

activated protein kinase 1 (MEK-1) and p38 kinase.111–118 

Food intake, hormones and different inflammatory mediators regulate leptin 

expression101 and several inflammatory conditions such as type I diabetes, RA, 

inflammatory bowel disease, acute infection and sepsis are associated with elevated 

leptin levels.119,120 However, the extent of leptin expression seems to differ between 

acute and chronic inflammatory states and study results are partially contradictory. 

Some studies, for instance, described that a chronic stimulation with proinflammatory 

markers causes a suppression of leptin expression.121,122 

Immune responses require a well-balanced relation between energy intake and 

consumption.123 Leptin has been described to link energy homeostasis and the immune 

system, for as a cytokine-like hormone with pleiotropic actions it is involved in glucose 

metabolism, CD4+ T lymphocyte proliferation, cytokine secretion and hypothalamic-
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pituitary-adrenal axis regulation.101 These conclusions are based on several key studies 

which revealed the role of leptin in different pathophysiological conditions: (a) 

peripheral substitution of leptin to ob-/ob- mice reverses hyperglycemia and 

hyperinsulinaemia124; (b) leptin receptor deficient (db-/db-) mice suffer from thymus 

atrophy and leptin induces T cell activation in a way that T cell differentiation is shifted 

towards a TH1 response125–127; (c) the cytokine secretion pattern of 

monocytes/macrophages is modified by leptin via STAT-3-activated pathways128; (d) 

hypoglycaemia increases the release of corticotropin-releasing hormone (CRH) from 

hypothalamic neurons in vitro, but leptin is able to reverse this effect without altering 

the adrenocorticotropin (ACTH) secretion from pituitary cells.129,130 

Leptin production by inflammatory cells is triggered by different inflammatory stimuli, 

which include TNF-α, IL-1β, IL-6 or lipopolysaccharide (LPS). Hence, it was 

suggested that leptin participates in the inflammatory processes through direct para- or 

autocrine actions.131,132 In case of RA, leptin has been described as an interacting 

cytokine between the neuroendocrine and the immune systems, thus contributing to RA 

pathogenesis.133 This statement is further emphasized by the findings of different 

studies: (a) ob-/ob- mice show leptin deficiency and are therefore resistant to antigen-

induced arthritis (AIA) in comparison to wild-type mice134; (b) fasting of patients with 

RA leads to a decrease of leptin levels and is accompanied by a loss of CD4+ 

lymphocyte activation and increased levels of the anti-inflammatory cytokine IL-4135; 

(c) circulating leptin levels are elevated in patients with RA.136,137  

In summary, there is still increasing knowledge about the way leptin is involved in 

different inflammatory conditions such as RA and whether the link between energy 

homeostasis and immune responses is of clinical relevance in affected patients. Some 

authors even state that blocking leptin itself or leptin signaling using specific soluble 

receptors or monoclonal antibodies may be a promising target for future therapies.97 

Therefore, it is important to evaluate the pathophysiological implications of leptin in 

detail.  
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There is growing evidence that adipose tissue can act as an inflammatory organ in 

human diseases by actively participating in and perpetuating inflammatory responses 

through the production of highly active cytokines now called adipokines.65 Adipose 

tissue is ubiquitously distributed in the human body, but is also located adjacent to most 

joints. Of interest, the production of adipokines is not limited to adipocytes. Several 

different cell types in the joint tissue, including monocytes, SFs, and articular 

chondrocytes, can also express them upon stimulation. Furthermore, immune cells such 

as granulocytes, T and B lymphocytes, and macrophages are a source of adipokines 

during activation. Visfatin and leptin belong to the family of adipokines and several 

studies have already shown that both are linked to processes of metabolism and activity 

of the immune system. Because of these results visfatin and leptin are believed to be 

part of the inflammatory crosstalk of immune cells. RA is a chronic and painful 

arthropathy, which affects more and more joints during its course leading to severe 

disability. Autoimmunity is involved in the pathogenesis of this disease and immune 

cells as well as RASFs of the inflamed synovial tissue produce proinflammatory 

cytokines and matrix-degrading enzymes. Hence, it is of interest to investigate whether 

the local cytokine milieu also involves visfatin and leptin. Several studies suggest that 

both of them play an important role in RA and the influence of these adipokines on 

different cells of the synovial tissue has recently been demonstrated.91,97 The aim of this 

study was to focus on the role of both cytokines in the activation of RASFs, which are 

key players in maintaining the immune response in the synovial tissue as well as in the 

degradation of articular cartilage and bone.33 

To further clarify the role of the adipokines visfatin and leptin in the pathogenesis of 

RA the following questions were addressed by the experiments: 

1. Are visfatin and leptin detectable in the joints of RA patients? For this purpose, 

synovial fluid and synovial tissue of RA patients were analyzed and the results 

were compared to samples from patients with osteoarthritis (OA). 
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2. If these adipokines are detectable in a significant amount in both synovial tissue 

and synovial fluid, do they have an influence on gene expression in SFs isolated 

from synovial tissues of patients with RA and OA? 

 

3. If SFs react to the stimulatory effect of either visfatin or leptin, which pathways are 

involved in promoting the change in gene expression? 

 

4. Does a visfatin- or leptin-induced change in gene expression lead to a modified 

local cytokine environment? If so, can autocrine stimulation promote a change in 

the behaviour of cells? Does a change in gene expression in some way alter the 

behaviour of SFs or lymphocytes in vitro? 
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3.1 Materials and chemicals  

Table 3: Applied chemicals and other materials. 

Description Source 

5 x AMV-Buffer Promega, Mannheim, Germany 

6-, 12-, 24-, 48-well plates Greiner, Frickenhausen, Germany 

AEC substrate kit Vector Laboratories, Burlingame, USA 

Boyden chamber Neuroprobe, Gaithersburg, USA 

Bromophenol blue Sigma-Aldrich, Taufkirchen, Germany 

BSA (bovine serum albumin) Roth, Karlsruhe, Germany 

Cell culture flasks (25 cm²/75 cm²) Corning, Wiesbaden, Germany 

DMEM (Dulbecco´s modified eagle medium), 1 g/l 

glucose  
PAN Biotech, Aidenbach, Germany 

DMSO (dimethyl sulfoxide) Sigma-Aldrich, Taufkirchen, Germany 

Coverslips Menzel Gläser, Braunschweig, Germany 

Cryotubes (2ml) Greiner, Frickenhausen, Germany 

DTT (dithiothreitol) Roche, Mannheim, Germany 

EDTA (ethylenediaminetetraacetic acid) Amresco, Karlsruhe, Germany 

Eosin Roth, Karlsruhe, Germany 

Falcon tubes (15ml/50ml) BD Biosciences, Heidelberg, Germany 

FCS (fetal calf serum) Sigma-Aldrich, Taufkirchen, Germany 

Formaldehyde 37% Merck, Darmstadt, Germany 

Giemsa solution Merck, Darmstadt, Germany 

Hematoxylin Roth, Karlsruhe, Germany 

HEPES (2-[4-(2-hydroxyethyl)piperazin-1-

yl]ethanesulfonic acid) 
PAA Laboratories, Cölbe, Germany 

Horseradish peroxidase-conjugated Streptavidin Dianova, Hamburg, Germany 

LightCylcer® capillaries (20µl) Roche, Mannheim, Germany 

May-Grünwald solution Sigma-Aldrich, Taufkirchen, Germany 

OCT TissueTek® Sakura Finetek, Heppenheim, Germany 

NaCl solution 0.9%, physiological B. Braun, Melsungen, Germany 

NF-κB activation inhibitor Calbiochem, Darmstadt, Germany 

nitrocellulose membrane BioRad, München, Germany 

p38 mitogen-activated protein kinase (MAPK) 

inhibitor SB203580 
Sigma-Aldrich, Taufkirchen, Germany 

PBS (phosphate buffered saline) PAA Laboratories, Cölbe, Germany 
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PCR nucleotide-mix Roche, Mannheim, Germany 

Penicillin/Streptomycin PAA Laboratories, Cölbe, Germany 

Polycarbonate PVPF-membrane, 8µm pore size GE Osmonics, Minnetonka, USA 

Protein kinase A (PKA) inhibitor 14-22 (cell-

permeable myristoylated) 
Calbiochem, Darmstadt, Germany 

Protein kinase C (PKC) inhibitor 20-28 (cell-

permeable myristoylated) 
Calbiochem, Darmstadt, Germany 

RNase-free dH2O Applied Biosystems, Darmstadt, Germany 

RNasin (RNase inhibitor) Promega, Mannheim, Germany 

RT-PCR grade water Applied Biosystems, Darmstadt, Germany 

SuperFrost Plus slides Menzel Gläser, Braunschweig, Germany 

24-well Transwell® migration assay Corning, Lowell, USA 

Trypan blue Sigma-Aldrich, Taufkirchen, Germany 

Further chemicals, which are not listed, were either purchased from Roth, Karlsruhe, or 

Sigma-Aldrich, Taufkirchen.  

3.2 Media and solutions 

Table 4: Applied media and solutions. If not mentioned otherwise, the substances were stored at room 

temperature. 

Description Source 

Cell culture medium 

(CCM) 

500 ml DMEM, 10% heat-inactivated FCS, 100 U/ml penicillin, 10 

µg/ml streptomycin, 10 mM HEPES; storage at 4 °C138–140 

Eosin solution 
1% eosin, H2O; filtered, stored in a dark place; addition of a few 

drops of 96% acetic acid before usage  

Freezing medium FCS, 10% DMSO; storage: 1 week at 4 °C 

Hematoxylin solution  

0.1% hematoxylin, 0.2 g/l sodium iodate, 50 g/l potassium 

aluminium sulfate; totally dissolved in H2O; 50 g/l chloral hydrate, 

1 g/l citric acid; filtered, stored in a dark place 

NETN buffer 
0.5% NP-40, 1mM EDTA, 20mM Tris-HCl at pH 8.0, 100mM 

NaCl and 10% glycerol 
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3.3 Enzymes, proteins and antibodies 

Table 5: Applied enzymes, proteins and antibodies (for cell culture, reverse transcription (RT), 

immunohistochemistry, stimulation and inhibition as well as cell motility experiments). 

Description Source 

Accutase PAA Laboratories, Cölbe, Germany 

Adiponectin (recombinant, human) Biovendor, Heidelberg, Germany 

AMV Reverse Transcriptase Promega, Mannheim, Germany 

Cyclophilin B Abcam, Cambridge, UK 

Dispase II PAN Biotech, Aidenbach, Germany 

Interleukin-1 (IL-1, recombinant, human) R&D Systems, Wiesbaden, Germany 

Histofine Simple Stain MAX PO (multi) anti-

mouse, -rabbit antibodies 
Nichirei Biosciences, Tokyo, Japan 

Collagenase Sigma-Aldrich, Taufkirchen, Germany 

Leptin (recombinant, human) Biovendor, Heidelberg, Germany 

Mouse IgG isotype antibody BD Biosciences, Heidelberg, Germany 

Phosphorylated p38 antibody Cell Signalling Technology, Beverly, MA, USA 

Protease inhibitor cocktail Roche Diagnostics, Mannheim, Germany 

Proteinase K Qiagen, Hilden, Germany 

Rabbit IgG isotype antibody Santa Cruz Biotechnology, Heidelberg, Germany 

Total p38 antibody Cell Signalling Technology, Beverly, MA, USA 

Trypsin/EDTA PAA Laboratories, Cölbe, Germany 

Vimentin antibody (mouse anti-human antibody) DAKO, Hamburg, Germany 

Visfatin antibody (rabbit anti-human antibody) Bethyl Laboratories, Montgomery, USA 

Visfatin (recombinant, human) Biovendor, Heidelberg, Germany 

3.4 Kits for molecularbiological and immunological assays 

Table 6: Applied kits. 

