
Iterative arrays with self-verifying communication cell

Martin Kutrib1

Accepted: 3 October 2020 / Published online: 5 November 2020
� The Author(s) 2020

Abstract
We study the computational capacity of self-verifying iterative arrays (SVIA). A self-verifying device is a nondeterministic

device whose nondeterminism is symmetric in the following sense. Each computation path can give one of the answers yes,

no, or do not know. For every input word, at least one computation path must give either the answer yes or no, and the

answers given must not be contradictory. It turns out that, for any time-computable time complexity, the family of

languages accepted by SVIAs is a characterization of the so-called complementation kernel of nondeterministic iterative

array languages, that is, languages accepted by such devices whose complementation is also accepted by such devices.

SVIAs can be sped-up by any constant multiplicative factor as long as the result does not fall below realtime. We show that

even realtime SVIA are as powerful as lineartime self-verifying cellular automata and vice versa. So they are strictly more

powerful than the deterministic devices. Closure properties and various decidability problems are considered.

Keywords Iterative arrays � Self-verification � Computational capacity � Speed-up � Closure properties � Decidability
problems

1 Introduction

One of the central questions in complexity and language

theory asks for the power of nondeterminism in bounded-

resource computations. Traditionally, nondeterministic

devices have been viewed as having as many nondeter-

ministic guesses as time steps. The studies of this concept

of unlimited nondeterminism led, for example, to the

famous open LBA-problem or the unsolved question

whether or not P equals NP. In order to gain a better

understanding of the nature of nondeterminism, in Fischer

and Kintala (1979) and Kintala (1977) it has been viewed

as an additional limited resource at the disposal of time or

space bounded computations.

The concept of so-called self-verification at least dates

back to the paper (Duris et al. 1997). It applies to automata

for decision problems and makes use of stronger notions of

acceptance and rejection of inputs.

A self-verifying device is a nondeterministic device

whose nondeterminism is symmetric in the following

sense. Each computation path can give one of the answers

yes, no, or unknown. For every input word, at least one

computation path must give either the answer yes or no,

and the answers given must not be contradictory. So, if a

computation path gives the answer yes or no, in both cases

the answer is definitely correct. This justifies the notion

self-verifying and is in contrast to the general case, where

an answer different from yes does not allow to conclude

whether or not the input belongs to the language. Here we

study the computational capacity of self-verifying iterative

arrays (SVIA).

Self-verifying finite automata have been introduced and

studied in Duris et al. (1997) and Hromkovic and Schnitger

(2001, (2003) mainly in connection with randomized Las

Vegas computations. Descriptional complexity issues for

self-verifying finite automata have been studied in Jir-

ásková and Pighizzini (2011). In particular, the conversion

of self-verifying finite automata to deterministic finite

automata from a state complexity point of view is solved

there. The main results are matching upper and lower

bounds growing like 3n=3 for the costs, in terms of the

number of states, of such simulations.

A preliminary version of this work was presented at the 25th
International Workshop on Cellular Automata and Discrete
Complex Systems, Guadalajara, Mexico, June 26–28, 2019,

and it is published in Kutrib and Worsch (2019).

& Martin Kutrib

kutrib@informatik.uni-giessen.de

1 Institut für Informatik, Universität Giessen, Arndtstr. 2,

35392 Giessen, Germany

123

Natural Computing (2022) 21:39–51
https://doi.org/10.1007/s11047-020-09812-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-9564-2625
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-020-09812-4&domain=pdf
https://doi.org/10.1007/s11047-020-09812-4

Another question that motivates the concept of self-

verification is as follows. Given a language such that also

its complement belongs to the same family, the description

of which of both is more economic (Ilie et al. 2000)? For

example, in Jirásková (2005) it is shown that a nondeter-

ministic finite automaton can require 2n states to accept the

complement of a language accepted by an n-state nonde-

terministic finite automaton. So, a representation of the

complement by the n-state automaton together with a bit

that says that actually the complement of the language

accepted is meant is much more economic.

