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Abstract.Right one-way jumping automata (ROWJFAs) are an automaton model that was recently
introduced for processing the input in a discontinuous way. In [S. Beier, M. Holzer: Properties
of right one-way jumping finite automata. In Proc. 20th DCFS, number 10952 in LNCS, 2018] it
was shown that the permutation closed languages accepted by ROWJFAs are exactly that with a
finite number of positive Myhill-Nerode classes. Here a Myhill-Nerode equivalence class [w]L of a
language L is said to be positive if w belongs to L. Obviously, this notion of positive Myhill-Nerode
classes generalizes to sets of vectors of natural numbers. We give a characterization of the linear
sets of vectors with a finite number of positive Myhill-Nerode classes, which uses rational cones.
Furthermore, we investigate when a set of vectors can be decomposed as a finite union of sets of
vectors with a finite number of positive Myhill-Nerode classes. A crucial role play lattices, which
are special semi-linear sets that are defined as a natural way to extend “the pattern” of a linear set
to the whole set of vectors of natural numbers in a given dimension. We show deep connections of
lattices to the Myhill-Nerode relation and to rational cones. Some of these results will be used to
give characterization results about ROWJFAs with multiple initial states. For binary alphabets we
show connections of these and related automata to counter automata.
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1 Introduction

Semi-linear sets, Presburger arithmetic, and context-free languages are closely related to each
other by the famous results of Ginsburg and Spanier [11] and Parikh [15]. More precisely, a set is
semi-linear if and only it is expressible in Presburger arithmetic, which is the first order theory
of addition. These sets coincide with the Parikh images of regular languages, which are exactly
the same as the Parikh images of context-free languages by Parikh’s theorem that states that
the Parikh image of any context-free language is semi-linear. Since then semi-linear sets and
results thereof are well known in computer science. Recently, the interest on semi-linear sets has
increased significantly. On the one hand, there was renewed interest in equivalence problems on
commutative languages [13] which obviously correspond to their Parikh-image, and on the other
hand, it turned out that semi-linearity is the key to understand the accepting power of jumping
finite automata, an automaton model that was introduced in [14] for discontinuous information
processing. Roughly speaking, a jumping finite automaton is an ordinary finite automaton, which
is allowed to read letters from anywhere in the input string, not necessarily only from the left
of the remaining input. Moreover, semi-linear sets were also subject to descriptional complexity
considerations in [3] and [5].

The tight relation between semi-linear sets and jumping automata is not limited to this
automaton model, but also turns over to right one-way jumping automata as shown in [1, 2].
Right one-way jumping automata (ROWJFAs) were introduced in [4] and allows the device to
process the input also in a discontinuous way with the restriction that the input head reads
deterministically from left-to-right starting from the leftmost letter in the input and when it
reaches the end of the input word, it returns to the beginning and continues the computation.
Most questions on formal language related problems such as inclusion problems, closure prop-
erties, and decidability of standard problems concerning ROWJFAs were answered recently in
one of the papers [1, 2, 4]. One of the main results on these devices was a characterization of
the induced language family that reads as follows: a permutation closed language L belongs to
ROWJ, the family of all languages accepted by ROWJFAs, if and only if L can be written
as the finite union of Myhill-Nerode equivalence classes. Observe, that the overall number of
equivalence classes can be infinite. This result nicely contrasts the characterization of regular
languages, which requires that the overall number of equivalence classes is finite.

In this paper we deepen the understanding of the Myhill-Nerode equivalence relation given
by a subset of Nk as defined in [10]. For a subset S ⊆ N and the induced Myhill-Nerode
relation, an equivalence class is called positive if and only if the vectors of the class lie in S.
We characterize in which cases linear sets have only a finite number of positive equivalence
classes in terms of rational cones, which are a special type of convex cones that are important
objects in different areas of mathematics and computer science like combinatorial commutative
algebra, geometric combinatorics, and integer programming. A special type of semi-linear sets
called lattices is introduced. Their definition is inspired by the mathematical object of a lattice
which is of great importance in geometry and group theory, see [6]. These lattices are subgroups
of Rk that are isomorphic to Zk and span the real vector space Rk. Our semi-linear lattices are
defined like linear sets, but allowing integer coefficients for the period vectors, instead of only
natural numbers. However our lattices are still, per definition, subsets of Nk. Lattices have only
one positive Myhill-Nerode class and can be decomposed as a finite union of linear sets with
only one positive Myhill-Nerode class. We give a characterization of the lattices that can even
be decomposed as a finite union of linear sets with linearly independent period sets and only one
positive Myhill-Nerode class and again get a connection to rational cones. That is why we study
these objects in more detail and show that the set of vectors with only non-negative components
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in a linear subspace of dimension n of Rk spanned by a subset of Nk always forms a rational
cone spanned by a linearly independent subset of Nk if and only if n ∈ {0, 1, 2, k}. These result
has consequences for the mentioned decompositions of lattices. We show when a subset of Nk
can be decomposed as a finite union of those subsets that have only a finite number of positive
Myhill-Nerode classes. That result heavily depends on the theory of lattices.

The obtained results on lattices are applied to ROWJFAs generalized to devices with multiple
initial states (MROWJFAs). This slight generalization is in the same spirit as the one for ordinary
finite automata that leads to multiple entry deterministic finite automata [8]. We show basic
properties of MROWJFAs and inclusion relations to families of the Chomsky hierarchy and
related families. A deep connection between the family of permutation closed languages accepted
by MROWJFAs (the corresponding language family is referred to pMROWJ) and lattices is
shown. This connection allows us to deduce a characterization of languages in pMROWJ
from our results about lattices and decompositions of subsets of Nk. We also investigate the
languages accepted by MROWJFAs and related languages families for the special case of a
binary input alphabet and get in some cases different or stronger results than for arbitrary
alphabets. We can show that each permutation closed semi-linear language (these are exactly
the languages accepted by jumping finite automata) over a binary alphabet is a accepted by a
counter automaton. Furthermore, each language over a binary alphabet accepted by a ROWJFA
is also accepted by a realtime deterministic counter automaton. Our results for lattices lead to
a characterization, which is stronger than the one for arbitrary alphabets, of the languages
over binary alphabets in pMROWJ: these are exactly the languages which are a finite union
of permutation closed languages accepted by a ROWJFA, which are characterized by positive
Myhill-Nerode classes as stated above.

2 Preliminaries

We use ⊆ for inclusion and ⊂ for proper inclusion of sets. For a binary relation ∼ let ∼+ and ∼∗
denote the transitive closure of ∼ and the transitive-reflexive closure of ∼, respectively. In the
standard manner, ∼ is extended to ∼n, where n ≥ 0. Let Z be the set of integers, Q be the set
of rational numbers, R be the set of real numbers, and N (Q≥0, R≥0, respectively) be the set of
integers (rational numbers, real numbers, respectively) which are non-negative. Let k ≥ 0. For a
set T ⊆ {1, 2, . . . , k} with T = {t1, t2, . . . , t`} and t1 < t2 < · · · < t` we define πk,T : Nk → N|T |
as

πk,T (x1,x2, . . . ,xk) = (xt1 ,xt2 , . . . ,xt|T |).

The elements of Rk can be partially ordered by the ≤-relation on vectors. For vectors x and y
with x,y ∈ Rk we write x ≤ y if all components of x are less or equal to the corresponding
components of y. The value ||x||1 is the taxicab norm of x, that is,

||(x1,x2, . . . ,xk)||1 =

k∑
i=1

|xi|,

and the value ||x||2 is the Euclidean norm of x, that is,

||(x1,x2, . . . ,xk)||2 =

√√√√ k∑
i=1

x2
i .

For a set S ⊆ Rk let span(S) be the intersection of all linear subspaces of Rk that are supersets
of S, which vector space is also called the linear subspace of Rk spanned by S. For a linear
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subspace V of Rk let dim(V ) be the dimension of V . For a finite S ⊆ Zk the rational cone
spanned by S is cone(S) = {

∑
xi∈S λi · xi | λi ∈ R≥0 } ⊆ Rk. A linearly independent rational

cone in Rk is a set of the form cone(S) for a linearly independent S ⊆ Zk. Each rational cone
is a finite union of linearly independent rational cones, see for example [16]. For r ∈ R≥0 define
Br(x) = { z ∈ Rk | ||z − x||2 ≤ r }, the ball of radius r around x, and for a set S ⊆ Rk and
λ ∈ R let λS = {λz | z ∈ S } and S + x = { z + x | z ∈ S }.

For a c ∈ Nk and a finite P ⊆ Nk let

L(c, P ) =

 c+
∑
xi∈P

λi · xi

∣∣∣∣∣∣ λi ∈ N
 and La(c, P ) =

 c+
∑
xi∈P

λi · xi

∣∣∣∣∣∣ λi ∈ Z
 ∩ Nk.

By definition, L(c, P ) ⊆ La(c, P ). The vector c is called the constant vector whereas the set P
is called the set of periods of L(c, P ) and of La(c, P ). Sets of the form L(c, P ), for a c ∈ Nk
and a finite P ⊆ Nk, are called linear subsets of Nk, while sets of the form La(c, P ) are called
lattices. A subset of Nk is said to be semi-linear if it is a finite union of linear subsets. For
a c ∈ Nk, a natural number n ≥ 0, and x1,x2, . . . ,xn ∈ Nk we have that La (c, {x1,x2, . . . ,xn})
is equal to the set of all y ∈ Nk such that there exists λ1, µ1, λ2, µ2, . . . , λn, µn ∈ N with
c+

∑n
i=1 λixi = y+

∑n
i=1 µixi, which is a Presburger set. Since the Presburger sets are exactly

the semi-linear sets by [11], every lattice is semi-linear. In order to explain our definitions we
give an example.

Example 1. Consider the vector c = (4, 4) and the period vectors p1 = (1, 2) and p2 = (2, 0).
A graphical presentation of the linear set L(c, P ) with P = {p1,p2} is given on the left of
Figure 1. The constant vector c is drawn red and both periods p1 and p2 are depicted in blue.
The black dots indicate the elements that belong to L(c, P ). The lattice La(c, P ) is drawn in
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Fig. 1. The linear set L(c, P ) with c = (4, 4) and P = {p1,p2}, where p1 = (1, 2) and p2 = (2, 0) drawn on the
left. The black dots indicate membership in L(c, P ). The lattice La(c, P ) is depicted in the middle. Here the black
dots refer to membership in La(c, P ). On the right a representation of La(c, P ) as a linear set is shown. Again,
the constant vector 0 is shown as a red dot and the period vector are colored blue.

the middle of Figure 1. Again, the constant vector is colored red, while both periods are in
blue. Since now integer coefficients are allowed, there are new elements compared to L(c, P )
that belong to La(c, P ). On the right of Figure 1 it is shown that the set La(c, P ) can be written
as a linear set by using the constant vector 0 and the three period vectors drawn in blue, that
is, La(c, P ) = L(0, {p1,p2,p3}), where p3 = (0, 2).

An important result about semi-linear sets is that each semi-linear set can be written as a
finite union of linear sets with linearly independent period sets [9]:
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Theorem 2. Let k ≥ 0 and S ⊆ Nk be a semi-linear set. Then, there is m ≥ 0, vectors
c1, c2, . . . , cm ∈ Nk, and linearly independent P1, P2, . . . , Pm ⊆ Nk such that S =

⋃m
i=1 L(ci, Pi).