Description Source 

BioArray HighYield RNA labeling kit Enzo Diagnostics, Farmingdale, USA 

ECL Plus Western Blotting Detection System GE Healthcare, Little Chalfont, UK 

Custom human antibody array RayBiotech, Norcross, USA 

Human Activin A Quantikine ELISA kit R&D Systems, Wiesbaden, Germany 

Human chemokine antibody array I kit RayBiotech, Norcross, USA 

Human ENA-78 Quantikine ELISA kit R&D Systems, Wiesbaden, Germany 

Human GCP-2 Quantikine ELISA kit R&D Systems, Wiesbaden, Germany 

Human genome U133 Plus 2.0 oligonucleotide 

probe array 
Affymetrix, Santa Clara, USA 
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Human Gro-α Quantikine ELISA kit R&D Systems, Wiesbaden, Germany 

Human IGFBP-2 ELISA kit R&D Systems, Wiesbaden, Germany 

Human IGFBP-3 ELISA kit R&D Systems, Wiesbaden, Germany 

Human IL-6 Quantikine ELISA kit R&D Systems, Wiesbaden, Germany 

Human IL-8 Quantikine ELISA kit R&D Systems, Wiesbaden, Germany 

Human Leptin Quantikine ELISA kit R&D Systems, Wiesbaden, Germany 

Human MCP-1 Quantikine ELISA kit R&D Systems, Wiesbaden, Germany 

Human MMP-3 Quantikine ELISA kit R&D Systems, Wiesbaden, Germany 

Human OPG ELISA kit R&D Systems, Wiesbaden, Germany 

Human pro-MMP-1 Quantikine ELISA kit R&D Systems, Wiesbaden, Germany 

Human Visfatin EIA kit Phoenix Europe GmbH, Karlsruhe, Germany 

MycoSensor PCR assay kit Stratagene, La Jolla, USA 

QuantiTect SYBR Green PCR kit Qiagen, Hilden, Germany 

PicoPure RNA isolation kit MDS Analytical Technologies, Sunnyvale, USA 

RNeasy Mini Prep kit Qiagen, Hilden, Germany 

RNase-free DNase set Qiagen, Hilden, Germany 

SuperScript cDNA synthesis customer kit Invitrogen, Basel, Switzerland 

Taq PCR Master Mix kit Qiagen, Hilden, Germany 

Multi-Test Limulus Amebocyte Lysate (LAL) Lonza, Cologne, Germany 

3.5 Oligonucleotides (primer) 

Oligonucleotides were designed by using the sequence of the corresponding gene or 

applying the program “Primer 3” (http://biotools.umassmed.edu/bioapps/primer3_www.cgi). 

Analysis for dimers or other secondary structures was checked by the “OligoAnalyzer 

3.0” (http://eu.idtdna.com/Home/Home.aspx). The specificity of the appropriate primers was 

verified afterwards by “BLAST search” (http://www.ncbi.nlm.nih.gov/blast). Table 7 shows 

all pairs of oligonucleotides, optimal MgCl2 concentrations as well as the annealing 

temperatures (Ta).  
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Table 7: Oligonucleotides. All oligonucleotides were purchased from Sigma-Aldrich, Taufkirchen, 

Germany and diluted with H2Obidest to gain a concentration of 100 pmol/µl. 

Description Sequence (5’→3’) MgCl2 [mM] Ta [°C] 

CXCL1_for 

CXCL1_rev 

CCAAGAACATCCAAAGTGTGAACG 

CAGTTGGATTTGTCACTGTTCAGC 
 

4.5 62 

CXCL2_for 

CXCL2_rev 

TGCAGGGAATTCACCTCAAGAAC 

TTGAGACAAGCTTTCTGCCCATTC 
 

4.5 62 

CXCL3_for 

CXCL3_rev 

GAAGTCATAGCCACACTCAAGAATGG 

TACTTCTCTCCTGTCAGTTGGTGC 
 

4.5 60 

CXCL5_for 

CXCL5_rev 

GCGTTGCGTTTGTTTACAGACCACG 

GCTACCACTTCCACCTTGGAGC 
 

4.5 60 

CXCL6_for 

CXCL6_rev 

GTGGTAGCCTCCCTGAAGAACG 

TCTTACTGGGTCCAGGGATCTCC 
 

4.5 62 

CXCL11_for 

CXCL11_rev 

TCAGAATTCCACTGCCCAAAGG 

TTGTAAACTCCGATGGTAACCAGC 
 

4.5 60 

CCL2_for 

CCL2_rev 

CAATAGGAAGATCTCAGTGCAGAGG 

GGAATCCTGAACCCACTTCTGC 
 

4.5 60 

CCL13_for 

CCL13_rev 

CAAACTGGGCAAGGAGATCTGTGC 

GAGTTCAAGTCTTCAGGGTGTGAGC 
 

4.5 60 

18S_rRNA_for 

18S_rRNA_rev 
CGGCTACCACATCCAAGGAA 
GCTGGAATTACCGCGGCTGC 

 

  

Primers for 18S_rRNA were designed to be applicable for different concentrations of 

MgCl2 and different Ta. Random primers p(DN)6 (Roche, Mannheim, Germany) were 

used for cDNA-synthesis. 

3.6 Equipment and software 

Table 8: Equipment. 

Equipment Source 

BioPhotometer Eppendorf, Hamburg, Germany 

Centrifuge 5471C Eppendorf, Hamburg, Germany 

Cytospin II Shandon Lipshaw Inc., Pennsylvania, USA 

GeneAmp PCR System 9700 PE Applied Biosystems, Weiterstadt, Germany 

Holten Lamin Air Thermo Scientific, Waltham, USA 

LC Carousel Centrifuge Roche Diagnostics, Mannheim, Germany 

Leica CM 3050S (Kryostat) Leica Microsystems, Nussloch, Germany 

Leica DC 200 (Camera) Leica Microsystems, Wetzlar, Germany 

Leica DM IRB (Microscop) Leica Microsystems, Wetzlar, Germany 
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LightCycler 1.5 Roche Diagnostics, Mannheim, Germany 

NanoDrop Peqlab Biotechnologie, Erlangen, Germany 

Rotamax 120 Heidolph Instruments, Schwabach, Germany 

Sunrise ELISA Reader Tecan, Crailsheim, Germany 

VersaDoc imaging system BioRad, Munich, Germany 

Vortex Genie 2 Bender&Hobein AG, Zürich, Switzerland 

Table 9: Software. 

Software Source 

GraphPad Prism 5 GraphPad Software, La Jolla, CA, USA 

IM 1000 Leica Microsystems, Wetzlar, Germany 

LightCycler Software 3.5 Roche Diagnostics, Mannheim, Germany 

Magellan 5 Tecan, Crailsheim, Germany 

Microsoft Excel 2007 Microsoft Corporation, Redmond, USA 

ND-1000 V3.5.2 Peqlab Biotechnologie, Erlangen, Germany 
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4.1 Tissue specimens and cell culture 

4.1.1 Tissue specimens 

Synovial tissues were obtained from patients with RA and OA during routine 

synovectomy at the time of total knee joint replacement in the Department of 

Orthopedics of the University Hospital Gießen and Marburg in Gießen and in the 

Department of Orthopedics of the University Hospital Regensburg in Bad Abbach.  

Synovial fluid samples were obtained during routine arthrocentesis from patients with 

articular effusions, mostly of the knee. Samples were centrifuged at 700 x g for 10 

minutes and stored at -20° C until further evaluation.  

All specimens were obtained with approval of the Ethics Committee of the Universities 

of Gießen and Regensburg. All patients gave signed informed consent. Patients with RA 

met the 1987 ACR classification criteria (cf. Table 1).27  

4.1.2 Freezing of tissues 

After joint surgery, the synovial tissue was immediately stored on ice to protect it from 

degeneration. The samples were processed immediately. Parts of the tissue samples 

were embedded in OCT Tissue Tek® medium and then carefully snap frozen in liquid 

nitrogen to protect proteins and RNA from enzymatic digestion. Until further use, the 

specimens were stored at -80° C. 

4.1.3 Extraction of synovial fibroblasts 

Parts of the synovial tissues were used for SF isolation. The tissues were cut manually 

into pieces of 0.5 mm3. Enzymatic digestion with Dispase II at room temperature for 1 

hour degraded the extracellular matrix. Subsequently, the solution was poured through a 

cell strainer and then centrifuged for 10 minutes at 300 x g. Cells were transferred into 

cell culture medium (CCM, Table 4). Depending on the amount, isolated RASFs and 

OASFs were cultured in 75 cm2- or 25 cm2-cell culture flasks and incubated at 37° C. 

Incubator conditions were set to a relative humidity of 95% and a CO2 saturation of 
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10%. After 24 hours, the culture medium was exchanged to remove non-adherent cells 

and tissue residue. Further passaging was performed when the confluence of the 

cultured cells reached a level of 80-90%. Medium was exchanged every 48 hours. Cell 

cultures were routinely checked for mycoplasma contamination using the MycoSensor 

PCR Assay kit according to the manufacturer’s protocol. 

4.1.4 Passaging of synovial fibroblasts 

Passaging of fibroblasts was performed under sterile conditions. Medium was removed, 

cells were washed with PBS, and 5 g/l trypsin was added. After incubation at 37°C for 

3-5 minutes, the reaction was stopped by adding 5 ml of CCM. The suspension was 

centrifuged for 10 minutes at 300 x g. The pellet was resuspended and equally 

distributed into fresh cell culture flasks.  

After 2-3 passages the cell culture is free of macrophages because they are not detached 

easily by using trypsin. Cultured SFs were exclusively used between passages 4-8 

because Neumann et al. have demonstrated that SFs alter their gene expression cluster 

during higher passages.141 This would have influenced the reproducibility of results. 

4.1.5 Storage of synovial fibroblasts 

SFs were cultured to a confluence of 90% in a cell culture flask (75 cm²). Incubation 

with trypsin was followed by centrifugation with 300 x g for 10 minutes. The pellet was 

resuspended in 4 ml of iced freezing medium and distributed equally into cryovials. 

Those were placed on ice immediately and then stored overnight in a freezing container 

at -80° C. The next day, the tubes were transferred into liquid nitrogen for long-time 

storage. 

4.1.6 Thawing of synovial fibroblasts 

Tubes containing frozen SFs were removed from liquid nitrogen storage and directly 

placed on ice. Afterwards, the cells were thawed carefully and slowly. The suspension 

was transferred into 10 ml of warmed CCM and centrifuged at 300 x g for 10 minutes. 

The pellet was resuspended in CCM and transferred into cell culture flasks. The 

medium was changed after 24 hours in order to ensure that non-attached cells and 
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residues of DMSO were removed. Subsequently, cell culture was carried out as 

described above. 

4.1.7 Cell count 

Cell count was performed after staining the cells with trypan blue using a Neubauer® 

counting chamber. 

4.2 Immunohistochemistry of synovial tissue 

Immunohistochemistry was performed to detect visfatin at sites of inflammation. 5 µm 

sections of snap frozen synovial tissue from patients with RA and OA were prepared 

and fixed in cold acetone for 10 minutes. After rinsing the slides in PBS, nonspecific 

binding was blocked with 2% BSA followed by overnight incubation in a moist 

chamber at 4° C with rabbit anti-human visfatin antibodies. Next, the slides were 

washed in PBS and endogenous peroxidase activity was blocked with 0.3% H2O2 in 

100% methanol for at least 30 minutes. Sections were then incubated with Histofine 

Simple Stain MAX PO (multi) anti-mouse/-rabbit for 30 minutes. Color development 

with AEC-substrate at room temperature was stopped after microscopic examination. 

Counterstaining of the nuclei was performed using hematoxylin. Rabbit isotype-

matched IgG sera served as isotype control and mouse anti-human vimentin antibodies 

as positive control. A staining without primary antibody was performed as negative 

control. 

4.3 Enzyme-linked immunosorbent assay (ELISA) 

The synovial fluid levels of visfatin and leptin of patients with RA and OA were 

measured using commercially available ELISA kits according to the manufacturer’s 

protocol. Absorption was measured at 450 nm and data were analyzed using the 

Magellan 5 software.  

4.4 Endotoxin control test for recombinant human visfatin 

For stimulation assays of RASFs, recombinant human visfatin (subsequently referred to 

as visfatin) isolated from Escherichia coli was used in concentrations between 1 and 

2500 ng/ml. The datasheet of visfatin states that Endotoxin levels are below 1.0 EU/µg 
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(1 EU = 0.092 ng) and the manufacturer recommends a quality control test with LAL to 

determine quantity of endotoxin. The LAL assay was performed according to the 

protocol. 

4.5 Affymetrix GeneChip® expression analysis of stimulated 

fibroblasts 

Affymetrix GeneChip® analysis was used as a sufficient and extensive screening 

method. RASFs were grown to a confluence of 90%, medium was removed, cells 

washed with PBS and then stimulated with either 500 ng/ml visfatin or 100 ng/ml 

recombinant human leptin (subsequently referred to as leptin) for 15 hours. RNA was 

extracted using the RNeasy™ MiniPrep Kit with additional DNase digestion. Extracted 

RNA of non-stimulated RASFs served as control (non-stimulated fibroblasts were 

incubated for 15 hours in CCM). Following total RNA extraction, RNA quantity was 

measured using the NanoDrop® system. RNA quality was analyzed by the Agilent 2100 

Bioanalyzer considering a 2:1 ratio of the 28S:18S ribosomal peaks as an indicator of 

good quality. Target preparation and hybridization for the human genome U133 plus 2.0 

GeneChip® were performed according to the manufacturer’s protocol. Results of the two 

conditions design (stimulated versus non-stimulated RASFs) were analyzed using the 

GeneSpring microarray analysis software to obtain “increase”, ”decrease” or “no 

change” calls. Genes of interest, which were upregulated or downregulated at least 2-

fold were used for further analysis if considered to be of relevance in the pathogenesis 

of RA. 