The computational and descriptional complexity of self-

verifying pushdown automata has been studied in Fernau

et al. (2017). Self-verifying cellular automata have recently

been introduced in Kutrib and Worsch (2020), where it

turned out that realtime self-verifying one-way cellular

automata (SVOCA) are strictly more powerful than real-

time deterministic one-way cellular automata, since they

can accept non-semilinear unary languages. Moreover,

SVOCAs as well as their two-way variant can strongly be

sped-up from lineartime to realtime and they are even

capable to simulate any lineartime computation of deter-

ministic two-way cellular automata in realtime. Closure

properties of the family of languages accepted by realtime

SVOCAs are considered as well, where the closure under

concatenation, iteration (Kleene star), and non-erasing

homomorphisms are left open. Furthermore, decidability

problems are studied.

The paper is organized as follows. In Sect. 2 we present

the basic notation and the definitions of self-verifying

iterative arrays as well as an introductory example. In

general, the symmetric conditions for acceptance/rejection

of self-verifying devices imply immediately the effective

closures of the language families accepted under comple-

mentation. In Sect. 3 this observation is turned in a char-

acterization. Moreover, the strong speed-up by a

multiplicative constant is derived for any time-com-

putable time complexity. In Sect. 4 we explore the com-

putational capacity of realtime SVIAs. In particular, its is

shown that even realtime SVIAs are as powerful as lin-

eartime self-verifying cellular automata and vice versa. So

they are strictly more powerful than deterministic iterative

arrays. By mutual simulations of iterative arrays and cel-

lular automata it turns out that, in fact, the sequential input

mode of iterative arrays and the parallel input mode of

cellular automata as well as realtime and lineartime all lead

to the same language family for nondeterministic devices

and for self-verifying devices. This is certainly not true for

larger time complexities, since cellular automata obey a

linear space bound where iterative arrays are semi-infinite.

Several closure properties of the family of languages

accepted by realtime SVIAs are inherited from the results

on realtime SVOCAs. Moreover, the open property under

concatenation can be shown in terms of iterative arrays in

Sect. 5. Finally, decidability problems are considered in

Sect. 6. In particular, by a reduction of the emptiness

problem it is shown that the property of being self-veri-

fying is non-semidecidable.

2 Preliminaries and definitions

We denote the non-negative integers by N. Let R denote a

finite set of letters. Then we write R� for the set of all finite
words (strings) consisting of letters from R. The empty

word is denoted by k, and Rþ ¼ R�nfkg. For the reversal

of a word w we write wR and |w| denotes its length. A

subset of R� is called a language over R. In general, we use
� for inclusions and � for strict inclusions.

A one-dimensional iterative array is a linear, semi-in-

finite array of finite state machines (sometimes called cells)

that are identical except for the leftmost one. All but the

leftmost cells are connected to their both nearest neighbors,

respectively (see Fig. 1). For convenience we identify the

cells by their coordinates, that is, by non-negative integers.

The leftmost cell is distinguished. This so-called commu-

nication cell is connected to its right neighbor and, addi-

tionally, to the input supply which feeds the input

sequentially. We assume that once the whole input is

consumed an end-of-input symbol is supplied permanently.

At the outset of a computation all cells are in the so-called

quiescent state. The cells work synchronously at discrete

time steps. Here we assume that the communication cell is

a nondeterministic finite automaton while all the other cells

are deterministic ones (cf. Buchholz et al. 2003). Although

this is a very restricted case, for easier writing we call such

devices nondeterministic.

More formally, a nondeterministic iterative array (NIA,

for short) is a system M ¼ hS;R;Fþ; s0;C; dnd; ddi, where
S is the finite, nonempty set of cell states, R is the finite,

nonempty set of input symbols, Fþ � S is the set of ac-

cepting states, s0 2 S is the quiescent state, C 62 R is the

end-of-input symbol, dnd : ðR [fCgÞ � S� S ! ð2Sn;Þ is
the nondeterministic local transition function for the

communication cell, dd : S� S� S ! S is the determinis-

tic local transition function for non-communication cells

satisfying ddðs0; s0; s0Þ ¼ s0.