Now, we recall some basic definitions from formal language theory. Let Σ be an alphabet.
Then Σ∗ is the set of all words over Σ, including the empty word λ. For a language L ⊆ Σ∗

define the set perm(L) = ∪w∈L perm(w), where perm(w) = { v ∈ Σ∗ | v is a permutation of w }.
A language L is called permutation closed if L = perm(L). The length of a word w ∈ Σ∗ is
denoted by |w|. For the number of occurrences of a symbol a in w we use the notation |w|a. If Σ
is the ordered alphabet Σ = {a1, a2, . . . , ak}, the Parikh-mapping ψ : Σ∗ → Nk is the function
w 7→ (|w|a1 , |w|a2 , . . . , |w|ak). The set ψ(L) is called the Parikh-image of L. A language L ⊆ Σ∗
is called semi-linear if its Parikh-image ψ(L) is a semi-linear set.

For a language L ⊆ Σ∗ let ∼L be the Myhill-Nerode equivalence relation on Σ∗. So, for
v, w ∈ Σ∗, we have v ∼L w if and only if, for all u ∈ Σ∗, the equivalence vu ∈ L ⇔ wu ∈ L
holds. For w ∈ Σ∗, we call the equivalence class [w]∼L positive if and only if w ∈ L. For k ≥ 0 and
a subset S ⊆ Nk the equivalence relation ≡S on Nk was defined in [10] as follows: for x,y ∈ Nk,
we have x ≡S y if and only if (x + z) ∈ S ⇔ (y + z) ∈ S , for all z ∈ Nk. For x ∈ Nk, we
call the equivalence class [x]≡S positive if and only if x ∈ S. We will also refer to ≡S as the
Myhill-Nerode equivalence relation. If L ⊆ Σ∗ is a permutation closed language and v, w ∈ L
we have v ∼L w if and only if ψ(v) ≡ψ(L) ψ(w). So, the language L is regular if and only

if N|Σ|/ ≡ψ(L) is finite.
Let REG, DCF, CF, and CS be the families of regular, deterministic context-free, context-

free, and context-sensitive languages. Moreover, we are interested in families of permutation
closed languages. These language families are referred to by a prefix p. E.,g., pREG denotes
the language family of all permutation closed regular languages. Let JFA be the family of all
languages accepted by jumping finite automata, see [14]. These are exactly the permutation
closed semi-linear languages.

A right one-way jumping finite automaton with multiple initial states (MROWJFA) is a
tuple A = (Q,Σ,R, S, F ), where Q is the finite set of states, Σ is the finite input alphabet, R
is a partial function from Q × Σ to Q, S ⊆ Q is the set of initial or start states, and F ⊆ Q
is t he set of final states. A configuration of A is a string in QΣ∗. The right one-way jumping
relation, symbolically denoted by �A or just � if it is clear which MROWJFA we are referring
to, over QΣ∗ is defined as follows. For p ∈ Q we set

ΣR,p = { b ∈ Σ | R(p, b) is defined } ,

and if there is no danger of confusion we simple refer to ΣR,p as Σp. Let p, q ∈ Q, a ∈ Σ,
w ∈ Σ∗. If R(p, a) = q, then we have paw � qw; otherwise, in case R(p, a) is undefined, we get
paw � pwa. So, the automaton jumps over a symbol, when it cannot be read. The language
accepted by A is

LR(A) = {w ∈ Σ∗ | ∃s ∈ S, f ∈ F : sw �∗ f } .

We say that A accepts w ∈ Σ∗ if w ∈ LR(A) and that A rejects w otherwise. Let MROWJ
be the family of all languages that are accepted by MROWJFAs. Furthermore, in case the
MROWJFA has a single initial state, i.e., |S| = 1, then we simply speak of a right one-way
jumping automaton (ROWJFA) and refer to the family of languages accepted by ROWJFAs
by ROWJ. Obviously, by definition we have ROWJ ⊆MROWJ. We given an example of a
ROWJFA:

Example 3. Let A be the ROWJFA A = ({q0, q1, q2, q3}, {a, b}, R, q0, {q3}), where the set R
consists of the rules q0b → q1, q0a → q2, q2b → q3, and q3a → q2. The automaton A is

4



q0 q1 q2 q3
b

a

b

a

Fig. 2. The ROWJFA A.

depicted in Figure 2. To show how ROWJFAs work, we give an example computation of A on
the input aabbba:

q0aabbba � q2abbba �2 q3bbaa �3 q2abb �
2 q3ba �2 q2b � q3

That shows aabbba ∈ LR(A). Analogously, one can see that every word that contains the same
number of a’s and b’s and that begins with an a is in LR(A). On the other hand, no other word can
be accepted by A, interpreted as an ROWJFA. So, we get LR(A) = {w ∈ a{a, b}∗ | |w|a = |w|b }.
Notice that this language is non-regular and not closed under permutation.

The following characterization of permutation closed languages accepted by ROWJFAs is
known from [2].

Theorem 4. Let L be a permutation closed language. Then, the language L is in pROWJ
if and only if the Myhill-Nerode relation ∼L has only a finite number of positive equivalence
classes.

3 Lattices, Linear Sets, and Myhill-Nerode Classes

Because of Theorem 4 a permutation closed language is in ROWJ if and only if the Parikh-
image has only a finite number of positive Myhill-Nerode equivalence classes. In this section we
will study these kind of subsets of Nk. Linear sets and lattices will play a key role in our theory.
We will investigate decompositions of subsets of Nk as finite unions of such subsets that have
only a finite number of positive equivalence classes. This will lead to characterization results
about the language class pMROWJ in the next section.

3.1 Connections Between Linear Sets and Rational Cones

It was pointed out in [12] that “rational cones in Rd are important objects in toric algebraic
geometry, combinatorial commutative algebra, geometric combinatorics, integer programming.”
In the following we will see how rational cones are related to the property of linear sets to have
only a finite number of positive Myhill-Nerode equivalence classes. The next property of linear
sets is straightforward.

Lemma 5. For k ≥ 0, vectors c,d ∈ Nk, and a finite set P ⊆ Nk the map L(c, P ) → L(d, P )
given by x 7→ x− c+ d induces a bijection from L(c, P )/ ≡L(c,P ) to L(d, P )/ ≡L(d,P ).

Now, we define two properties of subsets of Nk which involve rational cones. Let k ≥ 0
and S ⊆ Nk. Then, the set S has the linearly independent rational cone property if and only if
span(S) ∩ (R≥0)k = cone(T ), for some a linearly independent T ⊆ Nk. The set S has the own
rational cone property if and only if S is finite and it holds span(S) ∩ (R≥0)k = cone(S).

A linear set has only a finite number of positive Myhill-Nerode equivalence classes if and
only if the period set has the own rational cone property:
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Theorem 6. Let k ≥ 0 and P ⊆ Nk be finite. Then,
∣∣L(0, P )/ ≡L(0,P )

∣∣ < ∞ if and only if P
has the own rational cone property.

Proof. Let P = {p1,p2, . . . ,p|P |}. Assume that P has the own rational cone property. Let U
be the finite set

U =


|P |∑
i=1

νipi

∣∣∣∣∣∣ νi ∈ R, 0 ≤ νi < 1

 ∩ Nk.
Let u ∈ U and

Vu =

 (ξ1, ξ2, . . . , ξ|P |) ∈ N|P |
∣∣∣∣∣∣ u+

|P |∑
i=1

ξipi ∈ L(0, P )

 .

Consider the ≤-relation on N|P |. For all v ∈ Vu and w ∈ N|P | with v ≤ w we have w ∈ Vu.
Let Wu be the set of minimal elements of Vu. Due to [7] each subset of N|P | has only a finite
number of minimal elements, so Wu is finite. For x = (x1,x2, . . . ,x|P |) ∈ N|P | let Xu,x be the
finite set that contains the elements

(max(0, ξ1 − x1),max(0, ξ2 − x2), . . . ,max(0, ξ|P | − x|P |)),

where (ξ1, ξ2, . . . , ξ|P |) ∈ Wu. For x,y ∈ N|P | we have x + y ∈ Vu if and only if there is a

z ∈ Xu,x with z ≤ y. The set {Xu,x | x ∈ N|P | } is finite.
Let now t ∈ L(0, P ) and t′ ∈ Nk. If t′ /∈ span(P ), we have t+t′ /∈ L(0, P ). So, let t′ ∈ span(P ).

There is an x = (x1,x2, . . . ,x|P |) ∈ N|P | with t =
∑|P |

i=1 xipi. Because P has the own rational
cone property, there are

u′ ∈ U and x′ = (x′
1,x

′
2, . . . ,x

′
|P |) ∈ N|P |

such that t′ = u′ +
∑|P |

i=1 x
′
ipi. We have t+ t′ ∈ L(0, P ) if and only if x+x′ ∈ Vu′ , which holds

if and only if there is a z ∈ Xu′,x with z ≤ x′. So, the set{
r ∈ Nk

∣∣∣ t+ r ∈ L(0, P )
}

only depends on the map

U →
{
Xv,y

∣∣∣ v ∈ U,y ∈ N|P | }
given by v 7→ Xv,x. That shows

∣∣L(0, P )/ ≡L(0,P )

∣∣ <∞.
Assume now that P does not have the own rational cone property. This gives us the inclusion

cone(P ) ⊂ span(P ) ∩ (R≥0)k. So, let x ∈ span(P ) ∩ (R≥0)k \ cone(P ) and

T =
{
i ∈ {1, 2, . . . , k}

∣∣ πk,{i}(x) = 0
}
.

By basic linear algebra there is a non-empty linearly independent Q ⊂ Qk with

span(Q) = {y ∈ span(P ) | πk,T (y) = 0 } .

Because x ∈ span(Q) ∩ (R≥0)k \ cone(P ) and cone(P ) is a topological closed set, see [16], there
is a

z ∈ span(Q) ∩ (Q≥0)k \ cone(P ) ⊆ span(P ) ∩ (Q≥0)k \ cone(P ).

6



So, there are λ1, µ1, λ2, µ2, . . . , λ|P |, µ|P | ∈ Q≥0 with

|P |∑
i=1

(λi − µi)pi ∈ (Q≥0)k \ cone(P ).

We may assume that the values λ1, µ1, λ2, µ2, . . . , λ|P |, µ|P | ∈ N by multiplying with the lowest
common denominator. Let

R = min

 r ∈ R

∣∣∣∣∣∣
|P |∑
i=1

(λi + rµi)pi ∈ cone(P )

 ∈ (−1, 0].

We refer to M as the set of minimal elements regarding the ≤-relation on Nk of the set
Nk ∩ span(P ) \ {0}. Due to [7] the set M is finite. We have

Nk ∩ span(P ) = L(0,M).

For each linearly independent B ⊆ P with span(B) = span(P ) let NB be the lowest common
multiply of the numbers min{n ∈ N \ {0} | nv ∈ La(0, B) }, for v ∈M . This gives us

L(0, B) ∩ (NB · Nk) = cone(B) ∩ (NB · Nk),

for each linearly independent B ⊆ P with span(B) = span(P ). Let N be the lowest common
multiply of all the numbers NB. By [16] the set cone(P ) is the union of all the sets cone(B)
where B ⊆ P is linearly independent with span(B) = span(P ). It follows L(0, P ) ∩ (N · Nk) =
cone(P ) ∩ (N · Nk).