4.6 Protein array of RASF supernatants 

To verify whether the effects observed at the RNA level were translated into protein 

secretion, supernatants of RASF cultures were analyzed. For this purpose, commercially 

available human chemokine- and custom human cytokine-antibody-arrays were used.  

RASFs were transferred into 25 cm² cell-culture flasks. When confluence reached 90%, 

RASFs were either stimulated or non-stimulated with 100 ng/ml visfatin or 10 ng/ml 

leptin. After 15 hours, supernatants were collected and stored immediately at -20° C. 

For incubation of each array, 500 µl of supernatant were used following the 

manufacturer’s instructions. The two conditions design was evaluated by 
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chemiluminescence using the VersaDoc imaging system (BioRad, Munich, Germany) 

and spot intensities were quantified numerically with the Quantity One software 

(BioRad). Data processing included averaging of duplicate spot intensities, background 

correction and normalization. For each protein, an x-fold change value was calculated. 

4.7 RASF and OASF stimulation assays 

Prior to quantification of proteins in the supernatants of RASFs and OASFs, it was 

important to determine dose- and time-dependent effects during stimulation periods. 

4.7.1 Dose-effect relationship 
Cultured RASFs were grown to 90% confluence in 6-well plates. After rinsing the 

plates with PBS, cells were stimulated with increasing concentrations of visfatin (2.5, 5, 

10, 50, 100, 250, 500, 2500, 5000, 10000 ng/ml) and leptin (1, 2, 5, 10, 20, 50, 100, 250 

ng/ml) in a total volume of 1 ml per well for 15 hours. Non-stimulated RASFs and 

OASFs incubated with DMEM for 15 hours served as controls, whereas stimulation 

with adiponectin (25 µg/ml) served as positive control.142 In addition, cell count was 

performed. Detection of a dose-dependent induction of cytokine expression (IL-6, IL-8, 

and MMP-3) was performed using commercially available ELISAs. 

4.7.2 Time-dependent response 

RASFs were cultured in 6-well plates to a confluence of 90% and stimulated with 

visfatin in a total concentration of 100 ng/ml. The volume per well was 1 ml. 

Stimulation was stopped at different time points from 4 hours to 48 hours (4, 6, 8, 10, 

12, 15, 18, 20, 24, 28, 34, 43, 48 hours). To exclude effects of stimulation-related cell 

division, cell count was performed. ELISAs were performed to examine the effects of 

the time-response experiments (IL-6, IL-8, and MMP-3). 

4.7.3 Quantification of regulated genes at the RNA and protein levels 

In order to confirm and quantify the results of the Affymetrix GeneChip® at the RNA 

level and of the antibody array experiments at the protein level, RASFs and OASFs 

were grown in 25 cm² cell-culture flasks to a confluence of 90%. Stimulation with 

visfatin (100 ng/ml) was performed in a total volume of 2.5 ml. After 15 hours, 

stimulation was stopped and quantification of proteins, which had been induced or 
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reduced by visfatin, was performed using ELISAs following the manufacturer’s 

protocol. For several chemokines (CXCL-1, -5, -6, -8, -11, CCL-2), cytokines (IL-1β, 

interleukin 1 receptor antagonist (IL-1Ra), IL-6, IL-8, TNF-α), matrix-degrading 

enzymes (pro-MMP-1 and MMP-3) and other molecules of interest (e.g. Activin A, 

osteoprotegerin (OPG), insulin-like growth factor binding protein (IGFBP)-2, -3 and 

TIMP-1, -2) data were analyzed and expressed as x-fold change (sample versus 

control). 

4.8 Quantitative analysis of regulated genes 

The data of the non-quantitative Affymetrix GeneChip® expression analysis revealed 

quite a broad regulation of different cytokines and chemokines. To prove the 

demonstrated effects of visfatin on RASFs, chemokines of the highest regulation were 

chosen and their induction was measured quantitatively by real time-PCR.  

4.8.1 RNA isolation 

Cultured RASFs and OASFs were either stimulated or non-stimulated with visfatin (100 

ng/ml) for 15 hours. RNA was isolated using the RNeasy™ Mini Kit according to the 

manufacturer’s instructions. To minimize DNA contamination, additional DNase 

digestion was performed applying the RNase-free DNase Set. Isolated RNA was stored 

at -80° C until further use.  

4.8.2 Reverse transcription (RT) 

To carry out RT of isolated RNA into cDNA, the following mix was prepared: 

AMV buffer (5x)   8 µl  

PCR nucleotide mix  4 µl (10 mM)  

Random primer p(dN)6  0.5 µl (2 µg/µl)  

RNase inhibitor   1.6 µl (40 U/µl)  

AMV reverse transcriptase 1.2 µl (10 U/µl)  

RNA    x µl (100 - 300 ng)  

H2Obidest    ad 40 µl 

The RT-PCR-program during the reaction was as follows: 
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25°C  10 minutes  interaction of primers and RNA  

42°C  60 minutes  transcription of RNA into cDNA  

99°C  5 minutes  inactivation of AMV reverse transcriptase  

4°C  ∞ 

For further applications, cDNA was stored at -20° C. 

4.8.3 Real-time PCR 

Real-time PCR was performed using a LightCycler with SYBR Green as detection 

system. The weak fluorescence of SYBR Green intensifies when binding to newly 

developed DNA double-strands. At the end of each elongation period total fluorescence 

in each capillary was measured. Fluorescence increased with each cycle and the 

increase was proportionate to the amount of newly synthesized DNA. In a parallel 

approach, a reference gene was measured to set the quantification into relation. In this 

case 18S RNA served as reference gene.  

By using true melting curve analysis, the specificity of each primer was checked. SYBR 

Green attached to DNA double-strands independent of their sequence. Each product 

possessed a specific melting temperature at which SYBR Green was released and the 

fluorescence consequently decreased. The melting curve approach demonstrated the 

melting of double-stranded DNA in relation to the rising of the temperature (50° C à 

90° C). If the melting curve analysis showed more than one peak, the reaction had 

yielded unspecific products and quantification was not possible. For exclusion of this 

error, optimization of real-time PCR conditions had to be done prior to the 

quantification. 

4.8.4 Optimizing primers for real time-PCR 

Each pair of primers had to be optimized as to Ta, MgCl2-concentration and reference 

gene. This was performed initially using standard PCR. 

Efficiency in the LightCycler® was tested using diluted probes of cDNA, e.g. 1:2, 1:4, 

1:8. Dilution series determined standard curves. The LightCycler® software then 

calculated the ascending slope (logarithm to the base 10 of the concentration versus 

cycle threshold (ct-) value) and efficiency was calculated as follows: 
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E=10(-1/slope) 

According to the guidelines of the manufacturer, efficiencies of 2.00 ± 0.05 were 

considered acceptable for experiments meaning that optimized PCR conditions lead to a 

duplication of the product. Different MgCl2-concentrations were investigated (2.5 mM, 

3.5 mM and 4.5 mM). Each of the amplifications was performed as instructed by the 

manufacturer.  

4.8.5 Real-time PCR approach 

Each capillary was loaded with 20 µl real-time PCR reaction mix. The components 

were as follows: 

SYBR Green Mix 10 µl (1x) 

forward primer  0.5 µl (5 pmol)  

reverse primer  0.5 µl (5 pmol)  

MgCl2   x µl (2.5 mM - 4.5 mM)  

cDNA template  2 µl  

H2Obidest   ad 20 µl 

After preparation, each sample was transferred into a capillary and passed on into the 

LightCycler carousel and the PCR was started. The program was as follows: 

initiation:  95° C  15 minutes  initial denaturation  

cycles (35-55x):  95° C  15 seconds  denaturation  

     x° C  25 seconds  annealing  

   72° C  30 seconds  elongation/measuring  

        fluorescence  

melting curve:  50-99° C 0.1° C/second  specifying 

end:   40° C     cooling 

4.9 Inhibition of signal transduction pathways 

To determine if pivotal pathways of signal transduction in RASFs were involved in the 

observed effects, inhibition of signal transduction pathways with chemical inhibitors 

was performed. 
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Cultured RASFs were distributed equally in 48-well culture plates and grown overnight. 

Next, wells were rinsed with PBS and pre-incubation was carried out for 1.5 hours in a 

total volume of 250 µl with chemical inhibitors of signal transduction pathways. 

Inhibitors were used as follows:  
1) p38MAPK-inhibitor SB203580 (10, 20 µM) 

2) cell-permeable myristoylated protein kinase C (PKC) inhibitor 20-28 (10, 40 µM) 

3) cell-permeable myristoylated protein kinase A (PKA) inhibitor 14-22 (1, 2 µM) 

4) cell-permeable NF-κB activation inhibitor (18-, 40 µM) 

 

Subsequent to pre-incubation, supernatants were discarded and cells were stimulated 

with 100 ng/ml visfatin for 15 hours in the presence of the chemical inhibitors. 

Stimulation of RASFs with visfatin served as positive control, non-stimulated RASFs 

with or without inhibitors as negative control. Supernatants were obtained and stored at 

-20° C. Commercially available ELISAs for the detection of IL-6 and monocytes 

chemotactic protein (MCP)-1 were used to determine inhibition of visfatin-mediated 

effects. Inhibition of the p38MAPK pathway with the chemical inhibitor SB203580 in a 

total concentration of 20 µM was also performed over 6 hours, with a pre-incubation 

period of 1.5 hours. X-fold inductions were calculated for each approach, cell counts 

performed and data expressed as the ratio of visfatin-stimulated samples versus samples 

pre-treated and treated with chemical inhibitors of signal transduction pathways and 

visfatin. 

4.10 Western blot analysis of p38 MAPK phosphorylation 

Cell extracts were harvested in NETN buffer containing 1x complete protease inhibitor 

cocktail. Protein was separated on a SDS 10% (w/v) polyacrylamide gel and blotted 

onto nitrocellulose membranes. Proteins were detected by antibodies against 

phosphorylated and total p38. Detection was performed by horseradish peroxidase-

conjugated secondary antibodies and an enhanced chemiluminescence detection kit. All 

western blots were also probed for Cyclophilin B to ensure equal loading of samples. 

4.11 Cell migration assay 

Directed cellular migration was evaluated using a 48-well Boyden microchemotaxis 

chamber consisting of an upper and a lower compartment separated by a semipermeable 
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membrane. Cells migrate from the upper chamber towards chemo-attractive factors or 

media in the lower chamber. After an established time interval migration was stopped 

and the membrane was carefully removed from the chamber. Cells were fixed on the 

membrane, then stained and counted. The stronger the attraction of media was the more 

cells migrated through the membrane pores. 

4.11.1 Preparation of conditioned media 

RASFs were cultured in 25 cm² cell-culture flasks in DMEM containing no FCS to 

prepare conditioned media including chemo-attractive factors produced by RASFs. The 

total volume was 2.5 ml and the confluence of cells was 90%. The different approaches 

were as follows: 

1. DMEM + 2% FCS (“baseline” medium)  

2. DMEM + 100 ng/ml visfatin (stimulated medium)  

3. DMEM + 20 µM SB203580 (stimulated medium)  

4. DMEM + 100 ng/ml visfatin + 20 µM SB203580 (stimulated medium) 

After 16 hours, the respective conditioned media were removed from the flasks, 

centrifuged to deplete detached cells and stored as aliquots at -20° C until further use. 

4.11.2 Migration of RASFs 

For the chemotaxis assay, cultured RASFs were detached from the cell culture flask 

surface using ready-to-use accutase (less aggressive than trypsin) and counted. The 

required amounts of cells were obtained by centrifugation and re-suspended in 

“baseline” medium. 20000 cells in 50 µl “baseline” medium were placed into each 

upper chamber. The lower chambers contained 30 µl of either, “baseline” medium, 

CCM (positive control), DMEM without FCS (negative control), or each of the 

respective stimulated media of the approaches 2., 3., and 4. (cf. 4.11.1). The upper 

chambers were separated from the lower chambers by 8 µm pore-size filters. After a 

migration time of 7 hours, non-migrated cells on the filter facing the upper chamber 

were scraped off; filters were fixed in methanol, and subsequently stained with 

hematoxylin, May-Grünwald and Giemsa. Of each well, 6 areas were photographed, the 

amount of cells was counted and data were expressed as migration index (MI; ratio of 

sample to baseline).143 
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4.11.3 Migration of lymphocytes 

Migration of lymphocytes was measured using a 24-well Transwell® migration assay. A 

total of 106 cells was added onto the filter (pore-size 5 µm). Into the lower well the 

prepared conditioned medium and stimulated media (as described above) were placed. 