A configuration of M at time t� 0 is a pair ðwt; ctÞ,
where wt 2 R� is the remaining input sequence and ct :

a1a2 · · · an�

s0 s0 s0 s0 s0

Fig. 1 Initial configuration of an iterative array

40 M. Kutrib

123

N ! S is a mapping that maps the single cells to their

current states. The initial configuration ðw0; c0Þ is defined

by the given input w0 2 R� and the mapping c0ðiÞ ¼ s0,

i� 0. Subsequent configurations are computed by the glo-

bal transition function D that is induced by dd and dnd as

follows: Let ðwt; ctÞ, t� 0, be a configuration. Then the set

of its possible successor configurations ðwtþ1; ctþ1Þ is

defined as follows:

ðwtþ1; ctþ1Þ 2 Dððwt; ctÞÞ

()
ctþ1ð0Þ 2 dndða; ctð0Þ; ctð1ÞÞ
ctþ1ðiÞ ¼ ddðctði� 1Þ; ctðiÞ; ctðiþ 1ÞÞ

�

for all i� 1, where a ¼ C, wtþ1 ¼ k if wt ¼ k, and a ¼ a1,

wtþ1 ¼ a2a3 � � � an if wt ¼ a1a2 � � � an.
An input w is accepted by an NIAM if at some time step

during the course of at least one computation for w the

communication cell enters an accepting state. The lan-

guage accepted by M is denoted by

LðMÞ ¼ fw 2 R� j w is accepted by M g. Let t : N ! N,

tðnÞ� nþ 1 be a mapping. If for each w 2 LðMÞ there is an
accepting computation with at most t(|w|) time steps, then

M and L(M) are said to be of time complexity t.

In general, the family of all languages which are

accepted by some type of device X with time complexity t

is denoted by LtðXÞ. If t is the function nþ 1, acceptance

is said to be in realtime. Since for nontrivial computations

an iterative array has to read at least one end-of-input

symbol, realtime has to be defined as ðnþ 1Þ-time. We

write LrtðXÞ for realtime and LltðXÞ for lineartime.

Now we turn to self-verifying iterative arrays (SVIA).

Basically, an SVIA is an NIA, but the definition of

acceptance is different. There are now three disjoint sets of

states representing answers yes, no, and neutral. Moreover,

for every input word, at least one computation path must

give either the answer yes or no, and the answers given

must not be contradictory. In order to implement the three

possible answers the state set is partitioned into three dis-

joint subsets S ¼ Fþ _[F� _[F0, where Fþ is the set of

accepting states, F� is the set of rejecting states, and F0 ¼
SnðFþ [F�Þ is referred to as the set of neutral states. We

specify Fþ and F� in place of the set Fþ in the definition of

SVIAs. Let M ¼ hS;R;Fþ;F�; s0;C; dnd; ddi be an SVIA.

For each input word w 2 R�, let Sw denote the set of states

entered by the communication cell during any computation

on w, that is, Sw ¼ f s 2 S j s 2 D½t	ðw; c0Þ
� �

ð0Þ; for some

t� 0 g, where D½t	 denotes the t-fold composition of D, in
other words, the set of configurations reachable in t time

steps. For the ‘‘self-verifying property’’ it is required that

for each w 2 R�, Sw \ Fþ is empty if and only if Sw \ F� is

nonempty. So, similarly as for acceptance, an input w is

rejected by an SVIA if at some time step during the course

of at least one computation on w the communication cell

enters a rejecting state. Note that by the self-verifying

property every input is either accepted or rejected. If all

w 2 LðMÞ are accepted and all w 62 LðMÞ are rejected after

at most t(|w|) time steps, then the self-verifying iterative

array M is said to be of time complexity t.