For all ν, ξ ∈ N it holds

νN ·

 |P |∑
i=1

µipi

+ ξN ·
|P |∑
i=1

(λi − µi)pi ∈ L(0, P )

if and only if ν ≥ ξ · (R+ 1). So, for ν1, ν2 ∈ N with ν1 6= ν2 we haveν1N ·
 |P |∑
i=1

µipi


L(0,P )

6=

ν2N ·
 |P |∑
i=1

µipi


L(0,P )

,

which implies
∣∣L(0, P )/ ≡L(0,P )

∣∣ =∞. This proves the theorem. ut
For linear sets with linearly independent periods we even get a stronger equivalence than in

Theorem 6:

Corollary 7. For k ≥ 0 and a linearly independent P ⊆ Nk the following three conditions are
equivalent:

1.
∣∣L(0, P )/ ≡L(0,P )

∣∣ <∞
2.
∣∣L(0, P )/ ≡L(0,P )

∣∣ = 1
3. The set P has the own rational cone property.

Proof. Let P = {p1,p2, . . . ,p|P |} and assume that P has the own rational cone property. Let

x ∈ L(0, P ) and y ∈ Nk; otherwise, if y /∈ span(P ), we get x+ y /∈ L(0, P ). If y ∈ span(P ), then
we have y ∈ cone(P ), because P has the own independent rational cone property. So, there are

uniquely determined values λ1, λ2, . . . , λ|P | ∈ R≥0 with y =
∑|P |

i=1 λipi. It holds x+ y ∈ L(0, P )
if and only if for each i ∈ {1, 2, . . . , |P |} we have λi ∈ N. This shows

∣∣L(0, P )/ ≡L(0,P )

∣∣ = 1.
Together with Theorem 6, that proves the corollary. ut
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3.2 Decompositions of Lattices

Lattices defined as subsets of Rk play an important rule in geometry, group theory, and cryptog-
raphy, see [6]. Our lattices defined as subsets of Nk are a natural way to extend “the pattern”
of a linear set to Nk. Using lattices we can give a characterization in which cases arbitrary sub-
sets of Nk can be decomposed as a finite union of subsets with only a finite number of positive
Myhill-Nerode classes in the next subsection. This result, in turn, will enable us to prove a
characterization result about MROWJFAs in the next section. In this subsection, we will show
some decomposition results about lattices: it will turn out that lattices can be decomposed as
a finite union of linear sets which have only one positive Myhill-Nerode equivalence class. Since
each semi-linear set is the finite union of linear sets with linearly independent period sets by
Theorem 2, we will investigate in which cases lattices can even be decomposed as a finite union
of linear sets that have linearly independent period sets and only one positive Myhill-Nerode
equivalence class (or only a finite number of positive Myhill-Nerode equivalence classes).

For k ≥ 0, c,y ∈ Nk, a finite P ⊆ Nk, and x ∈ La(c, P ) the vector x + y is in La(c, P ) if
and only if y ∈ La(0, P ). This gives us that each lattice has only one positive Myhill-Nerode
equivalence class. On the other hand, each lattice is a finite union of linear sets that have only
one positive Myhill-Nerode equivalence class:

Proposition 8. Let k ≥ 0, c ∈ Nk, and P ⊆ Nk be finite. Then, there is a number m > 0,
vectors c1, c2, . . . , cm ∈ Nk, and a finite Q ⊆ Nk such that La(c, P ) =

⋃m
i=1 L(ci, Q) and∣∣L(0, Q)/ ≡L(0,Q)

∣∣ = 1.

Proof. Consider the≤-relation on Nk and letMc (M , respectively) be the set of minimal elements
of La(c, P ) (La(0, P ) \ {0}, respectively). Due to [7] each subset of Nk has only a finite number
of minimal elements, so Mc and M are finite. It holds

⋃
x∈Mc

L(x,M) ⊆ La(c, P ).
We will show via induction over n that for all n ≥ 0 we have

{v ∈ La(c, P ) | ||v||1 ≤ n } ⊆
⋃

x∈Mc

L(x,M). (1)

This is clearly true for n = 0. So let now n > 0 and assume that there is an element v ∈ La(c, P )
with ||v||1 ≤ n and v /∈Mc. Then, there is a y ∈Mc with y ≤ v and a w ∈M with w ≤ v−y.
By the induction hypothesis we have v − w ∈

⋃
x∈Mc

L(x,M). It follows v = (v − w) + w ∈⋃
x∈Mc

L(x,M). So relation (1) holds for all n ≥ 0, which implies La(c, P ) =
⋃

x∈Mc
L(x,M).

We have La(0, P ) =
⋃

x∈M0
L(x,M) = L(0,M). Now the proposition follows from the fact

that each lattice has only one positive Myhill-Nerode class. ut

Next, we want to turn to the question, given a lattice as a finite union of linear sets, how the
period set of the lattice is related to the period sets of the linear sets. To answer this question,
we need the next result.

Lemma 9. Let k > 0, m ≥ 0, v1,v2, . . . ,vm ∈ Rk, and V1, V2, . . . , Vm ⊂ Rk be proper linear
subspaces of Rk. Furthermore, let r ∈ R≥0. Then, there is a vector w ∈ Rk with Br(w) ⊂
(R≥0)k \

⋃m
i=1(Vi + vi).

Proof. We prove this by induction on m. The statement is clearly true for m = 0. For m > 0
there is an x ∈ Rk with B3r+2(x) ⊂ (R≥0)k \

⋃m−1
i=1 (Vi+vi) by the induction hypothesis. Let V ⊥m

be the orthogonal complement of Vm. There are uniquely determined vectors y1 ∈ Vm and
y2 ∈ V ⊥m with x− vm = y1 + y2. For each z ∈ Vm we have

||z + vm − x||2 = ||z − y1 − y2||2 =
√
||z − y1||22 + ||y2||22 ≥ ||y2||2

8



by the Pythagorean theorem. If ||y2||2 > r it follows

Br(x) ⊂

(
(R≥0)k \

m−1⋃
i=1

(Vi + vi)

)
\ (Vm + vm) = (R≥0)k \

m⋃
i=1

(Vi + vi).

Let now ||y2||2 ≤ r. Then, let y3 ∈ V ⊥m be arbitrary with ||y3||2 = r + 1. For each z ∈ Vm
we have

||z + vm − (y1 + y3 + vm)||2 = ||z − y1 − y3||2 ≥ ||y3||2 = r + 1

again by the Pythagorean theorem. For each u ∈ Rk with u /∈ (R≥0)k \
⋃m−1
i=1 (Vi + vi) it holds

||u− (y1 + y3 + vm)||2 = ||u− x+ y2 − y3||2 ≥ ||u− x||2 − ||y3 − y2||2
≥ 3r + 2− (||y2||2 + ||y3||2) ≥ 3r + 2− (2r + 1) = r + 1.

This implies

Br(y1 + y3 + vm) ⊂

(
(R≥0)k \

m−1⋃
i=1

(Vi + vi)

)
\ (Vm + vm)

= (R≥0)k \
m⋃
i=1

(Vi + vi),

which proves the lemma. ut

We can generalize Lemma 9:

Corollary 10. Let k > 0, v ∈ (R≥0)k, and V be a linear subspace of Rk that has a basis which
is a subset of (R≥0)k. Moreover, let m ≥ 0, v1,v2, . . . ,vm ∈ V + v, and V1, V2, . . . , Vm ⊂ V
be proper linear subspaces of V . Furthermore, let r ∈ R≥0. Then, there is a w ∈ V + v with
Br(w) ∩ (V + v) ⊂ (R≥0)k \

⋃m
i=1(Vi + vi).

Proof. The statement is clearly true for V = {0}, so assume {0} ⊂ V from now on. Let n =
dim(V ), {b1, b2, . . . , bn} ⊂ (R≥0)k be a basis of V , and {e1, e2, . . . , en} be the standard basis
of Rn. Consider the R-linear map

f : Rn → Rk defined by (λ1, λ2, . . . , λn) 7→
n∑
i=1

λibi,

which is injective and continuous. Set

q = min { ||f(x)||2 | x ∈ Rn, ||x||2 = 1 } > 0.

The map g : Rn → V defined by x 7→ f(x)/q is an isomorphism of vector spaces. Therefore
h : Rn → V + v with x 7→ g(x) + v is a bijection, with h−1(y) = g−1(y − v) for all y ∈ V + v.
By Lemma 9 there is a w′ ∈ Rn with

Br(w
′) ⊂ (R≥0)n \

m⋃
i=1

(
g−1(Vi) + h−1(vi)

)
= (R≥0)n \

m⋃
i=1

g−1(Vi + vi − v)

= (R≥0)n \
m⋃
i=1

h−1(Vi + vi).

9



For all x, z ∈ Rn with x 6= z we have

||h(x)− h(z)||2 = ||g(x− z)||2 =
||x− z||2

q
·
∣∣∣∣∣∣∣∣f ( x− z

||x− z||2

)∣∣∣∣∣∣∣∣
2

≥ ||x− z||2.

This gives us

Br(h(w′)) ∩ (V + v) ⊆ h
(
Br(w

′)
)
⊂ h

(
(R≥0)n \

m⋃
i=1

h−1(Vi + vi)

)

⊆ (R≥0)k \
m⋃
i=1

(Vi + vi),

which proves the corollary. ut

Using Corollary 10, we can show that whenever we write a lattice as a finite union of linear
sets, then at least one of the period sets of the linear sets spans the same vector space as the
period set of the lattice:

Corollary 11. Let k ≥ 0, c ∈ Nk, and P ⊆ Nk be a finite set of vectors. Furthermore, let
there be an m > 0, vectors c1, c2, . . . , cm ∈ Nk, and finite subsets Q1, Q2, . . . , Qm ⊆ Nk such
that La(c, P ) =

⋃m
i=1 L(ci, Qi). Then, it holds

⋃m
i=1Qi ⊆ span(P ) and there is at least one

i ∈ {1, 2, . . . ,m} with span(Qi) = span(P ).

Proof. The statement is clearly true for k = 0, so let k > 0. For each i ∈ {1, 2, . . . ,m} we have
ci ∈ La(c, P ) which implies ci − c ∈ span(P ). For each i ∈ {1, 2, . . . ,m} and p ∈ Qi it holds
p = ((ci + p)− c)− (ci − c) ∈ span(P ). That gives us

⋃m
i=1Qi ⊆ span(P ).

Assume now that span(Qi) ⊂ span(P ), for all i ∈ {1, 2, . . . ,m}. Let n = |P |, where the set

P = {p1,p2, . . . ,pn}, and r =
∣∣∣∣∣∣∑n

j=1 pj

∣∣∣∣∣∣
2
. By Corollary 10 there is a w ∈ span(P ) + c with

Br(w) ∩ (span(P ) + c) ⊂ (R≥0)k \
m⋃
i=1

(span(Qi) + ci).

There are λ1, λ2, . . . , λn ∈ R with w = c+
∑n

j=1 λjpj . Set

v = c+

n∑
j=1

dλje · pj ∈ La(c, P ).