In the control experiment, visfatin was diluted in CCM. Cells were allowed to migrate 

for 4 hours at 37° C. Cells in the lower well were enumerated with a Neubauer® 

counting chamber. 

4.12 Cell motility assay 

To differentiate between induced directed chemotaxis and increased undirected cell 

motility, a scrape motility assay was performed. Prior to the experiments, squares were 

scratched into the bottom side of 6-well cell culture plates as orientation guides. RASFs 

were added to the plates in equal amounts and grown to 100% confluence in CCM. The 

cells were preincubated with increasing concentrations of visfatin (5, 25, 50, 100, 250 

ng/ml) for 1.5 hours. Beginning from the center of the crosses of each well, cells were 

removed by scraping using a 100 µl pipet tip. The wells were washed with PBS to 

remove free-floating detached cells. Preconditioned medium was re-added and the cells 

were incubated for 8 hours. To visualize cell motility within the scrape line, photos of 

the defined, cell-free scraped areas were taken every 90 minutes between 8 to 17 hours 

after scraping.144 Cells moving in the scraped gap were counted and data was expressed 

as percentages of sample compared to baseline. 

4.13 Statistics 

Statistical analysis was performed using Students t test, Wilcoxon-Mann-Whitney U test 

and non-parametric Spearman’s correlation. Arithmetic means and standard errors of 

the mean (SEM) were calculated for inter- and intra-assay replicates. If mentioned 

otherwise, standard deviations (SD) were assessed. Results were regarded as significant 

for p<0.05 (*), p<0.01 (**) and p<0.001 (***). Statistical evaluation was performed 

using GraphPad Prism 5. 
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5.1 Detection of adipokines in synovial fluid and tissue 

To investigate whether the adipokines visfatin and leptin exert pro- or anti-

inflammatory effects on SFs, which are key players in the destructive inflammatory 

process of RA, synovial fluids and synovial tissues were analyzed for their presence. 

The identified levels in RA were compared to those in OA. 

5.1.1 Visfatin levels in synovial fluid 

The mean level (± SEM) of visfatin in synovial fluid of RA patients was 76.26 ± 7.22 

ng/ml (n = 24), which was lower than in OA synovial fluid (88.92 ± 6.71 ng/ml, n = 38; 

Figure 8A), but this difference was not significant (p = 0.128). In RA, visfatin levels 

correlated positively with CRP levels (n = 24, ρ = 0.329, p = 0.117; Figure 8B) but not 

with erythrocyte sedimentation rate (ESR; n = 24, ρ = 0.236, p = 0.266). A significant 

negative correlation was found between visfatin levels and age of the patients (n = 24, 

ρ = -0.456, p = 0.026; Figure 8C), whereas the body-mass index (BMI) did not correlate 

with visfatin levels (n = 15, ρ = -0.111, p = 0.2; Figure 8D). In OA, visfatin levels were 

not correlated with BMI either (n = 29, ρ = 0.049, p = 0.8). Patient details are listed in 

Table 10. 
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Figure 8: Expression levels of visfatin and correlations in RA and OA. (A), Expression of visfatin levels (ng/ml) in RA and OA 

synovial fluid. Data is presented as mean value ± SEM. (B), Correlation of visfatin concentration in RA synovial fluid to CRP levels 

(mg/dl), (C), to the age of patient in years, and (D), to the BMI (kg/m²). 

5.1.2 Leptin levels in synovial fluid 

The mean level (± SEM) of leptin in synovial fluids of patients with RA was 10.56 ± 

1.94 ng/ml (n = 23). In OA, the mean synovial fluid concentration of leptin was 

significantly higher (15.52 ± 1.68 ng/ml, n = 38, p = 0.037; Figure 9A). In RA, leptin 

levels in synovial fluid were strongly correlated with BMI (n = 14, ρ = 0.801, p = 

0.0006) but not with markers of inflammation such as CRP or ESR. By contrast, the 

levels of leptin in OA synovial fluid were not correlated with BMI. For patient details 

see Table 10. 
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Figure 9: Expression levels of leptin and correlations in RA and OA. (A), Expression of leptin levels (ng/ml) in RA and OA 

synovial fluid. Data is presented as mean value ± SEM. (B), Correlation of leptin levels in RA synovial fluid with BMI (kg/m²). 

Table 10: Patient characteristics. 

diagnosis age (years ± SD) female (%) 

RA (n = 24) 66.17±15.99 83.3% 

OA (n = 38) 70.71±9.1 65.8% 
Details of patients who presented with articular effusions and underwent routine arthrocentesis. Synovial fluid samples were 

examined for the presence and concentrations of the adipokines visfatin and leptin, respectively. 

5.1.3 Detection of visfatin at sites of tissue inflammation 

Immunohistochemistry using a monoclonal anti-human visfatin antibody was performed 

in order to detect visfatin protein in synovial tissues of patients with RA (n = 3) and OA 

(n = 2). All inflammatory tissues expressed visfatin, but RA synovium in comparison to 

OA synovium showed a stronger expression. In addition, expression of visfatin in RA 

synovium was not limited to perivascular areas as in OA synovium, but was also 

abundant in the lining layer and in lymphoid aggregates. Expression in the sublining 

and in the interstitium was overall lower (Figure 10). 
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Figure 10: Immunohistochemical proof of visfatin protein expression in RA and OA synovial tissue. First row, HE-staining of RA 

synovium. Second row, immunohistochemical detection of visfatin in RA synovium. Third row, immunohistochemical detection of 

visfatin in RA synovium counterstained with hematoxylin. Fourth row, immunohistochemical detection of visfatin in OA synovium 

counterstained with hematoxylin (left) and isotype control (right). CS = counterstaining, i = interstitium, IHC = 

immunohistochemistry, la = lymphoid aggregate, ll = lining layer, ss = synovial space, sl = sublining, v = vessel. 

5.2 Influence of visfatin on synovial fibroblasts 

5.2.1 Endotoxin concentration in recombinant human visfatin 

The source of recombinant proteins is usually bacteria, in case of visfatin, the protein 

was synthesized in Escherichia coli. Hence, endotoxin contamination of the protein 

needed to be clarified. As recommended by the manufacturer, endotoxin levels in the 
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stock solution of recombinant human visfatin were measured to exclude possible effects 

of endotoxin on the following experiments (n = 3). The endotoxin concentration of the 

stock solution was 2.44 ng/ml, which was reduced to 0.488 pg/ml if visfatin was used in 

a concentration of 100 ng/ml. In a previous study, it could be demonstrated that 

endotoxin concentrations of less than 0.1 ng/ml do not significantly change the 

expression of proinflammatory cytokines like for example IL-8 in RASFs.145 In this 

study, the level of endotoxin in the relevant, used protein concentrations was 

approximately 0.5 pg/ml and therefore negligible. 

5.2.2 Expression analysis of genes regulated by visfatin in RASFs 

The first step in the analysis of visfatin-mediated effects in RASFs was to screen which 

genes are regulated by stimulation with visfatin. Therefore, gene chip expression 

analysis was performed (n = 1) applying the human genome U133 Plus 2.0 GeneChip 

(analysis of over 47,000 transcripts).  

The expression of several genes was strongly altered by visfatin (Table 11). Most 

prominently, the group of chemokines was upregulated (CXCL-1, -2, -3, -5, -6, -8, -9, -

10, -12, -16 and CCL-2, -5, -7, -8, -13, -20) and there was no recognizable difference 

between the CC- and the CXC-families. Furthermore, pro- and antiinflammatory 

cytokines were induced, namely IL-1β, -6, -7, -8, -15, -32, -33, IL-1Ra as well as 

adiponectin and visfatin itself. In addition, more groups of genes that play essential 

roles in the pathogenesis of RA were upregulated including proteinases (MMP-1, -3, -

10, -12 and -19), adhesion molecules (VCAM-1, ICAM-1, and -2), growth factors 

(FGF-13, -18, ECGF-1, CSF-1, IGF-1 and VEGF-C), receptors (TLR-3, -5 and 

IL17RB) and intracellular signaling molecules like STAT-1, -2 and SOCS. Few genes 

were partly downregulated (FGF-9, IL1RI and TLR-6). The inductions of the CXCL11- 

and LEPR-genes were excluded from the gene chip analysis due to the high variability 

between the multiple spots. 

These results indicate that visfatin is involved in chemotactic processes and activation 

of the respective intracellular pathways, which are necessary for the synthesis of 

proinflammatory and matrix-degrading proteins. Therefore, these aspects were 

investigated in more detail. 
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Table 11: Visfatin regulated genes in RASF. The selection focuses on genes, which are of putative 

relevance in RA. 

Changes in gene expression of RASFs after stimulation with visfatin: Selection of 
genes regulated by visfatin 

Gene Name Gene Symbol Fold 
Change 

Chemokines   
chemokine (C-C motif) ligand 20 CCL20 1024.00 
chemokine (C-C motif) ligand 5 CCL5 473.71 
chemokine (C-X-C motif) ligand 10 CXCL10 445.72 
chemokine (C-X-C motif) / interleukin 8 CXCL8/IL8 164.03 
chemokine (C-X-C motif) ligand 1 CXCL1 90.51 
chemokine (C-X-C motif) ligand 3 CXCL3 51.98 
chemokine (C-C motif) ligand 8 CCL8 42.22 
chemokine (C-X-C motif) ligand 5 CXCL5 22.63 
chemokine (C-X-C motif) ligand 6 CXCL6 18.38 
chemokine (C-X-C motif) ligand 2 CXCL2 17.96 
chemokine (C-C motif) ligand 13 CCL13 13.93 
chemokine (C-C motif) ligand 2 CCL2 13.93 
chemokine (C-C motif) ligand 7 CCL7 12.13 
chemokine (C-X-C motif) ligand 9 CXCL9 4.59 
chemokine (C-X-C motif) ligand 16 CXCL16 2.64 
chemokine (C-X-C motif) ligand 12 CXCL12 2.46 
Cytokines   
interleukin 1 receptor antagonist IL1Ra 34.30 
interleukin 6 IL6 10.56 
interleukin 32 IL32 8.00 
interleukin 33 IL33 6.96 
adiponectin ADIPOQ 4.29 
interleukin 15 IL15 4.01 
interleukin 1 beta IL1B 3.61 
interleukin 7 IL7 3.48 
leukemia inhibitory factor LIF 3.25 
visfatin PBEF 2.44 
fibroblast growth factor 13 FGF13 3.25 
fibroblast growth factor 18 FGF18 2.14 
fibroblast growth factor 9 FGF9 -2.14 
Growth Factors   
endothelial cell growth factor 1 ECGF1 9.85 
colony stimulating factor 1 CSF1 2.65 
insulin-like growth factor 1 IGF1 2.47 
vascular endothelial growth factor C VEGFC 2.14 
Receptors   
interleukin 15 receptor alpha IL15RA 11.31 
toll-like receptor 3 TLR3 8.57 
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activin A receptor type IIB ACVR2B 6.06 
endothelin receptor type B EDNRB 5.66 
fibroblast growth factor receptor 3 FGFR3 4.92 
interleukin 7 receptor IL7R 3.49 
interleukin 9 receptor IL9R 2.30 
interleukin 17 receptor B IL17RB 2.30 
toll-like receptor 5 TLR5 2.14 
fibroblast growth factor receptor 1 FGFR1 2.14 
chemokine (C-C motif) receptor-like 1 CCRL1 -2.00 
insulin-like growth factor 1 receptor IGF1R -2.46 
toll-like receptor 6 TLR6 -3.03 
interleukin 1 receptor type I IL1R1 -4.92 
Proteinases & Peptidases   
matrix metallopeptidase 3 MMP3 59.71 
matrix metallopeptidase 12 MMP12 34.30 
matrix metallopeptidase 1 MMP1 16.00 
matrix metallopeptidase 10 MMP10 4.92 
matrix metallopeptidase 19 MMP19 2.14 
Adhesion & Cytoskeleton   
vascular cell adhesion molecule 1 VCAM1 16.00 
intercellular adhesion molecule 1 ICAM1 8.44 
intercellular adhesion molecule 2 ICAM2 2.30 
Signaling molecules   
signal transducer and activator of transcription 1 STAT1 4.59 
signal transducer and activator of transcription 2 STAT2 3.69 
suppressor of cytokine signaling 1 SOCS1 3.25 

5.2.3 Dose-dependency of visfatin effects on RASFs 

With regard to different concentrations of visfatin in synovial fluid of RA patients, 

stimulation experiments with different concentrations of visfatin were performed in 

vitro (2.5, 5, 10, 50, 100, 250, 500, 2500, 5000, 10000 ng/ml). Expression of IL-6 and 

IL-8 was regulated by visfatin stimulation in the gene chip expression analysis. 