In the sequel we will often utilize the possibility of

iterative arrays to simulate the data structures pushdown

stores (stacks) (Buchholz and Kutrib 1997; Čulik and Yu

1984), queues, and rings (Kutrib 2008) without any loss of

time. Here a ring is a queue that can write and erase at the

same time. For pushdown stores the communication cell

simulates the top of the store, for queues it simulates the

front, and for rings the front and the end of the store.

For the sake of completeness, we recall exemplarily the

principle of a pushdown store simulation from Kutrib

(2008). It suffices to use three additional racks for the

simulation. Let the three pushdown registers of each cell be

numbered one, two, and three from top to bottom, and

suppose that the third register is connected to the first

register of the right neighbor. The content of the pushdown

store is identified by scanning the registers in their natural

ordering beginning in the communication cell, whereby

empty registers are ignored. The pushdown store dynamics

of the transition function is defined such that each cell

prefers to have only the first two registers filled. The third

register is used as a buffer. In order to reach that charge it

obeys the following rules (cf. Fig. 2).

1. If all three registers of its left (upper) neighbor are

filled, it takes over the symbol from the third register of

the neighbor and stores it in its first register. The old

contents of the first and second registers are shifted to

the second and third register.

2. If the second register of its left neighbor is free, it

erases its own first register. Observe that the erased

symbol is taken over by the left neighbor. In addition,

the cell stores the content of its second register into its

first one, if the second one is filled. Otherwise, it takes

the symbol of the first register of its right neighbor, if

this register is filled.

3. Possibly more than one of these actions are

superimposed.

We illustrate the definitions with an example.

Example 1 The nondeterministic context-free language

fw 2 fa; bg� j w ¼ wR g is accepted by the SVIA

M ¼ hS; fa; bg;Fþ;F�; s0;C; dnd; ddi. The basic idea is to

simulate a stack whose top is the communication cell.

So, we set S ¼ ðfs0; s1; s2; s3; sþ; s�g � SpdÞ [fs0g [
Ŝpd with Fþ ¼ fsþg � Spd and F� ¼ fs�g � Spd. Here

Spd are the register contents used by the communication

cell to manage the top entries of the stack, while Ŝpd are the

Iterative arrays with self-verifying communication cell 41

123

non-quiescent states of all but the communication cell, that

realize the stack. So, the transition function dd just realizes
the interior of the stack and is omitted here.

The idea of the construction of dnd is summarized in the

following table and described below. See Fig. 3 for a

transition diagram of the communication cell. Since we did

not make Spd explicit in detail and since the state of the

right neighbor of the communicating cell is only needed for

updating its part of the stack, the right neighbor state is left

out in the table and the figure. The current state of the

communication cell is indicated as ðsi; y. . .Þ or ðsi;?Þ
meaning that at the top of the stack is a symbol y 2 fa; bg
or the stack is empty. A transition to xy. . . means that x has

been pushed onto, and a transition to ��� means that y has

been popped from the stack.

The communication cell enters the accepting state if it is

in the quiescent state while reading the end-of-input

symbol, that is, if the input is the empty word (Transition

1). If the input is non-empty, the communication cell enters

state s1 (in its first state register) which is used to read and

push the symbols of the first part of the input (Transi-

tions 2–5). Then by Transitions 6–9 it is guessed whether

the length of the input is odd or even and whether the

center of the input is reached. If the guess is odd then the

sole symbol without matching mate at the center is simply

read without pushing it (Transitions 6–7). If the guess is

even then the last symbol of the left part has to be matched

and is pushed (Transitions 8–9). Now, state s2 is entered.

Once in state s2, the SVIA M compares the pushdown

contents with the remaining input by Transitions 10

and 11. If a mate is not matching, state s3 is entered

(Transitions 12 and 13). Once in state s3, the remaining

input is further read, whereby one symbol is popped in each

step (Transitions 14 and 15).