From ||v−w||2 ≤ r we get v /∈
⋃m
i=1(span(Qi) + ci) ⊇

⋃m
i=1 L(ci, Qi). This contradiction proves

the corollary. ut

Now we are ready to show how the linearly independent rational cone property is connected
to the property of lattices to be a finite union of linear sets that have linearly independent period
sets and only finitely many positive Myhill-Nerode equivalence classes:

Theorem 12. For k ≥ 0, c ∈ Nk, and a finite P ⊆ Nk the following three conditions are
equivalent:

1. There is an m > 0, vectors c1, c2, . . . , cm ∈ Nk, and linearly independent Q1, Q2, . . . , Qm ⊆ Nk
such that La(c, P ) =

⋃m
i=1 L(ci, Qi) and

∣∣L(0, Qi)/ ≡L(0,Qi)

∣∣ <∞, for all i ∈ {1, 2, . . . ,m}.
2. There is an m > 0, vectors c1, c2, . . . , cm ∈ Nk, and a linearly independent Q ⊆ Nk such

that La(c, P ) =
⋃m
i=1 L(ci, Q) and

∣∣L(0, Q)/ ≡L(0,Q)

∣∣ = 1.
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3. The set P has the linearly independent rational cone property.

Proof. Assume that P does not have the linearly independent rational cone property and let
m > 0, c1, c2, . . . , cm ∈ Nk, and Q1, Q2, . . . , Qm ⊆ Nk be linearly independent subsets with
La(c, P ) =

⋃m
i=1 L(ci, Qi). By Corollary 11 there is an i ∈ {1, 2, . . . ,m} with span(Qi) = span(P ).

So, the set Qi does not have the linearly independent rational cone property, which implies that
Qi does not have the own rational cone property. By Corollary 7 we get

∣∣L(0, Qi)/ ≡L(0,Qi)

∣∣ =∞.

Assume now that P has the linearly independent rational cone property and let T ⊆ Nk
be linearly independent with span(P ) ∩ (R≥0)k = cone(T ). We get span(P ) = span(T ) and
that T has the own rational cone property. Let n = |T | and T = {t1, t2, . . . , tn}. We get
T ⊆ {

∑
xi∈P λi · xi | λi ∈ Q } by basic linear algebra, so for each i ∈ {1, 2, . . . , n} there

are a µi ∈ N \ {0} and a qi ∈ La(0, P ) with qi = µiti. Let Q = {q1, q2, . . . , qn}. Since
span(Q) = span(T ) and cone(Q) = cone(T ), the linearly independent set Q has the own rational
cone property, so Corollary 7 gives us

∣∣L(0, Q)/ ≡L(0,Q)

∣∣ = 1.
Let E be the finite set

E =

{
n∑
i=1

νiqi

∣∣∣∣∣ νi ∈ R, 0 ≤ νi < 1

}
∩ La(0, P ).

Consider the ≤-relation on Nk and let M be the set of minimal elements of La(c, P ). Due to [7]
each subset of Nk has only a finite number of minimal elements, so M is finite. Let

S =
⋃

m∈M, e∈E
L(m+ e, Q).

Because of M ⊆ La(c, P ) and E,Q ⊆ La(0, P ), we have S ⊆ La(c, P ). In the following we will
show La(c, P ) = S.

Let x ∈ La(c, P ). There is an m ∈M with m ≤ x. Because of x−m ∈ La(0, P ) ⊆ cone(Q)
there are λ1, λ2, . . . , λn ∈ R≥0 with x−m =

∑n
i=1 λiqi. We have

n∑
i=1

bλicqi ∈ L(0, Q) ⊆ La(0, P ) and x−m−
n∑
i=1

bλicqi =
n∑
i=1

(λi − bλic)qi ∈ E.

It follows x ∈ S. So we have shown La(c, P ) = S, which proves the theorem. ut

Because of Theorem 12 it is worthwhile to investigate the linearly independent rational cone
property more. Intuitively one might think that this property always holds, but it turns out that
this is only the case in dimension k ≤ 3:

Theorem 13. Let k ≥ 0 and n ∈ {0, 1, . . . , k}. Then, the condition that each S ⊆ Nk with
dim(span(S)) = n has the linearly independent rational cone property holds if and only if
n ∈ {0, 1, 2, k}.

Proof. An S ⊆ Nk with dim(span(S)) = 0 clearly has linearly independent rational cone prop-
erty. For S ⊆ Nk with dim(span(S)) = 1 and a vector v ∈ S \ {0} we have

span(S) ∩ (R≥0)k = cone({v}).

For S ⊆ Nk with dim(span(S)) = k it holds span(S) = Rk and span(S) ∩ (R≥0)k = cone(B),
where B is the standard basis of Rk.
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Let now S ⊆ Nk with dim(span(S)) = 2 < k and let {v,w} ⊆ S be a basis of span(S). Let

λ = min {vj/wj | j ∈ {1, 2, . . . , k}, wj > 0 }

and set v′ := v − λw. So {v′,w} is a basis of span(S). For each j ∈ {1, 2, . . . , k} with wj > 0
we get

v′j = vj − λwj ≥ vj − vj/wj ·wj = 0.

This gives us v′ ∈ (Q≥0)k. Now let

µ = min
{
wj/v

′
j

∣∣ j ∈ {1, 2, . . . , k}, v′j > 0
}

and set w′ := w − µv′. Thus {v′,w′} is a basis of span(S). For each j ∈ {1, 2, . . . , k} with
v′j > 0 it holds

w′
j = wj − µv′j ≥ wj −wj/v

′
j · v′j = 0.

That implies w′ ∈ (Q≥0)k.
For all j ∈ {1, 2, . . . , k} with wj > 0 and vj/wj = λ we have v′j = 0 and w′

j > 0. For all
j ∈ {1, 2, . . . , k} with v′j > 0 and wj/v

′
j = µ we have w′

j = 0. Let ν, ξ ∈ N with ν, ξ > 0 and
νv′, ξw′ ∈ Nk. We get

span(S) ∩ (R≥0)k = span({νv′, ξw′}) ∩ (R≥0)k = cone({νv′, ξw′}),

so S has the linearly independent rational cone property.
Let now n ∈ {3, 4, . . . , k − 1} and consider the 4× 4 matrix

A =


0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

 .

For each p, q ≥ 0 let Ip be the p× p identity matrix, Jp,q be the p× q all-ones matrix, and 0p,q
be the p× q zero matrix. Let Sk,n be the k × (n+ 1) block matrix

Sk,n =

 A J4,n−3
Jn−3,4 Jn−3,n−3 − In−3

0k−n−1,4 0k−n−1,n−3

 .

We refer to the columns of Sk,n as v1,v2, . . . ,vn+1 ∈ Nk. It holds v1 = v2 + v3 − v4. Let
λ2, λ3, . . . , λn+1 ∈ R, set w =

∑n+1
i=2 λi ·vi, and assume w = 0. Then we have 0 = w1−w4 = 2λ4.

For all i ∈ {5, 6, . . . , n + 1} we have 0 = w4 −wi = λi. Now it is easy to see that we also have
λ2 = λ3 = 0. So the vectors v2,v3, . . . ,vn+1 are linearly independent and the matrix Sk,n has
rank n.

Let Vk,n be the set of columns of Sk,n, assume that Vk,n has the linearly independent rational
cone property, and let B = {b1, b2, . . . , bn} ⊂ Nk be linearly independent with

span(Vk,n) ∩ (R≥0)k = cone(B).

Furthermore, let B = (bj,i)j∈{1,2,...,k},i∈{1,2,...,n} be the k× n matrix whose columns are from left
to right b1, b2, . . . , bn. We have bj,i = 0 for all j ∈ {n+ 2, n+ 3, . . . , k} and i ∈ {1, 2, . . . , n}.
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Assume that there is an i0 ∈ {1, 2, . . . , n} such that for all j ∈ {1, 2, . . . , n + 1} there is
an i ∈ {1, 2, . . . , n} \ {i0} with bj,i > 0. Set x =

∑
i∈{1,2,...,n}\{i0} bi. We have xj > 0 for all

j ∈ {1, 2, . . . , n+ 1}. Let

λ = min {xj/bj,i0 | j ∈ {1, 2, . . . , k}, bj,i0 > 0 } > 0

and set x′ = x− λbi0 . For each j ∈ {1, 2, . . . , k} with bj,i0 > 0 we get

x′
j = xj − λbj,i0 ≥ xj − xj/bj,i0 · bj,i0 = 0.

This is a contradiction to

span(B) ∩ (R≥0)k = span(Vk,n) ∩ (R≥0)k = cone(B),

because x′ =
∑

i∈{1,2,...,n}\{i0} bi−λbi0 . So for all i ∈ {1, 2, . . . , n} there is a ji ∈ {1, 2, . . . , n+1}
such that for all i′ ∈ {1, 2, . . . , n}\{i} we have bji,i′ = 0. It follows bji,i > 0 for all i ∈ {1, 2, . . . , n}.
Let

C = { ji | i ∈ {1, 2, . . . , n} } ⊂ {1, 2, . . . , n+ 1}.

We get |C| = n. Let m be the only element of {1, 2, . . . , n+ 1} \ C. From what we have shown
about the matrix B it follows that for every y ∈ span(B) it holds: if yj ≥ 0 for all j ∈ C, then
we also have ym ≥ 0.

Let now i ∈ C and set y = vm − 1/3 · vi ∈ span(Vk,n) = span(B). This gives us ym < 0. For
all j ∈ C we have yj ≥ 1 − 1/3 · 2 = 1/3, a contradiction. So, the set Vk,n does not have the
linearly independent rational cone property. This proves the theorem. ut

Thus, for k ≥ 0 and n ∈ {0, 1, . . . , k}, the condition that for all vectors c ∈ Nk and finite sets
P ⊆ Nk with dim(span(P )) = n we get a decomposition of the set La(c, P ) as in Theorem 12 is
equivalent to the condition n ∈ {0, 1, 2, k}.

3.3 A Decomposition Result About Subsets of Nk

Having the decompositions of lattices from Subsection 3.2, we now turn to a decomposition
result about arbitrary subsets of Nk. To state the result, we will work with quasi lattices. The
are defined as follows: let k ≥ 0 and S ⊆ Nk. The set S is a quasi lattice if and only if there is
a vector y ∈ Nk, an m ≥ 0, vectors c1, c2, . . . , cm ∈ Nk, and finite subsets P1, P2, . . . , Pm ⊆ Nk
such that the set { z ∈ S | z ≥ y } is equal to { z ∈

⋃m
j=1 La(cj , Pj) | z ≥ y }.

We can identify a pattern of two linear sets formed by three vectors that gives a sufficient
condition for the property of a subset of Nk to not be a quasi lattice:

Lemma 14. Let k ≥ 0 and S ⊆ Nk such that there are vectors u,v,w ∈ Nk with πk,{j}(v) > 0,
for all j ∈ {1, 2, . . . , k} with L(u, {v}) ∩ S = ∅ and moreover L(u +w, {v,w}) ⊆ S. Then, the
set S is not a quasi lattice.

Proof. Let vector y ∈ Nk. There is a λ ∈ N with u + λv ≥ y. Consider an m > 0, vectors
c1, c2, . . . , cm ∈ Nk, and finite subsets P1, P2, . . . , Pm ⊆ Nk such that it holds

L(u+w + λv, {w}) ⊆
m⋃
j=1

La(cj , Pj).