Therefore, both cytokines were measured in supernatants of stimulated fibroblasts and 

dose-dependent effects were observed (Figure 11). For example, the basal concentration 

of IL-6 was 23.3 pg/10³ cells and was increased to 477.96 pg/10³ cells when stimulating 

with 100 ng/ml visfatin. Similarly, IL-8 levels increased from 0.72 pg/10³ cells to 

199.49 pg/10³ cells using the same concentration of visfatin. For all subsequent 

experiments, visfatin was used at 100 ng/ml because the corresponding point for that 

concentration on the dose-effect-curve was located in the linearly increasing section and 

exerted a strong effect on the production of pro-inflammatory cytokines. Further 
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increase of the visfatin concentration did not result in additional cytokine production 

and, accordingly, the dose-effect curves reached a plateau (Figure 11). 

 

Figure 11: Dose-dependency of visfatin effects on RASFs. Dose-dependent relationships for different stimulation concentrations of 

visfatin are plotted against the concentrations of (A), IL-6 and (B), IL-8 in supernatants of stimulated RASFs. The presented range is 

between 2.5 to 500 ng/ml. The linearly increasing sections of the curves are marked in red. For subsequent experiments 100 ng/ml 

visfatin as stimulation concentration was established. 

5.2.4 Time-dependency of visfatin effects on RASFs 

Increasing the time intervals of stimulation assays may result in an increase or decrease 

of cytokine production. In previous experiments, the time period during which visfatin 

could influence protein production in RASFs was 15 hours.93 To confirm the sufficiency 

of this interval, time-related responses were investigated. RASFs were stimulated with 

100 ng/ml visfatin from 4 hours to 48 hours. Corresponding relationships are depicted 

in Figure 12. For example, the basal concentration of IL-6 was increased from 14.9 

pg/10³ cells to 106.04 pg/10³ cells (Figure 12A) and of IL-8 from 3.97 pg/10³ cells to 

67.42 pg/10³ cells (Figure 12B). Extension of the time period to 48 hours resulted in 

decrease of cytokine production. Thus, 15 hours were established as incubation period, 

also to avoid possible secondary regulatory mechanisms after longer incubation periods. 
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Figure 12: Time dependency of visfatin effects on RASFs. Time-dependent responses of cytokine production by RASFs are 

demonstrated. RASFs were incubated with a total concentration of 100 ng/ml visfatin. Increasing the stimulation intervals led to a 

decrease in cytokine production of (A), IL-6 and (B), IL-8, presumably due to secondary regulatory mechanisms or resistance to 

stimulation. The established stimulation time is marked in red. 

5.2.5 Confirmation of visfatin-regulated genes by real time-PCR 

After establishing standard conditions for the RASF stimulation experiments with 

visfatin (dose-dependency and time-dependency), confirmation of the Affymetrix 

results could be performed. With regard to the strong induction of chemokines, a focus 

was set on confirming most of them by a quantitative method. Real time-PCR was 

selected to quantify the fold-inductions of the following chemokines: CXC-family 

members CXCL-1, -2, -3, -5, -6 and CC-family members CCL-2 and -13 (n = 7-9, 

Table 12). The results verified the impressive up-regulation of genes coding for 

chemokines as seen in the Affymetrix gene chip analysis. The well-known high 

biological variability between cell populations of different patients was also evident in 

this experiment, thus reflecting the heterogeneity of human RA (see chapter 5.2.8). Of 

note, different regulatory factors for each chemokine were documented for the non-

quantitative Affymetrix array and the quantitative real time-PCR due to the different 

concentrations of visfatin used in each experiment. 
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Table 12: Change in the gene expression profile of RASFs after stimulation with visfatin: Selection 

of genes regulated by visfatin. 

Gene Name 
Gene 

Symbol 

Fold 

Change 

AFFX 

Fold 

Change 

Real-Time 

Fold 

Change 

ELISA 

Chemokines 
chemokine (C-C motif) ligand 20 (CCL20) MIP-3α 1024.00  28.97±11.5 

chemokine (C-C motif) ligand 5 (CCL5) RANTES 473.71  30.56±13.79 

chemokine (C-X-C motif) ligand 8 (CXCL8) IL-8 164.03  51.29±13.79* 

chemokine (C-X-C motif) ligand 1 (CXCL-1) GRO-α 90.51 17.21±4.69** 18.28±8.05 

chemokine (C-X-C motif) ligand 3 (CXCL3) GRO-γ 51.98 14.77±2.82**  

chemokine (C-X-C motif) ligand 5 (CXCL5) ENA-78 22.63 14.32±2.79** 6.39±1.22* 

chemokine (C-X-C motif) ligand 6 (CXCL6) GCP-2 18.38 114.82±35.6* 12.88±3.26* 

chemokine (C-X-C motif) ligand 2 (CXCL2) GRO-β 17.96 10.95±2.72**  

chemokine (C-C motif) ligand 13 (CCL13) MCP-4 13.93 6.96±1.49**  

chemokine (C-C motif) ligand 2 (CCL2) MCP-1 13.93 4.83±1.37* 3.29±0.95 

Cytokines      
interleukin 6 IL6 10.56  6.07±0.94* 

Proteinases & Peptidases      
matrix metallopeptidase 3 MMP3 59.71  3.63±0.77* 

matrix metallopeptidase 1 MMP1 16.00  1.19±0.14 

Data are presented as mean value ± SEM; * = <0.05; ** = <0.01 

5.2.6 Expression analysis of proteins regulated by visfatin in RASFs 

The expression of a broad variety of different cytokines, chemokines and MMPs was 

regulated in RASFs in response to stimulation with visfatin. Since the observed effects 

pertained to the RNA level, further investigations were performed to prove that they 

were actually translated to the protein level. For this purpose, protein arrays were 

carried out.  

Up-regulation of protein expression in the chemokine array was observed for IL-8, 

CXCL-10 and CCL-2 (10.13-, 3.41- and 4.23-fold; n = 2). In the custom-cytokine array, 

inductions of IL-8 and IL-6 (6.8- and 5.6-fold; n = 2) could be seen. Neither in the 

chemokine array nor in the custom-cytokine array, any down-regulations of greater than 

2-fold were observed. High inter-assay variations were seen due to either strong 

differences between cell populations of distinct patients (see chapter 5.2.8) or uncertain 

results of the protein array itself. As the reliability of the test was not sufficient, 

ELISAs, specific for the individual target proteins, had to be performed.  
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5.2.7 Confirmation of visfatin regulated proteins by ELISA 

Since the results of the protein array were not sufficiently reliable, ELISA was chosen 

to identify and to quantify changes in the protein secretion of RASFs. Induction of pro-

inflammatory factors, matrix-degrading molecules and most prominently chemokinetic 

and chemoattractive cytokines could be validated. In detail, confirmation of up-

regulation could be observed for IL-6 and MMP-3 as well as for CXCL-1, -5, -6, -8, and 

CCL-2, -5, -20 (n = 4, Table 12, Figure 13). Significant regulations were seen for IL-6, -

8, MMP-3, and CXCL-5, and -6 (p-value <0.05). The illustrated changes in protein 

expression of CXCL-1, CCL-2, -5, and -20 were not statistically significant, but there 

was consistent up-regulation in all samples examined. Significance could not be reached 

due to high variability of each sample (see chapter 5.2.8). No regulatory effect was 

found for pro-MMP-1, activin A, OPG, IGFBP-2 and -3 and TIMP-1 and -2. The levels 

of TNF-α and IL-1β were below the detection limit and thus no further evaluation was 

performed. The results confirm in part that visfatin stimulated changes in gene 

expression of RASFs leads to increased protein production of mostly chemokines, but 

also pro-inflammatory cytokines in comparison to unstimulated RASFs. 

 

Figure 13: Regulation of protein expression in RASFs by visfatin. The bar diagram demonstrates the fold-change induction for each 

named protein after stimulation of RASF with 100 ng/ml visfatin. Data is presented as mean ± SEM. Asterisk (*) indicates 

significant results (p<0.05). 
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5.2.8 Interindividual differences of RASFs and OASFs regarding gene and 
protein expression levels 

Throughout the experiments it could be observed that high interindividual differences of 

expression levels exist between fibroblasts obtained from different patients with RA. 

These differences were measurable on the protein as well as on the RNA levels (Figure 

14). In the evaluations performed, x-fold changes in stimulated versus unstimulated 

fibroblasts were calculated and overall regulation was expressed as mean value (± 

SEM). This explains why the error bars representing the SEM may be relatively 

pronounced. Of note, however, the single values are all pointing into the same (either 

positive or negative) direction as can be seen in Figure 14. OASFs obtained from 

different patients behave similarly (Figure 14A).  

 

Figure 14: Interindividual differences of RASFs and OASFs regarding gene and protein expression. The grouped column scatters 

display the differences of RASFs and OASFs obtained from different RA and OA patients with regard to (A), protein secretion of 

CXCL5 and CXCL6 from RASFs and IL-6 and CXCL1 from OASFs (n = 4), and (B), mRNA level of CXCL1 and CXCL5 from 

RASFs (n = 7-9). Each cell population is represented by a dot. Horizontal lines demonstrate the mean values. 

5.2.9 Effects of specific signal transduction inhibitors on visfatin-
mediated IL-6 and CCL-2 induction 

Several signal transduction pathways (p38 MAPK86,146, PKA147, PKC148,149 and NF-

κB93) are known to be connected with pro-inflammatory cytokine (IL-6) and chemokine 

(CCL-2) production in RASFs. Therefore, inhibition of these pathways by specific 

chemical inhibitors was performed to identify the signaling pathways, which are 

activated in RASFs in response to visfatin stimulation. 
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Incubation with the p38 MAPK inhibitor at the final concentration of 20 µM for 15 

hours resulted in pronounced reduction of the visfatin-mediated production of IL-6 and 

CCL-2 by RASFs. The expression of IL-6 was reduced by 66% from 439.3 ± 103.09 

pg/10³ cells to 150.4 ± 50.31 pg/10³ cells (n = 3) in comparison to visfatin-stimulated 

RASFs without p38 MAPK inhibitor (Figure 15A). The expression of CCL-2 was 

reduced by 28% from 463.4 ± 54.46 pg/10³ cells to 341.0 ± 86.15 pg/10³ cells (n = 3; 

Figure 15B).  

 

Figure 15: Effects of the inhibition of the intracellular signaling pathway p38 MAPK on visfatin-induced expression of IL-6 and 

CCL-2 by RASFs. The bar diagrams show the levels of the respective cytokine. Black bars indicate the presence of the chemical 

inhibitor. Data presented as means ± SEM. (A+C), cytokine production after 15 hours of stimulation. (B+D), cytokine production 

after 6 hours of stimulation and 1½ hours of pre-incubation with the p38 MAPK inhibitor. 
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Evaluation of the same setting was performed with a pre-incubation period of the p38 

MAPK pathway inhibitor of one and a half hours followed by a co-incubation period of 

visfatin and the inhibitor for six hours. This was done to exclude time-dependent effects 

of p38 MAPK salvage due to the chemical inhibition. In keeping with the previous 

experiment, the expression of IL-6 was reduced by 72% from 88.2 ± 38.4 pg/10³ cells to 

24.5 ± 9.2 pg/10³ cells (n = 3) in comparison to visfatin-stimulated RASFs without p38 

MAPK inhibitor (Figure 15C). The levels of CCL-2 were reduced by 57% from 122.5 ± 

110 pg/10³ cells to 70.3 ± 52.6 pg/10³ cells (n = 3; Figure 15D), but high individual 

levels were observed in the samples. 