W.l.o.g. there is an n > 0 with n ≤ m such that for all j ∈ {1, 2, . . . ,m} the inequality

|L(u+w + λv, {w}) ∩ La(cj , Pj)| ≥ 2
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holds if and only if j ≤ n. For all j ∈ {1, 2, . . . , n} let Mj be the minimum of

{µ2 − µ1 | µ1, µ2 ∈ N, 0 < µ1 < µ2, ∀i ∈ {1, 2} : u+ λv + µiw ∈ La(cj , Pj) }

and let M be the lowest common multiple of the Mj . For all j ∈ {1, 2, . . . , n} and ν ≥ 0 we have
u+λv ∈ La(cj , Pj) if and only if u+λv+νMw ∈ La(cj , Pj). It follows u+λv ∈

⋃n
j=1 La(cj , Pj).

Since L(u+w + λv, {w}) ⊆ S, but u+ λv /∈ S, the set S is not a quasi lattice. ut

We call subsets of Nk that allow a pattern as in Lemma 14 anti-lattices. If they even allow a
pattern that begins at the origin, we call them 0-anti-lattices: let k ≥ 0 and S ⊆ Nk. If there are
vectors u,v,w ∈ Nk with πk,{j}(v) > 0 for all j ∈ {1, 2, . . . , k} so that L(u, {v}) ∩ S = ∅ and

L(u+w, {v,w}) ⊆ S, the set S is called an anti-lattice. If there are v,w ∈ Nk with πk,{j}(v) > 0
for all j ∈ {1, 2, . . . , k} so that L(0, {v}) ∩ S = ∅ and L(w, {v,w}) ⊆ S, the set S is called a
0-anti-lattice. The following property of anti-lattices will be used later on.

Lemma 15. Let k ≥ 0 and S ⊆ Nk. Then, the set S is an anti-lattice if and only if there is an
x ∈ Nk such that S + x is a 0-anti-lattice.

Proof. The lemma is clearly true for k = 0, so let k > 0. Assume that there is an x ∈ Nk such
that S+x is a 0-anti-lattice. Thus, there are v,w ∈ Nk with πk,{j}(v) > 0 for all j ∈ {1, 2, . . . , k}
so that L(0, {v}) ∩ (S + x) = ∅ and L(w, {v,w}) ⊆ S + x. Let λ ∈ N with λv ≥ x. Then, we
get L(λv − x, {v}) ∩ S = ∅ and L(λv − x+w, {v,w}) ⊆ S. So, the set S is an anti-lattice.

Assume now that S is an anti-lattice. There are vectors u,v,w ∈ Nk with πk,{j}(v) > 0 for
all j ∈ {1, 2, . . . , k} so that

L(u, {v}) ∩ S = ∅ and L(u+w, {v,w}) ⊆ S.

Let x ∈ Nk \ {0} and λ ∈ N with u + x = λv. We get L(0, {λv}) ∩ (S + x) = ∅ and moreover
L(λv +w, {λv, λv +w}) ⊆ (S + x). So, the set S + x is a 0-anti-lattice. ut

A semi-linear set is a quasi lattice if and only if it is not an anti-lattice:

Proposition 16. Let k ≥ 0 and S ⊆ Nk be a semi-linear set. Then, the set S is a quasi lattice
if and only if S is not an anti-lattice.

Proof. Assume that S is not a quasi lattice. As a semi-linear set S is a finite union of linear sets,
so there is a c ∈ Nk and a finite subset P ⊆ Nk such that L(c, P ) ⊆ S and for all y ∈ Nk it holds
{ z ∈ La(c, P ) | z ≥ y } * S. Let P = {p1,p2, . . . ,p|P |}. For y ∈ Nk let Ny be the non-empty
set 


λ1
λ2
...

λ|P |

 ∈ N|P |
∣∣∣∣∣∣∣∣∣ ∃

µ1
µ2
...

µ|P |

 ∈ N|P | :
|P |∑
j=1

(µj − λj)pj ∈
{
z ∈ Nk \ S

∣∣∣ z ≥ y }


and let My be the set of minimal elements of Ny regarding the ≤-relation on N|P |. For all(
λ1, λ2, . . . , λ|P |

)
∈ My there are

(
µ1, µ2, . . . , µ|P |

)
∈ N|P | and j0 with j0 ∈ {1, 2, . . . , |P |} such

that
∑|P |

j=1(µj − λj)pj ∈ {z ∈ Nk \ S | z ≥ y } and αpj0 +
∑|P |

j=1(µj − λj)pj ∈ S, for all α > 0.

For m ≥ 0 let ym be the vector in Nk which fulfils πk,{j}(ym) = m for all j ∈ {1, 2, . . . , k}.
Let now j0 be in the non-empty set

∞⋂
m=0

{
j ∈ {1, 2, . . . , |P |}

∣∣∣ ∃x ∈ Nk \ S : (x ≥ ym ∧ ∀α > 0 : x+ αpj ∈ S)
}
.
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The set T = {x ∈ Nk \ S | ∀α > 0 : x + αpj0 ∈ S } is semi-linear, because a subset of Nk is
semi-linear if and only if it is a Presburger set due to [11]. So, there is ` ≥ 0, d1,d2, . . . ,d` ∈ Nk,
and finite Q1, Q2, . . . , Q` ⊆ Nk such that T =

⋃`
h=1 L(dh, Qh). Since for each y ∈ Nk there is

an x ∈ T with x ≥ y, there exists an h0 ∈ {1, 2, . . . , `} such that πk,{j}

(∑
q∈Qh0

q
)
> 0 for all

j ∈ {1, 2, . . . , k}. We have L
(
dh0 ,

{∑
q∈Qh0

q
})
∩ S = ∅ and

L

dh0 + pj0 ,

pj0 , ∑
q∈Qh0

q


 ⊆ S.

So, the set S is an anti-lattice. Our proposition follows with Lemma 14. ut

It follows that each subset of Nk which has only a finite number of positive Myhill-Nerode
equivalence classes is a quasi lattice:

Corollary 17. For a k ≥ 0 and a subset S ⊆ Nk with |S/ ≡S | <∞ the set S is a quasi lattice.

Proof. Let k ≥ 0, S ⊆ Nk and |S/ ≡S | < ∞. Since every language in the family ROWJ is
semi-linear, see [2], Theorem 4 implies that S is semi-linear. Assume that S is an anti-lattice.
So, there are u,v,w ∈ Nk with πk,{j}(v) > 0 for all j ∈ {1, 2, . . . , k} such that L(u, {v})∩S = ∅
and L(u + w, {v,w}) ⊆ S. Set λn = min{λ ∈ N | nw ≤ λv }, for every n ∈ N. Hence, for
all n ∈ N we have

(u+ nw) + (λnv − nw) = u+ λnv /∈ S,

but for all m ∈ N with m < n it holds

(u+ nw) + (λmv −mw) = u+ (n−m)w + λmv ∈ S.

Thus, for n,m ∈ N with n 6= m we have [u+nw]≡S 6= [u+mw]≡S , which gives us |S/ ≡S | =∞,
a contradiction. Therefore, the set S is a quasi lattice by Proposition 16. ut

Quasi lattices are related to the property of a subset S ⊆ Nk to be a finite union of subsets
of Nk that have only a finite number of positive Myhill-Nerode equivalence classes, which holds
exactly if S is a finite union of linear sets that have only one positive Myhill-Nerode equivalence
class:

Theorem 18. For a k ≥ 0 and a subset S ⊆ Nk the following three conditions are equivalent:

1. There is an m ≥ 0 and subsets S1, S2, . . . , Sm ⊆ Nk such that S =
⋃m
j=1 Sj and for each

j ∈ {1, 2, . . . ,m} we have
∣∣Sj/ ≡Sj

∣∣ <∞.

2. There is an m ≥ 0 and linear sets L1, L2, . . . , Lm ⊆ Nk such that S =
⋃m
j=1 Lj and for each

j ∈ {1, 2, . . . ,m} we have
∣∣Lj/ ≡Lj

∣∣ = 1.
3. The set πk,{1,2,...,k}\T ({ z ∈ S | πk,T (z) = x }) is a quasi lattice, for all sets T ⊆ {1, 2, . . . , k}

and vectors x ∈ N|T |.

Proof. The first condition of the theorem implies the third one, because of Corollary 17, the fact
that for all T ⊆ {1, 2, . . . , k} and x ∈ N|T | we have

∣∣ST,x/ ≡ST,x

∣∣ ≤ |S/ ≡S |, where

ST,x := πk,{1,2,...,k}\T ({ z ∈ S | πk,T (z) = x }) ,

and the fact that quasi lattices are closed under the operation of union.
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We now prove by induction on k that the third condition of our theorem implies the second
one. This is true for k = 0, so let k > 0 and assume that the third condition holds. Choos-
ing T = ∅ in this condition gives us that S is a quasi lattice. So, there exists a vector y ∈ Nk, a
number n ≥ 0, vectors c1, c2, . . . , cn ∈ Nk, and finite subsets P1, P2, . . . , Pn ⊆ Nk with

{ z ∈ S | z ≥ y } =
n⋃
i=1

{ z ∈ La(ci, Pi) | z ≥ y } .

We get

S = { z ∈ S | z � y } ∪
n⋃
i=1

{ z ∈ La(ci, Pi) | z ≥ y } ,

where { z ∈ S | z � y } =
⋃k
p=1

⋃πk,{p}(y)−1
q=0 { z ∈ S | πk,{p}(z) = q }. Now let p ∈ {1, 2, . . . , k}

and q ∈ {0, 1, . . . , πk,{p}(y)− 1} and define the map ιp,q : Nk−1 → Nk as

ιp,q(x) = (πk−1,{1,2,...,p−1}(x), q, πk−1,{p,p+1,...,k−1}(x)).

By induction hypothesis there is a mp,q ≥ 0 and linear subsets Lp,q,1, Lp,q,2, . . . , Lp,q,mp,q ⊆ Nk−1
such that

ι−1p,q
({
z ∈ S

∣∣ πk,{p}(z) = q
})

=

mp,q⋃
j=1

Lp,q,j

and for each j ∈ {1, 2, . . . ,mp,q} we have
∣∣Lp,q,j/ ≡Lp,q,j

∣∣ = 1. It follows

{
z ∈ S

∣∣ πk,{p}(z) = q
}

=

mp,q⋃
j=1

ιp,q(Lp,q,j),

where for each j ∈ {1, 2, . . . ,mp,q} the set ιp,q(Lp,q,j) is linear and
∣∣∣ιp,q(Lp,q,j)/ ≡ιp,q(Lp,q,j)

∣∣∣ = 1.

By Proposition 8 for each i with i ∈ {1, 2, . . . , n} there is an mi > 0 and linear subsets
Li,1, Li,2, . . . , Li,mi ⊆ Nk such that La(0, Pi) =

⋃mi
j=1 Li,j and for each j ∈ {1, 2, . . . ,mi} we have∣∣Li,j/ ≡Li,j

∣∣ = 1. Let Mi be the set of minimal elements of { z ∈ La(ci, Pi) | z ≥ y } regarding

the ≤-relation on Nk. We get

{ z ∈ La(ci, Pi) | z ≥ y } =
⋃

x∈Mi

(La(0, Pi) + x) =
⋃

x∈Mi

mi⋃
j=1

(Li,j + x).

So, it holds

S =

 k⋃
p=1

πk,{p}(y)−1⋃
q=0

mp,q⋃
j=1

ιp,q(Lp,q,j)

 ∪ n⋃
i=1

⋃
x∈Mi

mi⋃
j=1

(Li,j + x).

So, the second condition of the theorem holds. ut

In dimension k ≤ 3 we can strengthen the second condition of Theorem 18, while we can
weaken the third condition in dimension k ≤ 2:

Corollary 19. For a k ∈ {0, 1, 2, 3} and a subset S ⊆ Nk the conditions from Theorem 18 are
equivalent to the following condition. There is a number m ≥ 0, vectors c1, c2, . . . , cm ∈ Nk,
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and linearly independent sets P1, P2, . . . , Pm ⊆ Nk such that it holds S =
⋃m
j=1 L(cj , Pj) and for

each j ∈ {1, 2, . . . ,m} we have
∣∣∣L(0, Pj)/ ≡L(0,Pj)

∣∣∣ = 1. For a k ∈ {0, 1, 2} and a subset S ⊆ Nk

the conditions from Theorem 18 are equivalent to the condition that S is a semi-linear set and
a quasi lattice.

Proof. We get the statement for k ∈ {0, 1, 2, 3} by using Theorems 12 and 13 instead of Propo-
sition 8 in the last paragraph of the proof of Theorem 18. The statement for k ∈ {0, 1, 2} follows
from the fact that a subset of N is a quasi lattice if and only if it is a semi-linear set. That holds
by Theorem 2 and the fact that semi-linear sets are closed under the operation of set difference,
see [9]. ut

4 Right One-Way Jumping Finite Automata with Multiple Initial States

In this section we investigate MROWJFAs. To get deep results about these devices we use results
from Subsection 3.3.

4.1 Results for Arbitrary Alphabets

First, some basic properties are given. Directly from the definition of MROWJFAs we get that
the unary languages in MROWJ are exactly the unary regular languages and that MROWJ
consists exactly of the finite unions of languages from ROWJ. However, it is not clear that
every language from pMROWJ is a finite union of languages from pROWJ. From [2] we know
that a∗ and the language {w ∈ {a, b}∗ | |w|a = |w|b } are in ROWJ, but the union of these two
sets is not in ROWJ. Together with the properties of ROWJ shown in [2] and [4], this gives us:
we have REG ⊂ ROWJ ⊂MROWJ and also pREG ⊂ pROWJ ⊂ pMROWJ. The family
MROWJ in incomparable to DCF and to CF. Each language in MROWJ is semi-linear and
contained in the complexity classes DTIME(n2) and DSPACE(n). We get pMROWJ * CF
and pMROWJ ⊆ JFA ⊂ pCS. The letter-bounded languages contained in MROWJ are
exactly the regular letter-bounded languages.

Now, we will study the language class pMROWJ in depth. The foundation for this will be
the next result.

Theorem 20. The family pMROWJ does not contain any language whose Parikh-image is a
0-anti-lattice.

Proof. Assume that there is a k > 0, an S ⊆ Nk, and an ordered alphabet Σ with |Σ| = k such
that S is a 0-anti-lattice, but the language ψ−1(S) ⊆ Σ∗ is in MROWJ. So, there are v,w ∈ Nk,
where for all j ∈ {1, 2, . . . , k} it holds πk,{j}(v) > 0, such that we have L(0, {v}) ∩ S = ∅ and
L(w, {v,w}) ⊆ S. Clearly we have w 6= 0 and v 6= 0. Since

L(0, {v}) ∩ L(w, {v,w}) = ∅,

there are no λ, µ ∈ N with λ, µ > 0 and λv = µw, which implies that {v,w} is linearly indepen-
dent. Let A = (Q,Σ,R, S′, F ) be an MROWJFA with LR(A) = ψ−1(S) and assume that the set
of initial states S′ = {s1, s2, . . . , s|S′|}. For two states p, q ∈ Q let Lp,q be the language accepted
by the ordinary DFA (Q,Σ,R, p, {q}). Because the set Lp,q is regular, there is a number np,q ≥ 0,
vectors cp,q,1, cp,q,2, . . . , cp,q,np,q ∈ Nk, and finite Pp,q,1, Pp,q,2, . . . , Pp,q,np,q ⊂ Nk \ {0} with
ψ(Lp,q) =

⋃np,q

i=1 L(cp,q,i, Pp,q,i). Set n0 = max ({nf,g | f, g ∈ F }). For i ∈ {1, 2, . . . , np,q} let Pp,q,i
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be the set {xp,q,1,xp,q,2, . . . ,xp,q,|Pp,q,i|} and κp,q,i : N|Pp,q,i| → Nk be the map which is defined
through (

λ1, λ2, . . . , λ|Pp,q,i|

)
7→
|Pp,q,i|∑
j=1

λjxp,q,j .

For f, g ∈ F , i ∈ {1, 2, . . . , nf,g}, and R ∈ Z let

Af,g,i,R =
{
λ ∈ N|Pf,g,i|

∣∣∣ cf,g,i + κf,g,i(λ) ∈ L(0, {v}) +Rw
}
.

Set

X =

 (f, g, i) ∈ F × F × N

∣∣∣∣∣∣ 1 ≤ i ≤ nf,g, ∀r ∈ N :
⋃

R∈Z,|R|≥r

Af,g,i,R 6= ∅


and let r0 be the maximum of

{0} ∪ { |R| | R ∈ Z,∃(f, g, i) ∈ (F × F × N) \X : (1 ≤ i ≤ nf,g ∧Af,g,i,R 6= ∅) } .

For f, g ∈ F and i ∈ {1, 2, . . . , nf,g} let Df,g,i be the set of minimal elements regarding the ≤-
relation on N|Pp,q,i| of

⋃
R∈ZAf,g,i,R. Due to [7] the set Df,g,i is finite. Let rf,g,i be the maximum

of
{0} ∪ { |R| | R ∈ Z,∃λ ∈ Df,g,i : cf,g,i + κf,g,i(λ) ∈ L(0, {v}) +Rw } .

For (f, g, i) ∈ X there is an R ∈ Z with |R| > rf,g,i and Af,g,i,R 6= ∅. Moreover, for vector

λ =
(
λ1,λ2, . . . ,λ|Pf,g,i|

)
∈ Af,g,i,R there are µ =

(
µ1,µ2, . . . ,µ|Pf,g,i|

)
∈ Df,g,i and R′ ∈ Z

with µ ≤ λ and µ ∈ Af,g,i,R′ . It follows |R′| ≤ rf,g,i < |R| and that there exists a T ∈ Z with

κf,g,i(λ− µ) = (cf,g,i + κf,g,i(λ))− (cf,g,i + κf,g,i(µ)) = Tv + (R−R′)w.

So, for all (f, g, i) ∈ X there are λf,g,i ∈ N|Pf,g,i|, Tf,g,i ∈ Z, and Rf,g,i ∈ Z \ {0} with
κf,g,i(λf,g,i) = Tf,g,i · v + Rf,g,i · w. Let r1 be the maximum of {1} ∪ { |Rf,g,i| | (f, g, i) ∈ X }
and t0 be the maximum of {0} ∪ { |Tf,g,i| | (f, g, i) ∈ X }.

We will now define the words αm ∈ Σ∗ for m ∈ {0, 1, . . . , |S′|} recursively. Set α0 = λ. Let
now m ∈ {1, 2, . . . , |S′|}, assume that αm−1 is already defined, and let pm ∈ Q and βm ∈ Σ∗
such that smαm−1 �|αm−1| pmβm. If⋃

f∈F
(ψ(Lpm,f ) ∩ (L(w, {v,w})− ψ(αm−1) + ψ(βm))) = ∅,

we set αm = αm−1. Otherwise, let fm ∈ F with

ψ(Lpm,fm) ∩ (L(w, {v,w})− ψ(αm−1) + ψ(βm)) 6= ∅

and let
γm ∈ Lpm,fm ∩ ψ−1

(
(L(w, {v,w})− ψ(αm−1) + ψ(βm)) ∩ Nk

)
.

It follows smαm−1γm �|αm−1γm| fmβm. If there are no g ∈ F and i ∈ N such that (fm, g, i) ∈ X,
we set αm = αm−1γm. Otherwise, let gm ∈ F and im ∈ N with (fm, gm, im) ∈ X. Furthermore,
let δm ∈ Lfm,gm such that

ψ (δm) = cfm,gm,im + |S′| · |F | · n0 · (2r0 + 1) · r1!

|Rf,g,i|
· κfm,gm,im(λfm,gm,im)
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and set αm = αm−1γmδm. It follows smαm �|αm| gmβm. This completes the recursive definition
of the words αm, for m ∈ {0, 1, . . . , |S′|}. Since πk,{j}(v) > 0 for all j ∈ {1, 2, . . . , k}, there is
a ζ ∈ Σ∗ such that ψ

(
α|S′|ζ

)
∈ L (0, {v}). Let η ∈ ψ−1({w}) and, for all m ∈ {0, 1, . . . , |S′|},

let α′m ∈ Σ∗ such that αmα
′
m = α|S′|.

Let now m ∈ {1, 2, . . . , |S′|} with⋃
f∈F

(ψ(Lpm,f ) ∩ (L(w, {v,w})− ψ(αm−1) + ψ(βm))) = ∅

and K > 0. It holds

ψ
(
α′mζη

K·r1!βm

)
= ψ

(
α|S′|ζη

K·r1!
)
− ψ(αm−1) + ψ(βm)

∈ L(w, {v,w})− ψ(αm−1) + ψ(βm).

We have
smα|S′|ζη

K·r1! = smαm−1α
′
mζη

K·r1! �|αm−1| pmα
′
mζη

K·r1!βm

and ψ(α′mζη
K·r1!βm) /∈ ψ(Lpm,f ) for all f ∈ F . With an analogous argument as in the proof of

Lemma 2 in [2] it follows α|S′|ζη
K·r1! /∈ LR((Q,Σ,R, {sm}, F )).

Now, let m ∈ {1, 2, . . . , |S′|} such that⋃
f∈F

(ψ(Lpm,f ) ∩ (L(w, {v,w})− ψ(αm−1) + ψ(βm))) 6= ∅

and there are no g ∈ F and i ∈ N with (fm, g, i) ∈ X. For all g ∈ F , i ∈ {1, 2, . . . , nfm,g}, and
R ∈ Z with |R| > r0 we have Afm,g,i,R = ∅. For all K > 0 it holds

smα|S′|ζη
K·r1! = smαm−1γmα

′
mζη

K·r1! �|αm−1γm| fmα
′
mζη

K·r1!βm,

and

ψ
(
α′mζη

K·r1!βm

)
= ψ

(
α|S′|ζη

K·r1!
)
− (ψ(γm) + ψ(αm−1)− ψ(βm))

= ψ
(
α|S′|ζ

)
− (ψ(γm) + ψ(αm−1)− ψ(βm)) +K · r1! ·w,

where ψ
(
α|S′|ζ

)
∈ L(0, {v}) and ψ(γm) + ψ(αm−1) − ψ(βm) ∈ L(w, {v,w}). If the element

α|S′|ζη
K·r1! ∈ LR((Q,Σ,R, {sm}, F )) for a K > 0, we have

ψ
(
α′mζη

K·r1!βm

)
∈
⋃
g∈F

nfm,g⋃
i=1

L(cfm,g,i, Pfm,g,i).

It follows ∣∣∣{α|S′|ζηK·r1! ∣∣∣ K > 0
}
∩ LR((Q,Σ,R, {sm}, F ))

∣∣∣ ≤ |F | · n0 · (2r0 + 1).