In contrast, the other inhibitors (PKC inhibitor 20-28, PKA inhibitor 14-22, NK-κB 

activation inhibitor) did not induce any relevant change in IL-6 or CCL-2 production 

(Figure 16). 
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Figure 16: Effects of the inhibition of the intracellular signaling pathways of p38 MAPK, PKA, PKC and NF-κB on visfatin-

induced expression of IL-6 and CCL-2 by RASFs. The bar diagrams show the levels of the respective cytokine. Legend indicates 

which bar represents the presence of which chemical inhibitor. Data presented as means ± SEM. (A), IL-6 production after 15 hours 

of stimulation. (B), CCL-2 production after 15 hours of stimulation. A pre-incubation of 1½ hours was performed with each of the 

chemical inhibitors. Asterisk (*) indicates significant results (p<0.05). ns, not significant. 

5.2.10 Phosphorylation of p38 MAPK induced by visfatin 

Inhibition of the p38 MAPK signaling pathway by using a chemical inhibitor of p38 

MAPK led to a reduction of the visfatin-induced production of IL-6 and CCL-2 by 

RASFs. In order to verify whether visfatin signals via this pathway or whether the 

observed effects were due to secondary stimulatory effects after longer incubation 

periods, Western blot analysis of p38 MAPK phosphorylation was performed.  

After exposure of RASF to visfatin for 5 minutes, an elevation of the basal 

phosphorylation of p38 MAPK could be observed (Figure 17). This indicated an 

activation of the p38 MAPK pathway in RASFs by visfatin stimulation. 
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Figure 17: Analysis of visfatin-mediated p38 MAPK pathway activation by Western blotting. The signals demonstrate 

chemiluminescence of Cyclophilin B, total p38 MAPK (t-p38) and phosphorylated p38 MAPK (p-p38) prior to (-) and 5 minutes 

after (+) visfatin stimulation (100 ng/ml).  

5.2.11 Effects of visfatin on cell migration of RASFs and lymphocytes 

Recently, it was shown that RASFs have the potential to leave the synovium and 

migrate to other joints.38 Therefore, it is of interest whether visfatin may contribute to 

this process. A chemotaxis assay using a Boyden microchemotaxis chamber was 

performed to evaluate whether stimulation of RASFs with visfatin creates a cytokine 

environment that increases directed cell motility of fibroblasts and lymphocytes. 

Besides using different cell populations (n = 2), experimental replicates were performed 

as well (n = 3). 

As shown in 5.2.6, stimulation of RASFs with visfatin leads to increased levels of 

chemokines, e.g. CXCL-1, -5, -6 or CCL-2, -5 and -20. In 5.2.9, inhibition of the p38 

MAPK signaling pathway in the presence of visfatin resulted in decreased levels of 

chemokines. Migration towards media containing visfatin-induced factors could be 

detected for fibroblasts and lymphocytes, and migratory activity could be reduced back 

to baseline levels by blocking the signal transduction of p38 MAPK. As shown in figure 

18A, the migration index (MI) for RASFs was increased by visfatin-induced factors to 

2.73 ± 0.45 and reduced by inhibition of the p38 MAPK pathway to 1.08 ± 0.59 (60% 

reduction). The p38 MAPK inhibitor itself reduced the migratory capacity of RASFs to 

some extent (MI: 0.39 ± 0.31).  

When lymphocyte migration was analyzed, a similar increase in migration of and a 

reduction with the p38 MAPK inhibitor was observed in accordance with the effects of 

visfatin-induced factors on RASFs (Figure 18B). In order to exclude direct effects of 

visfatin on cellular migration, the cells were incubated with 100 ng/ml visfatin. 
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However, as shown in figure 18C, visfatin-induced lymphocyte migration can be 

neglected. 

 

Figure 18: Effects of visfatin on cell migration of RASFs and lymphocytes. (A), The bar diagram demonstrates the migration index 

for RASFs. The marking of the x-axis indicates whether RASFs were migrating towards baseline media (visfatin (-), p38 MAPK (-)) 

or stimulated media as indicated by the labeling of the x-axis (see 4.11.1). (B), The bar diagram shows the number of migrated 

lymphocytes towards baseline and stimulated media as indicated by the labeling of the x-axis. (C), The bar diagram shows the 

migration index for lymphocytes to baseline and to media containing 100 ng/ml of visfatin. Data presented as mean ± SEM. 

5.2.12 Evaluation of changes in RASF cell motility induced by visfatin 

A scrape assay was performed to evaluate whether visfatin exerts effects on the 

undirected cell motility of SFs. RASFs were incubated with increasing concentrations 

of visfatin (5, 25, 50, 100, 250 ng/ml) and the filling of the scraped gap at defined areas 
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was observed over time (n = 3). In order to minimize confounding by cell proliferation, 

serum free-media was used. Figure 19 gives an example for increased cell motility of 

RASFs in the presence of visfatin compared to the negative control. 

 

Figure 19: Increased RASF motility after visfatin stimulation. The pictures demonstrate the scraped gap in a confluent RASF cell 

culture at the beginning of the assay, after 8h and after 15.5h in the absence (negative control) or presence of visfatin (25ng/ml). It is 

clearly visible that the gap is filled over time by motile RASFs and that visfatin can enhance this undirected fibroblast motility. 

Increased cell motility was observed for concentrations of visfatin of 5, 25 and 50 

ng/ml. Increase of cell motility was strongest at the visfatin concentration of 25 ng/ml. 

Data was expressed as the ratio of cell motility of the sample compared to baseline (see 

Methods 4.11). Significant, enhanced cell motility was found for visfatin at 

concentrations of 25 ng/ml after 8 hours (13.28±2.69%; p=0.039), 11 hours 

(14.1±2.99%; p=0.042), and 15.5 hours (18.4±3.56%; p=0.036), and of 50 ng/ml after 8 

hours (11.67±1.42%; p=0.014; Figure 20). Decreased or unchanged fibroblast motility 

at earlier time points of the assay was observed for the applied visfatin concentrations of 

100 and 250 ng/ml. Of note, cell motility declined at the latest time points of the assay 

due to complete filling of the gap. Interestingly, no significant increase of cell motility 

was found for visfatin at a concentration of 100 ng/ml after 15 hours, which were the 

conditions used for the chemotaxis assay. 
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Figure 20: Evaluation of changes in RASF cell motility by visfatin. Observed changes are expressed as the ratio of cell motility of 

the sample compared to baseline. Visfatin concentrations: (A), 5ng/ml. (B), 25 ng/ml. (C), 50 ng/ml. Data presented as mean ± 

SEM. Asterisks (*) denote significant changes compared to baseline (p<0.05). 

5.3 Influence of leptin on synovial fibroblasts 

5.3.1 Expression analysis of genes regulated by leptin in RASFs 

Analogous to the expression analysis of genes regulated by visfatin in RASFs, potential 

regulatory effects of leptin on gene transcription in RASFs were evaluated. 

Expression of several genes was altered by leptin (Table 13). Amongst them, distinct 

chemokines such as CCL-7 and CXCL-9 were upregulated, whereas others including 

CXCL-5 and -10 were down-regulated. Anti-inflammatory cytokines such as IL-11 or 

IL-1Ra were also regulated differentially with IL-11 being increased and IL-1Ra being 

reduced. Furthermore, matrix-degrading enzymes and signaling molecules (MMP-10, -

12 and STAT-2) were increased to some extent while the growth factor FGF-1 was 

decreased by leptin stimulation. Induction of CXCL11 was excluded from the gene chip 

analysis due to the high variability between multiple spots. In comparison to the gene 

expression analysis of RASFs stimulated by visfatin, the observed regulatory effects 

were not consistent, less pronounced, and affected a smaller number of genes.  
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Table 13: Leptin-regulated genes in RASFs. The selection was made with focuses on genes, which are 

known to be involved in RA pathophysiology.  

Change in gene expression of RASFs after stimulation with leptin: Selection of 
genes regulated by leptin 

Gene Name Gene Symbol Fold 
Change 

Chemokines     
chemokine (C-C motif) ligand 7 CCL-7 3.252 
chemokine (C-X-C motif) ligand 9 CXCL9 2.616 
chemokine (C-X-C motif) ligand 5 CXCL5 0.393 
chemokine (C-X-C motif) ligand 10 CXCL10 0.331 
Cytokines     
interleukin 11 IL11 3.929 
interleukin 1 receptor antagonist IL1Ra 0.257 
Growth Factors     
fibroblast growth factor 1 FGF1 0.49 
Proteinases & Peptidases     
matrix metallopeptidase 10 MMP10 3.343 
matrix metallopeptidase 12 MMP12 2.44 
Signaling molecules     
signal transducer and activator of transcription 2 STAT2 2.375 

5.3.2 Confirmation of leptin-regulated proteins by ELISA 

In the gene chip expression analysis, a few genes of interest were either slightly 

increased or decreased by leptin stimulation but the overall change in the gene 

expression pattern was of low significance. To further evaluate possible inductions of 

cytokines with key functions in the pathophysiology of RA, changes in protein 

expression were measured by ELISA.  

IL-1β, -6 and -8 as well as TNF-α and MMP-3 could not be evaluated, because signals 

were below detection levels (n = 4). Thus, pivotal cytokines known to be involved in 

pro-inflammatory mechanisms of synovial pathology were not regulated in RASFs by 

leptin stimulation. 

5.4 Differences between RASFs and OASFs regarding protein 
expression levels 

Recent studies have shown that the induction of protein expression mediated by 

adiponectin is stronger in RASFs than in OASFs.145 Hence, it was of interest to 
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elucidate potential differences in visfatin-induced protein expression by RASFs in 

comparison to OASFs.  

The results of this comparison were, however, variable. Some factors such as CXCL-1 

showed stronger expression in RASFs than in OASFs, whereas other such as MMP-3 

were more prominent in the supernatants of OASFs compared to RASFs after visfatin 

stimulation. Overall, effects of visfatin on either RASFs or OASFs were comparable 

and the respective changes in protein secretion were not significantly different between 

RASFs and OASFs for any of the parameters (IL-6, -8, CXCL-1, -5, -6, CCL-2, MMP-

1, -3, activin A, OPG, IGFBP-2, -3, TIMP-1 and-2; n = 4; Figure 21). 

 

Figure 21: Comparison of protein expression levels of RASFs and OASFs in response to visfatin. IL-6, CXCL-6 and CCL-2 are 

shown as representative examples. The bars represent the mean ± SD. No significant differences between RASFs and OASFs could 

be observed. 
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6 DISCUSSION 

In this work, the potential of visfatin and leptin to act as effector molecules in RA was 

investigated. The significant changes in gene expression of RASFs mediated by visfatin, 

especially the induction of a variety of chemokines and moreover proinflammatory and 

matrix-degrading factors, could be confirmed on the RNA and protein levels. This 

supports the hypothesis that visfatin contributes to the inflammatory molecular 

environment in RA and to the increased fibroblast and leukocyte motility within RA 

synovial tissue. In comparison to visfatin, the changes in gene expression of RASFs 

induced by leptin were less prominent supporting the idea of a low or absent 

proinflammatory role of leptin in RA synovial pathophysiology with respect to RASFs. 

Synovial fluid is usually obtained from patients with RA and OA presenting with joint 

effusions. Levels of proinflammatory cytokines in RA synovial fluid can therefore be 

elevated compared to healthy controls, and usually also when compared to OA. In this 

study, visfatin was detectable in a significant amount not only in RA, but also in OA 

synovial fluid (Figure 8). Taking into account that effusions in OA generally resemble 

an activated or inflammatory status of the joint, it is reasonable that visfatin is present as 

a marker of inflammation. This is also supported by the fact that stimulation of OASFs 

by visfatin leads to an increase of proinflammatory cytokine levels comparable to those 

of stimulated RASFs (Figure 21). Similarly, it has been shown that OASF react to the 

adipokine adiponectin as well, although to a lesser extent than RASFs.142,145 Thus, SFs 

from joints affected by either OA or by RA seem to react to proinflammatory stimuli in 

a similar way. Other studies, in contrast, report higher visfatin levels in RA compared to 

OA.93 This might be caused by different study populations. In this regard, it is of 

interest that long-term disease activity may affect the degree of visfatin production 

(Figure 8). In contrast to leptin, visfatin production is independent of adipose tissue, but 

correlates to markers of inflammation or disease activity scores such as CRP, ESR, or 

DAS28 which is in accordance with results of published studies.93,150 

Inflammation of the synovium is a hallmark of RA and activated RASFs play a pivotal 

role in local pathophysiological mechanisms. While the normal synovial lining is made 

up of 1-3 cell layers, this architecture is severely altered in RA. Predominantly RASFs 

and macrophages increase the lining thickness to 10-15 layers.55 The structural change 
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of the synovial membrane could therefore be the primary step in disease onset. In the 

inflamed synovium of RA patients, accumulation of visfatin was most intense in the 

“lining layer” as well as at the sites of cartilage invasion93 as shown by 

immunohistochemistry (Figure 10). Hence, it was of interest whether visfatin exerts 

effects on cell motility or influences cell migration within the synovium either as a 

chemoattractant or indirectly by creating an environment of high chemokine levels. If 

so, visfatin would contribute to the conspicuous accumulation of RASFs in the 

synovium and at the cartilage invasion zone. Besides, hypoxia or proinflammatory 

molecules, both highly effective stimuli for visfatin induction, contribute further to the 

strong visfatin expression.151,152 A combined effect appears likely.  