Because of ψ
(
α|S′|ζη

K·r1!
)
∈ L(w, {v,w}) ⊆ S for all K > 0, there are a K > 0 with

K ≤
(
|S′| − 1

)
· |F | · n0 · (2r0 + 1) + 1 ≤ |S′| · |F | · n0 · (2r0 + 1)

and an m ∈ {1, 2, . . . , |S′|} such that⋃
f∈F

(ψ(Lpm,f ) ∩ (L(w, {v,w})− ψ(αm−1) + ψ(βm))) 6= ∅,
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αm 6= αm−1γm, and α|S′|ζη
K·r1! ∈ LR((Q,Σ,R, {sm}, F )). We have

smα|S′|ζη
K·r1! �|αm| gmα

′
mζη

K·r1!βm.

Let δ′m ∈ Lfm,gm such that ψ (δ′m) equals

cfm,gm,im +

(
|S′| · |F | · n0 · (2r0 + 1)−

Rf,g,i
|Rf,g,i|

·K
)
· r1!

|Rf,g,i|
· κfm,gm,im(λfm,gm,im).

We get
smαm−1γmδ

′
mα
′
mζη

K·r1! �|αm−1γmδ′m| gmα
′
mζη

K·r1!βm,

which implies
αm−1γmδ

′
mα
′
mζη

K·r1! ∈ LR((Q,Σ,R, {sm}, F )) ⊆ ψ−1(S).

It holds

ψ
(
αm−1γmδ

′
mα
′
mζη

K·r1!
)
− ψ

(
α|S′|ζη

K·r1!
)

= ψ
(
δ′m
)
− ψ (δm)

= −
Rf,g,i
|Rf,g,i|

·K · r1!

|Rf,g,i|
· κfm,gm,im(λfm,gm,im)

=
−K · r1!
Rf,g,i

· (Tf,g,i · v +Rf,g,i ·w)

=
−K · r1! · Tf,g,i

Rf,g,i
· v −K · r1! ·w.

Because of ψ
(
α|S′|ζη

K·r1!
)
∈ L (K · r1! ·w, {v}), we get

ψ
(
αm−1γmδ

′
mα
′
mζη

K·r1!
)
∈ L(0, {v}),

which gives us ψ
(
αm−1γmδ

′
mα
′
mζη

K·r1!
)
/∈ S, a contradiction. This proves the lemma. ut

Because the Parikh-image of {w ∈ {a, b}∗ | |w|a 6= |w|b } is a 0-anti-lattice, this language
is not in MROWJ. Thus, we have pMROWJ ⊂ JFA and that the family pMROWJ is
incomparable to pDCF and to pCF.

To extend Theorem 20 to arbitrary anti-lattices, we need the following:

Lemma 21. Let Σ be an alphabet, a ∈ Σ, and L ⊆ Σ∗ be a language from pMROWJ. Then,
the language { vaw | v, w ∈ Σ∗, vw ∈ L } is also contained in the language family pMROWJ.

Proof. Let A = (Q,Σ,R, S, F ) be an MROWJFA with LR(A) = L. Consider the MROWJFA
A′ = (Q∪S′, Σ,R′, S′, F ), where S′ = { s′ | s ∈ S } and for all (q, b) ∈ Q×Σ the value R′(q, b) is
defined if and only if R(q, b) is defined. In this case we have R′(q, b) = R(q, b). For s ∈ S we get
R′(s′, a) = s and for all b ∈ Σ \ {a} the value R′(s′, b) is undefined. Obviously, we have |w|a > 0

for every w ∈ LR(A′). For v, w ∈ Σ∗ with |v|a = 0 and s ∈ S it holds s′vaw �|v|A′ s
′awv �A′ swv.

This gives us
vaw ∈ LR(A′)⇔ wv ∈ LR(A)⇔ vw ∈ LR(A),

which implies

LR(A′) = { vaw | v, w ∈ Σ∗, |v|a = 0, vw ∈ L } = { vaw | v, w ∈ Σ∗, vw ∈ L } .

That proves the lemma. ut
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From Theorem 20 and Lemmas 15 and 21 we get:

Corollary 22. The family pMROWJ does not contain any language whose Parikh-image is
an anti-lattice.

Proposition 16 and 22 give us:

Corollary 23. The Parikh-image of each language in pMROWJ is a quasi lattice.

To get more detailed results about pMROWJ, we define the language operation of disjoint
quotient of a language L ⊆ Σ∗ with a word w ∈ Σ∗ as follows:

L/dw = { v ∈ Σ∗ | vw ∈ L,∀a ∈ Σ : (|v|a = 0 ∨ |w|a = 0) }
= (L/w) ∩ { a ∈ Σ | |w|a = 0 } ∗.

From Theorem 4 we get that the family pROWJ is closed under the operations of quotient
with a word and disjoint quotient with a word. Let Σ be an alphabet, Π ⊆ Σ, and L ⊆ Σ∗

be in MROWJ. Then, it is easy to see that L ∩Π∗ is also in MROWJ. Thus, we get that if
pMROWJ is closed under the operation quotient with a word, then pMROWJ is also closed
under disjoint quotient with a word.

Theorem 4 gave a characterization of the language class pROWJ in terms of the Myhill-
Nerode relation. The next Corollary is a result in the same spirit for the permutation closed
language family pMROWJ. Theorems 4 and 18 and Corollary 23 give us a characterization of
all languages L for which each disjoint quotient of L with a word is contained in pMROWJ:

Corollary 24. For an alphabet Σ and a permutation closed language L ⊆ Σ∗ the following
conditions are equivalent:

1. For all w ∈ Σ∗ the language L/dw is in pMROWJ.
2. There is an n ≥ 0 and L1, L2, . . . , Ln ⊆ Σ∗ with L1, L2, . . . , Ln ∈ pROWJ and L =

⋃n
i=1 Li.

3. There is an n ≥ 0 and permutation closed languages L1, L2, . . . , Ln ⊆ Σ∗ such that language
L =

⋃n
i=1 Li and for all i ∈ {1, 2, . . . , n} the language Li has only a finite number of positive

Myhill-Nerode equivalence classes.
4. There is an m ≥ 0 and linear sets L1, L2, . . . , Lm ⊆ N|Σ| such that ψ(L) =

⋃m
j=1 Lj and for

each j ∈ {1, 2, . . . ,m} we have
∣∣Lj/ ≡Lj

∣∣ = 1.
5. The set π|Σ|,{1,2,...,|Σ|}\T

(
{ z ∈ ψ(L) | π|Σ|,T (z) = x }

)
is a quasi lattice, for all subsets T ⊆

{1, 2, . . . , |Σ|} and vectors x ∈ N|T |.

For ternary alphabets we can weaken the first condition of the previous corollary, by the fact
that the family JFA is closed under the operation of disjoint quotient, and strengthen its fourth
condition by Corollary 19:

Corollary 25. For an alphabet Σ with |Σ| = 3 and a permutation closed language L ⊆ Σ∗ the
following two conditions are equivalent:

1. For all unary w ∈ Σ∗ the language L/dw is in pMROWJ.
2. There is a number m ≥ 0, vectors c1, c2, . . . , cm ∈ N3, and linearly independent sub-

sets P1, P2, . . . , Pm ⊆ N3 such that ψ(L) =
⋃m
j=1 L(cj , Pj) and

∣∣∣L(0, Pj)/ ≡L(0,Pj)

∣∣∣ = 1,

for each j ∈ {1, 2, . . . ,m}.
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From Theorem 4 and Corollary 24 we get that the condition that each language from
pMROWJ is a finite union of languages from pROWJ is equivalent to the condition that
the family pMROWJ is closed under the operation of quotient with a word and to the con-
dition that the family pMROWJ is closed under the operation of disjoint quotient with a
word.

Consider an alphabet Σ and a language L ⊆ Σ∗. If for all w ∈ Σ∗ the language L/dw is in
pMROWJ, then the language L is contained in the complexity class DTIME(n), as the next
result shows:

Lemma 26. Let Σ be an alphabet, n > 0, and L1, L2, . . . , Ln ⊆ Σ∗ be in pROWJ. Then, there
is a one-way (n · |Σ|)-head DFA with endmarker accepting

⋃n
j=1 Li.

Proof. Let Σ = {a1, a2, . . . , a|Σ|} and for j ∈ {1, 2, . . . , n} let Aj be a ROWJFA accepting Lj .
We will informally describe how a one-way |Σ|-head DFA with endmarker accepting Lj works. At
the beginning for each i ∈ {1, 2, . . . , |Σ|} the i-th head moves to the first occurrence of ai. In each
step of the computation in which not all heads have reached the endmarker yet, the automaton
determines all i ∈ {1, 2, . . . , |Σ|} for which Aj can read ai in the current state and the i-th head
has not reached the endmarker yet. If there is no such i, the input is rejected. Otherwise, let i0
be the lowest such i. The automaton reads ai0 , changes the state according to Aj , and moves
the i0-th head to the next occurrence of ai0 . When all heads have reached the endmarker, the
input is accepted if and only if the automaton is in an accepting state. Because Lj is closed
under permutation, the accepted language is exactly Lj . Simulating the n one-way |Σ|-head
DFAs with endmarker that accept the languages Lj for j ∈ {1, 2, . . . , n} simultaneously, we get
a one-way (n · |Σ|)-head DFA with endmarker accepting

⋃n
j=1 Li. ut

4.2 Results for Binary Alphabets

Now, we will investigate MROWJ and related language families for binary alphabets. It turns
out that for some problems we get different or stronger results than for arbitrary alphabets.
From the next theorem it follows that for binary alphabets pCF = JFA, whereas for arbitrary
alphabets it holds pCF ⊂ JFA.

Theorem 27. Each permutation closed semi-linear language over a binary alphabet is accepted
by a counter automaton.

Proof. Let ψ : {a, b}∗ → N2 be the Parikh-mapping. Since the family of languages accepted by
counter automata is closed under the operation of union and each semi-linear set can be written
as a finite union of linear sets with linearly independent periods by Theorem 2, it suffices to
show that for c, d, e, f, g, h ∈ N the language

ψ−1
({(

c
d

)
+ λ

(
e
f

)
+ µ

(
g
h

) ∣∣∣∣ λ, µ ∈ N})
is accepted by a counter automaton. To do so, define the maps M,N : {p, q, r} → N through
M(p) = c, M(q) = e, M(r) = g, N(p) = d, N(q) = f , and N(r) = h. Let

Q = {t} ∪
⋃

s∈{p,q,r}

{ sm,n | m ∈ {0, 1, . . . ,M(s)}, n ∈ {0, 1, . . . , N(s)} }

and Γ = {⊥, a, b} and consider the pushdown automaton A given by

A = (Q, {a, b}, Γ, δ, p0,0,⊥, {t}).
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The map δ : Q× {a, b, λ} × Γ → 2Q×(
⋃2

i=0 Γ
i) is given by

δ = { ((t, y, x), ∅) | y ∈ {a, b, λ}, x ∈ Γ } ∪
⋃

s∈{p,q,r}

δs,

where, for s ∈ {p, q, r}, the map δs, that maps from

{ sm,n | m ∈ {0, 1, . . . ,M(s)}, n ∈ {0, 1, . . . , N(s)} } × {a, b, λ} × Γ

to 2Q×(
⋃2

i=0 Γ
i), is defined as

δs = { ((sm,n, λ, a), {(sm+1,n, λ)}) | m ∈ {0, 1, . . . ,M(s)− 1}, n ∈ {0, 1, . . . , N(s)} }
∪
{ (