In healthy joints, SFs contribute to tissue repair and support wound healing. Therefore, 

they inherit a motile phenotype which is increased in RA as demonstrated by their 

potential to leave the synovium.38 Although they have been regarded to act only as 

resident cells, recent research has demonstrated that RASFs have the potential to leave 

their compartment and migrate to other joints.38 In this study, visfatin showed the 

potential to contribute to this phenotype of RASFs as the cell motility assay revealed 

increased cellular motility in the presence of visfatin (Figure 20). In terms of RA 

synovial pathophysiology, visfatin could further trigger or at least contribute to the 

tumor-like growth of the synovial tissue over the underlying cartilage. RA has been 

referred to as a “locally invasive tumor”, an observation based on several aggressive 

characteristics of RA synovium reminiscent of neoplastic tissue.11 These include 

defective contact inhibition of RASFs and their overexpression of embryonic genes. In 

addition, similar to neoplastic disorders, neo-angiogenesis providing the blood supply 

for the ever growing hyperplastic synovial tissue can also be found.153–155 Mutations in 

key genes are also discussed, for instance p53 tumor suppressor gene alteration or 

microsatellite instability.156–159 Moreover, the potential of RASFs to drive the 

progression of disease from oligo- to polyarticular manifestation is reminiscent of a 

metastatic distribution.38  

The in vitro results of this study show that visfatin promotes RASF motility and induces 

pro-inflammatory and pro-destructive molecules. Whether visfatin is thus a major factor 

for inducing the development of RASFs to their aggressive phenotype in vivo or 
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whether it is a co-factor, which further aggravates that development is speculative at the 

moment. 

TLRs, receptors activated via pattern recognition, can bind microbial components but 

also endogenous molecules resulting in the production of cytokines, chemokines and 

MMPs. TLR-3 for example is overexpressed in RA synovial tissue and release of RNA 

by necrotic synovial fluid cells serves as an endogenous ligand to that receptor which is 

also expressed by RASFs.53,160 Poly(I-C), structurally similar to double-stranded RNA, 

can mimic this effect, acting as an immunostimulant. TLR-3 activation by poly(I-C) 

leads to an upregulation of visfatin in RASFs.93 The results of the Affymetrix array 

further underlined the role of this specific receptor in visfatin pathophysiology. An 

upregulation of TLR-3 by visfatin stimulation of RASFs could be observed (Table 11) 

suggesting a positive feedback loop. Furthermore, abundant levels of IL-6 can mediate 

STAT-3 activation via trans-signaling in RASFs, leading to increased visfatin synthesis. 

Taken together, these findings establish a role for visfatin as a new marker of 

inflammation in RA.93  

The lining layer contains high numbers of activated RASFs characterized by a high 

basal production of IL-6 and MMPs advancing chronic inflammatory responses and 

contributing to T-cell and B-cell activation and progressive cartilage destruction.161 

Visfatin enhances these effects by increasing the production of IL-6 and MMP-3 and 

thus intensifies the aggressive phenotype of RASFs (Table 12). This is of interest as IL-

6 induces visfatin as well, suggesting a positive feedback loop between these two 

molecules. Further in vitro studies will have to prove whether inhibition of IL-6 trans-

signaling by therapeutic antibodies such as tocilizumab, a so-called “biologic response 

modifier” approved for RA therapy, can interrupt this positive feedback regulation.162 

This would then be another explanation for the therapeutic efficacy of tocilizumab. 

With regard to MMP induction, previous studies have revealed visfatin-mediated 

induction of both MMP-1 and MMP-3 mRNA levels.93 The results of the Affymetrix 

array in this study also suggested an increased production of MMP-10, -12, and -19 

(Table 11), whereas the upregulation of MMP-1 could not be confirmed at the protein 

level suggesting that increased expression of mRNA is not translated into significant 

protein synthesis, possibly due to posttranscriptional or posttranslational processes. 
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Nevertheless, the data of this study strongly indicate that visfatin promotes cartilage 

destruction via MMP induction in RASFs (Table 12). 

Looking more closely at visfatin-induced alterations of the gene expression profile of 

RASFs, a strong up-regulation of a broad variety of chemokines of both, the CXC- and 

the CC-cluster was observed suggesting that visfatin mediates chemoattraction in RA 

synovium to a significant extent (Table 11). The results of the Affymetrix array, 

highlighting this broad induction, were confirmed on the RNA and on protein levels 

(Table 12). Chemoattraction plays a key role in RA synovial pathophysiology for the 

initiation, aggravation and perpetuation of local inflammation. Attracting immune cells 

to the synovium is a central mechanism of disease development and chemokines of the 

CXC, CC, and fractalkine families seem to be of great importance in this respect.163 Of 

particular interest, chemokines do not only act as chemoattractants but are also involved 

in synovial neovascularization thus supporting inflammation in several ways.  

Accelerated angiogenesis leads to an increase in the total endothelial surface, thus 

contributing to the intense influx of inflammatory cells. This cell ingress further drives 

the inflammatory process in RA synovium and activated interstitial vessels play a major 

role in the extravasation of leukocytes. Of note, increased expression of visfatin was 

observed around interstitial vessels as well as in lymphoid aggregates (Figure 10). This 

finding further supports the idea that on the one hand visfatin production is driven 

locally by synovial cells, particularly RASFs, lymphocytes and endothelial cells, and on 

the other hand these cells are activated by increased levels of visfatin expression in an 

autocrine and paracrine fashion (Figure 10).152,164,165 In addition, a marked induction of 

factors with strong pro-angiogenic effects, namely IL-8, CXCL-1 and -5, VEGF, and 

ECGF, could be observed.163,166,167 It is therefore likely that visfatin also promotes RA 

synovial angiogenesis to a certain extent. This notion is in keeping with other studies 

which have demonstrated activation of ERK-1/-2 pathways and an increase of FGF-2 in 

human endothelial cells in response to visfatin.163,168–170 Moreover, visfatin increases the 

expression of adhesion molecules like VCAM-1, ICAM-1 and -2 by RASFs thus 

facilitating not only attachment of RASFs to cartilage but also RASF migration.33  

Effective chemoattraction requires enhanced cellular motility. Our results support the 

idea that visfatin operates as a cell motility increasing molecule for RASFs in vitro 

similar to what has been shown for CD14+ monocytes and CD19+ B cells under 
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different pathophysiological conditions.86 The visfatin-induced cytokine environment 

exerts chemoattractive properties promoting directed fibroblast motility towards the site 

of visfatin expression (Figure 18). Furthermore, the visfatin-induced cytokine 

environment contributes to lymphocyte recruitment (Figure 18). This supports the idea 

that visfatin facilitates the accumulation of RASF at sites of cartilage invasion33,171 and 

the aggregation of lymphocytes in inflammatory infiltrates within the synovium 

resulting in increased destruction and remodeling of articular cartilage (Figure 10). 

Due to the fact that IL-6 and MMP-1 production is closely linked to PKC and 

p38MAPK activation148,146,149,172–174 and that initiation of common signaling pathways 

such as PKA and NF-κB result in inflammatory responses of RASFs148,147, investigation 

of those pathways was performed to clarify whether the observed effects were mediated 

by them. Although it has been shown that visfatin activates the NF-κB pathway in 

RASFs93, the only detectable, significant effects in this study were seen for inhibition of 

the p38MAPK pathway (Figure 15, 16). The involvement of this pathway in visfatin 

signaling could be confirmed by detection of p38 MAPK phosphorylation directly after 

stimulation (Figure 17). The same pathway was also described to be required for the 

activation of monocytes by visfatin, supporting a strong connection between visfatin 

and p38 MAPK signaling.86 Of interest, inhibition of p38MAPK in animal models of 

arthritis leads to improvement of the disease severity, thus reflecting its central role in 

arthritis.175,176 

There is an ongoing discussion about the way by which visfatin exerts its biologic 

effects on cells. It has been described that visfatin can bind to the insulin receptor 

mimicking insulin effects but does not share the same binding site with insulin.73 This is 

supported by the finding that inhibition of insulin receptor activity abrogates the effects 

of visfatin in chondrocytes.177 Previous studies further revealed that visfatin also 

functions as an intra- and extracellular enzyme called NAMPT, a key enzyme in the 

salvage pathway of NAD+ and therefore an important molecule in regulating energy 

homeostasis and apoptosis of cells.178–181 Recently, promising results have been 

reported for the inhibition of this enzymatic function using the specific inhibitor 

APO866 in the animal model of collagen-induced arthritis (CIA) in two independent 

studies.94,95 NAMPT inhibition with APO866 ameliorated established CIA and reduced 

the production of proinflammatory cytokines in human PBMCs treated with LPS. The 
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effects were closely linked to intracellular NAD levels and were reversed by NMN 

supplementation suggesting that the enzymatic activity of NAMPT may cause the 

inflammatory cell reactions. The authors compared the effect of APO866 to TNF-α 

blockade by etanercept and demonstrated similar efficacy.94 In an independent study, it 

could be demonstrated that the same selective NAMPT inhibition led to a suppression 

of leukocyte infiltration and cartilage degradation in CIA.95 Interestingly, these authors 

could show the same effects of visfatin by inhibiting its function in vivo as the work of 

the present study does in vitro. Blocking of the enzymatic activity of visfatin by 

APO866 resulted in suppression of leukocyte infiltration into the inflamed synovium of 

arthritic joints and of cartilage destruction mediated by MMP-3 and -13.95 However, it 

remains unclear, whether the effects of visfatin/PBEF are only due to its enzymatic 

activity or if the effects are also dependent on binding to the insulin receptor or to an as 

yet unidentified receptor. Involvement of the insulin receptor is indirectly proven, 

because inhibition of its activity led to amelioration of visfatin-mediated effects and 

possible insulin receptor-dependent downstream activation of ERK-1/-2 has been 

demonstrated in response to visfatin.86,169,177 In contrast, the observed activation of the 

p38 MAPK pathway remains to be explained, because neither insulin receptor signaling 

nor the NAD+ salvage pathway include phosphorylation of p38 MAPK (Figure 17), thus 

the possibility of an yet unidentified receptor is reasonable.94,95  

Of interest, APO866 and inhibitors of p38MAPK are the subject of phase II clinical 

studies. APO866 is currently tested in melanoma, B-cell chronic lymphocytic leukemia, 

and cutaneous T-cell lymphoma (http://www.clinicaltrials.gov; NCT00432107, 

NCT00435084, NCT00431912). Different inhibitors of p38MAPK have already been 

tested in phase II clinical trials of active RA reporting disappointing results.182–184 The 

p38MAPK inhibitors, namely pamapimod, SCIO-469, and VX-702, though well-

tolerated, either failed to show greater efficacy than placebo or were less effective than 

methotrexate. Compared to the results from pre-clinical studies, there is a discrepancy 

in terms of efficacy, an observation, which is reported relatively frequently since 

translation from bench to bedside is not successful in any case. 

Leptin, on the contrary, was detectable in the synovial fluid of RA patients, but to a 

higher extent in OA patients and correlated with the BMI as shown before (Figure 

9).185–188 Even though some authors suggest a proinflammatory role of this molecule in 
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RA97,101, the conclusion is controversial as some studies show that increased levels in 

RA patients compared to healthy controls are associated with reduced levels of 

radiographic damage.188 On the other hand, several studies have shown a role of leptin 

in the pathogenesis of RA. In comparison to plasma levels of leptin in RA patients, the 

levels in synovial fluid of the same patients have been found to be significantly lower, 

suggesting an in situ consumption of this molecule.137 However, leptin consumption in 

inflamed joints is not explained any further. In this study, leptin was found to induce 

significantly less changes in the gene expression pattern of RASFs in comparison to 

visfatin. Pivotal proinflammatory cytokines such as IL-1, -6, or TNF-α or matrix 

degrading enzymes such as MMP-3 were not regulated by leptin (Table 13). In contrast, 

it has been demonstrated that leptin induces, in synergy with IFN-γ or IL-1, NOS type II 

activation in chondrocytes, thus leading to increased levels of NO.118 NO is known to 

act as a proinflammatory mediator in joint cartilage, where it generates chondrocyte 

phenotype loss, apoptosis and activation of metalloproteinases.117 These results are 

further underlined by the observation that leptin increases the production of IL-8 in 

human chondrocytes.189 The same has also been demonstrated for human SFs.190 

However, this result could not be confirmed by the current work. Results concerning 

leptin and its potential role in the pathogenesis of RA are still controversial and more 

efforts are needed to clarify whether or not leptin is involved in the cytokine cross-talk 

of activated immune cells in the inflamed RA synovium and if so, which cells are the 

corresponding effector cells. In contrast to chondrocytes, this study has shown that 

RASFs do not significantly react to stimulation by leptin. 