(sM(s),n, λ, a), ∅
) ∣∣ n ∈ {0, 1, . . . , N(s)− 1}

}
∪ { ((sm,n, a, x), {(sm+1,n, x)}) | x ∈ Γ,m ∈ {0, 1, . . . ,M(s)− 1}, n ∈ {0, 1, . . . , N(s)} }
∪
{ (

(sM(s),n, a, x), {(sM(s),n, xa)}
) ∣∣ x ∈ {a,⊥}, n ∈ {0, 1, . . . , N(s)}

}
∪
{ (

(sM(s),n, a, b), ∅
) ∣∣ n ∈ {0, 1, . . . , N(s)}

}
∪ { ((sm,n, λ, b), {(sm,n+1, λ)}) | m ∈ {0, 1, . . . ,M(s)}, n ∈ {0, 1, . . . , N(s)− 1} }
∪
{ (

(sm,N(s), λ, b), ∅
) ∣∣ m ∈ {0, 1, . . . ,M(s)− 1}

}
∪ { ((sm,n, b, x), {(sm,n+1, x)}) | x ∈ Γ,m ∈ {0, 1, . . . ,M(s)}, n ∈ {0, 1, . . . , N(s)− 1} }
∪
{ (

(sm,N(s), b, x), {(sm,N(s), xb)}
) ∣∣ x ∈ {b,⊥},m ∈ {0, 1, . . . ,M(s)}

}
∪
{ (

(sm,N(s), b, a), ∅
) ∣∣ m ∈ {0, 1, . . . ,M(s)}

}
∪
{ (

(sM(s),N(s), λ, x), {(q0,0, x), (r0,0, x)}
) ∣∣ x ∈ {a, b}}

∪
{(

(sM(s),N(s), λ,⊥), {(q0,0,⊥), (r0,0,⊥), (t,⊥)}
)}

∪ { ((sm,n, λ,⊥), ∅) | (m,n) ∈ ({0, 1, . . . ,M(s)} × {0, 1, . . . , N(s)}) \ {(M(s), N(s))} } .

For s ∈ {p, q, r}, w,w′ ∈ {a, b}∗, v, v′ ∈ Γ ∗,m,m′ ∈ {0, 1, . . . ,M(s)}, and n, n′ ∈ {0, 1, . . . , N(s)}
with m′ + n′ ≥ m+ n and (sm,n, w, v) `A (sm′,n′ , w

′, v′), we write (sm,n, w, v)↗ (sm′,n′ , w
′, v′).

Let s ∈ {p, q, r}. For k ∈ {0, 1, . . . ,M(s)} it holds (s0,0, λ,⊥ak) ↗k (sk,0, λ,⊥), while for
k ∈ {0, 1, . . . , N(s)} we have (s0,0, λ,⊥bk) ↗k (s0,k, λ,⊥). So, for w ∈ {a, b}∗ and k, ` ≥ 0
we get

(s0,0, w,⊥ak)↗∗ (sM(s),N(s), λ,⊥a`) ⇔ ψ(w) =

(
M(s) + `− k

N(s)

)
,

(s0,0, w,⊥ak)↗∗ (sM(s),N(s), λ,⊥b`) ⇔ ψ(w) =

(
M(s)− k
N(s) + `

)
,

(s0,0, w,⊥bk)↗∗ (sM(s),N(s), λ,⊥a`) ⇔ ψ(w) =

(
M(s) + `
N(s)− k

)
,

(s0,0, w,⊥bk)↗∗ (sM(s),N(s), λ,⊥b`) ⇔ ψ(w) =

(
M(s)

N(s) + `− k

)
.

For all w ∈ {a, b}∗, x ∈ {a, b}, and k ≥ 0 with

ψ(xkw) ∈
{(

M(s) + `1
N(s) + `2

) ∣∣∣∣ `1, `2 ≥ 0

}
there is a prefix v of w such that

ψ(xkv) ∈
{(

M(s) + `1
N(s) + `2

) ∣∣∣∣ `1, `2 ≥ 0 with `1`2 = 0

}
.
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This gives us

L(A) = ψ−1
({(

c
d

)
+ λ

(
e
f

)
+ µ

(
g
h

) ∣∣∣∣ λ, µ ∈ N}) .
In all situations there are no a’s or no b’s on the stack, so A can be simulated by a counter
automaton, which proves the theorem. ut

For binary alphabets we have pROWJ ⊂ pDCF, while for arbitrary alphabets pROWJ is
incomparable to pDCF and to pCF:

Proposition 28. Each language over a binary alphabet in pROWJ is accepted by a realtime
deterministic counter automaton.

Proof. Let Σ be an alphabet with |Σ| = 2 and L ⊆ Σ∗ be in pROWJ. Let A = (Q,Σ,R, {s}, F )
be a ROWJFA with LR(A) = L. Extend the partial function R : Q×Σ → Q to Q×Σ∗ in the
natural way. Let the map c : Q×Σ → {0, 1} be defined as follows. For q ∈ Q and a, b ∈ Σ with
a 6= b we have c(q, a) = 1 if and only if there is an n ≥ 0 such that R(q, bna) is defined. For
q ∈ Q and a, b ∈ Σ with a 6= b and c(q, a) = 1 let n(q, a) be the lowest n ≥ 0 for which R(q, bna)
is defined.

Consider the deterministic pushdown automaton

B = (Q ∪ F ′, Σ,Σ ∪ {⊥}, δ, s,⊥, F ′)

where F ′ = { f ′ | f ∈ F } and the partial map

δ : (Q ∪ F ′)× (Σ ∪ {λ})× (Σ ∪ {⊥})→ (Q ∪ F ′)× (Σ ∪ {⊥})∗

is defined as follows:

– For q ∈ Q \F and a, b ∈ Σ with a 6= b let δ(q, a,⊥) =
(
R
(
q, bn(q,a)a

)
,⊥bn(q,a)

)
if c(q, a) = 1.

– For f ∈ F and a, b ∈ Σ with a 6= b let δ(f ′, a,⊥) =
(
R
(
f, bn(f,a)a

)
,⊥bn(f,a)

)
if c(f, a) = 1.

– For f ∈ F we have δ(f, λ,⊥) = (f ′,⊥).
– For q ∈ Q and a ∈ Σ let δ(q, a, a) = (q, λ).
– For q ∈ Q and a, b ∈ Σ with a 6= b let δ(q, a, b) =

(
R
(
q, bn(q,a)a

)
, bn(q,a)+1

)
if c(q, a) = 1.

With induction over |v| one can see that for all v ∈ Σ∗, q ∈ Q, a ∈ Σ, and n ≥ 0 it holds
that if from the configuration (s, v,⊥) the configuration (q, λ, an) can be reached with B, then it
holds that there is a permutation x of van with R(s, x) = q and that for each m ≥ 0 with m < n
there is a y ∈ Σ∗ such that yb is a permutation of vam, the value R(s, y) is defined, and R(s, yb)
is undefined. Because L is closed under permutation, we get L(B) = L. It should be clear that B
can be simulated by a realtime deterministic pushdown automaton by not writing the symbol
that would be located directly above ⊥ on the stack, but remembering this symbol in the finite
control of the automaton. Except for the bottom symbol, in all situations there are no two
different symbols on the stack, so B can even be simulated by a realtime deterministic counter
automaton. ut

For the family pMROWJ we get the following results. Notice that for arbitrary alphabets
pMROWJ and pCF are incomparable.

Corollary 29. For binary alphabets it holds that pROWJ ⊂ pMROWJ, that pMROWJ is
incomparable to pDCF, and that pMROWJ ⊂ JFA = pCF.
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Proof. The language {w ∈ {a, b}∗ | |w|a 6= |w|b } is contained in the language class pDCF, but
not in pMROWJ, because its Parikh-image is an anti-lattice. The language

L = {w ∈ {a, b}∗ | |w|b = |w|a ∨ |w|b = 2 · |w|a }

is known to be not in pDCF. By Theorem 4 the language L is in pMROWJ as the union of
two languages from pROWJ. For n,m ≥ 0 we have anbnbm ∈ L if and only if m ∈ {0, n}. So,
for n,m ≥ 0 with n 6= m it holds [anbn]L 6= [ambm]L, which gives us that L is not in pROWJ.
We have pMROWJ ⊂ JFA because each language in the first class is semi-linear. ut

If the languages do not need to be closed under permutation, we get for binary alphabets
the same inclusion relations between ROWJ, MROWJ, and DCF as for arbitrary alphabets:

Lemma 30. For binary alphabets ROWJ ⊂MROWJ. The families ROWJ and MROWJ
are both incomparable to DCF over binary alphabets.

Proof. Because of Corollary 29 it suffices to show that there is a language over a binary
alphabet in ROWJ which is not deterministic context free. Consider the ROWJFA A =
({q0, q1, . . . , q8}, {a, b}, R, {q0}, {q4, q7}) with

R = {q0a→ q1, q1b→ q2, q2a→ q3, q3a→ q4, q4a→ q5, q5b→ q4,

q3b→ q6, q6b→ q7, q7a→ q8, q8b→ q6}.

For n,m > 0 we have

q0a
nbmaa �n+m q2aaa

n−1bm−1 �2 q4a
n−1bm−1.

For n > 0 and m > 1 it holds

q0a
nbmab �n+m q2aba

n−1bm−1 �2 q6a
n−1bm−1 �n q7b

m−2an−1.

So, we get

L := LR(A) ∩
(
a+b+a{a, b}

)
= { anbnaa | n > 0 } ∪

{
anb2nab

∣∣ n > 0
}
.

It follows L/{aa, ab} = { anbm | n > 0,m ∈ {n, 2n} }, which is known to be not deterministic
context free. Since DCF is closed under intersection with regular languages and under right
quotient with regular languages, the language LR(A) is also not deterministic context free. That
proves the lemma. ut

Theorems 4, Proposition 16, and Corollaries 19 and 23 imply a characterization of the lan-
guages in pMROWJ over a binary alphabet, which is stronger than the statement for arbitrary
alphabets in Corollary 24, because we do not need to consider disjoint quotients of a language
with a word here.

Corollary 31. Let Σ be an alphabet with |Σ| = 2 and L ⊆ Σ∗ be a permutation closed language.
Then, the following conditions are equivalent:

1. Language L is in pMROWJ.
2. There is an n ≥ 0 and L1, L2, . . . , Ln ⊆ Σ∗ with L1, L2, . . . , Ln ∈ pROWJ and L =

⋃n
i=1 Li.

3. There is an n ≥ 0 and permutation closed languages L1, L2, . . . , Ln ⊆ Σ∗ such that language
L =

⋃n
i=1 Li and for all i ∈ {1, 2, . . . , n} the language Li has only a finite number of positive

Myhill-Nerode equivalence classes.
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4. There is a number m ≥ 0, vectors c1, c2, . . . , cm ∈ N2, and linearly independent sub-

sets P1, P2, . . . , Pm ⊆ N2 such that ψ(L) =
⋃m
j=1 L(cj , Pj) and

∣∣∣L(0, Pj)/ ≡L(0,Pj)

∣∣∣ = 1,

for each j ∈ {1, 2, . . . ,m}.
5. The Parikh-image of L is a semi-linear set and a quasi lattice.
6. The Parikh-image of L is a semi-linear set and not an anti-lattice.

From Corollary 31 it follows that each language from pMROWJ over a binary alphabet
is a finite union of permutation closed languages accepted by a realtime deterministic counter
automaton.
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