The current study focussed on the evaluation of possible effects of visfatin and leptin on 

RASFs, key cells in local pathophysiology of RA synovial tissue. RASFs were isolated 

from synovial tissue of RA patients who underwent knee joint replacement surgery. 

Thus, each synovial sample came from a different patient with an individual disease. 

While all patients fulfilled the 1987 ACR criteria, their individual disease duration, 

history of therapies and antibody status (rheumatoid factor or anti-citrullinated peptide 

antibodies) varied and could not be matched because human specimens are rare, 

valuable, and unique. Because of the difficulty in obtaining human specimens from a 

homogeneous population of patients, a possible bias secondary to heterogeneity of the 

cell populations cannot be excluded. In this study, however, individual rather than 

experimental replications were preferred. Therefore, x-folds were calculated to interpret 
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the data. Because of the high inter-individual variability in expression levels of 

measured cytokines, statistical significance was not achieved in every case, whereas the 

regulation of the respective cytokine was always significant (Figure 14).  

To summarize the present work, visfatin in contrast to leptin appears to be a novel 

potent effector molecule in the pathophysiology of RA. Visfatin is detectable at key 

sites of RA synovium as well as in synovial fluid. RASFs strongly react to stimulation 

by visfatin, thus supporting a microenvironment of increased proinflammatory, matrix-

degrading, and neoangiogenic cytokines that further aggravate synovial inflammation. 

Furthermore, visfatin exerts chemoattraction, which contributes to both the ingress of 

inflammatory cells into the synovium and the accumulation of RASFs at sites of 

cartilage invasion. This is supported by the observation that visfatin triggers cell 

motility. Therefore, visfatin according to recent research is a new proinflammatory 

marker in RA. As the in vivo and in vitro studies with the specific inhibitor of the 

enzymatic activity of visfatin, APO866, show promising results, and taking into account 

that Kim et al. state69, upon analyzing the crystal structure of visfatin in complex with 

APO866, that inhibition can be further optimized for therapeutic usage, the results of 

our experiments support also the idea that visfatin can be regarded as potential future 

therapeutic target for RA. 
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Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease, which is mainly 

characterized by a painful affection of multiple joints. The synovial tissue lining the 

joint cavity is clearly thickened in inflamed joints and activated synovial fibroblasts 

(SFs) align in the “lining layer” closely to the cartilage-bone junction. SFs can adhere 

to, invade into and degrade the cartilage by producing different matrix-

metalloproteinases (MMPs). Visfatin and leptin belong to the group of adipokines, 

molecules released from adipose tissue. Visfatin has been demonstrated to function as 

an extracellular cytokine, but also as an intracellular enzyme regulating energy 

metabolism on the cellular level. Leptin on the other hand is known as a hormone 

regulating food intake at the level of the central nervous system. Recent studies have 

shown that both proteins are actively participating in the inflammatory immune 

response affecting arthritic joints in RA. The aim of this work was to detect both leptin 

and visfatin in the joints of RA patients and to investigate their influence on joint 

inflammation. Thus, synovial fluid and synovial tissue of RA patients were analyzed. 

Responses of SFs to the stimulatory effect of visfatin and leptin as well as effects of 

possible alterations in the cytokine microenvironment on fibroblasts and lymphocytes 

were studied. Leptin and visfatin are present in the synovial fluid of RA patients, 

whereas only visfatin was positively correlated to parameters of inflammation such as 

C-reactive protein (CRP). Visfatin was detectable in the synovial tissue around 

interstitial vessels, lymphoid aggregates and in the “lining layer” by 

immunohistochemistry. A clear change in the gene expression pattern of RASFs was 

induced by visfatin showing an upregulation of proinflammatory cytokines and MMPs. 

The most distinct change was seen for the subgroup of chemokines. Stimulation of 

RASFs with visfatin led to an alteration of the cytokine environment, which was 

chemoattractive not only for RASFs in an autocrine fashion but also for lymphocytes. 

Visfatin-conditioned medium increased directed fibroblast migration towards a gradient 

as well as undirected cell migration and therefore overall cell motility. These and other 

previously published results lead to the hypothesis that visfatin acts as a 

proinflammatory cytokine in arthritic joints by enhancing the joint-destructive potential 

of RASFs and by promoting their accumulation in the “lining layer”. In contrast, leptin 

did not significantly influence the gene expression profile of RASFs, neither on the 
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RNA nor the protein levels. Therefore, leptin appears not to be a main trigger of RASF 

activation. Of note, results from animal models of RA showed that inhibition of the 

enzymatic activity of visfatin led to an amelioration of the disease. Taken together, the 

results of this study suggest that visfatin is an important proinflammatory cytokine, 

which could be a novel therapeutic target in RA. 
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Die rheumatoide Arthritis (RA) ist eine primär chronisch entzündliche 

Gelenkerkrankung, die hauptsächlich durch eine schmerzhafte Beteiligung mehrerer 

Gelenke charakterisiert ist. In einem entzündeten Gelenk zeigt sich die Synovialis 

deutlich verdickt und es finden sich aktivierte synoviale Fibroblasten (SF), die sich in 

einem sogenannten „lining layer“ am Knorpel-Knochenübergang sammeln. Sie 

adhärieren aktiv am Gelenkknorpel, wandern in ihn ein und zerstören ihn, unter 

anderem durch die Produktion verschiedener Matrixmetalloproteinasen (MMP). 

Visfatin und Leptin sind Zytokine aus dem Fettgewebe und werden dementsprechend 

als Adipozytokine bezeichnet. Visfatin zeigt neben der Funktion eines extrazellulären 

Zytokins auch intrazelluläre enzymatische Aktivität im Energiehaushalt der Zellen. 

Leptin ist bekannt als Hormon, das zentral das Hungergefühl hemmt. Für beide konnte 

kürzlich gezeigt werden, dass sie aktiv an der entzündlichen Immunantwort in 

rheumatischen Gelenken beteiligt sind. Ziel dieser Arbeit war es herauszufinden, ob 

sowohl Visfatin als auch Leptin im Gelenk von RA Patienten vorkommen und ob sie 

einen Einfluss auf die Entzündung im Gelenk nehmen. Hierzu wurden die 

Synovialflüssigkeit und die Synovialis von RA Patienten analysiert, die Antwort 

synovialer Fibroblasten auf die Stimulation mit Visfatin und Leptin untersucht und 

festgestellt, ob sich durch diese Einflussnahme das Zytokinmilieu verändert und 

welcher Einfluss dabei auf die SF und Lymphozyten entsteht. Es konnte gezeigt 

werden, dass beide Visfatin und Leptin in der Synovialflüssigkeit von RA Patienten 

vorliegen, wobei sich nur für Visfatin eine Korrelation zu Entzündungsparametern, wie 

dem C-reaktiven Peptid, zeigte. Im Synovialgewebe konnte nur Visfatin und hier nur im 

„lining layer“, in Endothelien und Lymphaggregaten gefunden werden. Visfatin hatte 

einen deutlichen Einfluss auf die Genexpression von RASF, indem proinflammatorische 

Zytokine und MMP induziert wurden. Am deutlichsten jedoch wurden Chemokine 

reguliert. Die Stimulation von RASF mit Visfatin führte zu einem veränderten 

Zytokinmilieu, das chemoattraktiv für RASF selbst, aber auch für Lymphozyten war. Es 

konnte gezeigt werden, dass das durch Visfatin konditionierte Medium sowohl die 

gerichtete Migration von Fibroblasten als auch die ungerichtete Migration und somit sie 

generelle Beweglichkeit der SF verstärkt. Diese Beobachtungen führen neben anderen 

bereits bekannten zu der Annahme, dass Visfatin als proinflammatorisches Zytokin im 
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entzündeten Gelenk fungiert, indem es die gelenkzerstörende Antwort der RASF 

verstärkt und zu deren vermehrten Anordnung im „lining layer“ beiträgt. Leptin zeigte 

im Vergleich zu Visfatin keine wesentliche Beeinflussung der RASF, weder auf die 

Genexpression noch auf die Proteinproduktion proinflammatorischer Zytokine. In 

Tiermodellen der RA konnte bereits gezeigt werden, dass die Inhibition der 

enzymatischen Aktivität des Visfatins zu einer deutlichen Besserung des Verlaufs führt. 

Die Ergebnisse dieser Studie untermauern, dass Visfatin ein neues 

entzündungsförderndes Zytokin und die Blockade der enzymatischen Aktivität ein 

mögliches, neuartiges Therapiekonzept in der RA ist. 
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RA - rheumatoid arthritis 
SFs - synovial fibroblasts 
MMP - matrix metallo-proteinase 
RASFs - rheumatoid arthritis synovial 
fibroblasts 
TLR - toll-like receptor 
MD - medical doctor 
TNF - tumor-necrosis factor 
RANKL - receptor activator of the nuclear 
factor κB ligand 
NF-κB - nuclear factor κB 
TRAP - tartrate-resistant acid phosphatase 
US - ultrasound 
CR - conventional radiography 
MRI - magnetic resonance imaging 
IL - interleukin 
STIR - short-tau inversion recovery 
ACR - American College of Rheumatology 
ACPAs - anti-citrullinated peptide antibodies 
RF - rheumatoid factor 
EULAR - European League Against 
Rheumatism 
HLA - human leukocyte antigen 
SCID - severe combined immunodeficiency 
FGF - fibroblast growth factor 
TGF - transforming growth factor 
VEGF - vascular endothelial growth factor 
PDGF - platelet-derived growth factor 
IGF - insulin-like growth factor 
miR - microRNA 
VCAM-1 - vascular cell adhesion molecule 
ICAM-1 - intercellular adhesion molecule 
TIMP - tissue inhibitor of metallo-proteinases 
ID - inhibitor of DNA binding 
HIF - hypoxia inducible transcription factor 
CORS26 - collagenous repeat-containing 
sequence of 26-kDa protein 
PBEF - pre-B cell colony-enhancing factor 
NAD - nicotinamide adenine dinucleotide 
NAMPT - nicotinamide 
phosphoribosyltransferase 
NMN - nicotinamide mononucleotide 
NM - nicotinamide 
Sir - sirtuin 
QA - quinolinic acid 
NA - nicotinic acid 
PRPP - phosphoribosyl pyrophosphate 
NaMN - nicotinate mononucleotide 
QaPRTase - quinolinate 
phosphoribosyltransferase 
NaPRTase - nicotinate 
phosphoribosyltransferase 
NMNATase - NMN-ATPase 
ob - obese 
db - diabetes 
LIF - leukemia inhibitory factor 

CNTF - ciliary neurotrophic factor 
OSM - oncostatin M 
G-CSF - granulocyte-colony stimulating factor 
gp - glycoprotein 
JAK - janus kinase 
STAT - signal transducers and activators of 
transcription 
SOCS - suppressor of cytokine signaling 
AMPK - 5’-monophosphate kinase 
SCD - stearoyl-CoA desaturase 
PKC - protein kinase C 
NOS - nitric oxide synthase 
PI - phosphoinositid 
MEK - mitogen-activated protein kinase 
CD - cluster of differentiation 
CRH - corticotropin-releasing hormone 
ACTH - adrenocorticotropin hormone 
LPS - lipopolysaccharide 
AIA - antigen-induced arthritis 
OA - osteoarthritis 
RT - reverse transcription 
Ta - annealing temperature 
CCM - cell culture medium 
PBS - phosphate-buffered saline 
BSA - bovine serum albumin 
IL-Ra - interleukin receptor antagonist 
OPG - osteoprotegerin 
IGFBP - insulin-like growth factor binding 
protein 
PCR - polymerase chain reaction 
LAL - limulus amebocyte lysate 
MAPK - mitogen-activated protein kinase 
MCP - monocyte chemotactic protein 
FCS - fetal calf serum 
DMEM - Dulbecco's modified eagle medium 
ECGF - endothelial cell growth factor 
MI - migration index 
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