Consider the point in time after M is in state s2 for the

first time and let v denote the part of the input that has been

pushed to the stack at that time and let u denote the part of

the input that still has not been read. Then the input is vxu

if the length of the input has been guessed to be odd, and

the input is vu if the length of the input has been guessed to

be even. If the communication cell switched from s1 to s2
‘‘at the right time and in the right way’’, that is juj ¼ jvj,
then it will for the first time see input C and the empty

stack ? simultaneously. In this situation, M knows that the

guess was correct and it can accept (Transition 16) or reject

(Transition 17).

If the communication cell switched from s1 to s2 ‘‘at the

wrong time or in a wrong way’’, that is juj 6¼ jvj, then it

ð1Þ dndðC; ðs0;?Þ; Þ 3 ðsþ;?Þ accept k

ð2Þ dndða; ðs0;?Þ; Þ 3 ðs1; aÞ push first symbol a

ð3Þ dndðb; ðs0;?Þ; Þ 3 ðs1; bÞ push first symbol b

ð4Þ dndða; ðs1; y � � �Þ; Þ 3 ðs1; ay � � �Þ in s1continue pushing input symbols

ð5Þ dndðb; ðs1; y � � �Þ; Þ 3 ðs1; by � � �Þ in s1continue pushing input symbols

ð6Þ dndða; ðs1; y � � �Þ; Þ 3 ðs2; y � � �Þ switch to s2; dropping symbol a

ð7Þ dndðb; ðs1; y � � �Þ; Þ 3 ðs2; y � � �Þ switch to s2; dropping symbol b

ð8Þ dndða; ðs1; y � � �Þ; Þ 3 ðs2; ay � � �Þ switch to s2;without dropping a

ð9Þ dndðb; ðs1; y � � �Þ; Þ 3 ðs2; by � � �Þ switch to s2;without dropping b

ð10Þ dndða; ðs2; a � � �Þ; Þ 3 ðs2; � � �Þ continue in s2 for matching symbol a

ð11Þ dndðb; ðs2; b � � �Þ; Þ 3 ðs2; � � �Þ continue in s2 for matching symbol b

ð12Þ dndða; ðs2; b � � �Þ; Þ 3 ðs3; � � �Þ switch to s3 if mismatch

ð13Þ dndðb; ðs2; a � � �Þ; Þ 3 ðs3; � � �Þ switch to s3 if mismatch

ð14Þ dndða; ðs3; y � � �Þ; Þ 3 ðs3; � � �Þ drop remaining input symbols

ð15Þ dndðb; ðs3; y � � �Þ; Þ 3 ðs3; � � �Þ drop remaining input symbols

ð16Þ dndðC; ðs2;?Þ; Þ 3 ðsþ;?Þ accept if everything matched

ð17Þ dndðC; ðs3;?Þ; Þ 3 ðs�;?Þ reject since there was a mismatch

42 M. Kutrib

123

cannot decide whether the input is a palindrome. This can

be recognized by M since either all input symbols have

been consumed but the stack is not empty or the stack is

empty but not all input symbols have been consumed. In

this case the computation blocks in one of the states

from fs1; s2; s3g which are neutral states.

So, the communication cell comes to a decision yes or

no if and only if it has guessed the center of the input

correctly. Moreover, the answer is correct.

3 Structural properties and speed-up

Though we are mainly interested in fast computations, that

is, realtime and lineartime computations, we allowed

general time complexities in the definition of the devices

(see Kutrib (2009) for a discussion of this general treatment

of time complexity functions). However, it seems to be

reasonable to consider only time complexities t that allow

the communication cell to recognize the time step t(n).

Such functions are said to be time-computable. For exam-

ple, the function tðnÞ ¼ nþ 1 is trivially a time-com-

putable time complexity for IAs.

Other examples are time complexities byx � nc, for any

positive integers x\y, polynomials tðnÞ ¼ nk, and expo-

nential time complexities tðnÞ ¼ kn, for any integer k� 2.

More details can be found in Mazoyer and Terrier (1999).

In general, the symmetric conditions for acceptance/re-

jection of self-verifying devices imply immediately the

effective closures of the language families accepted under

complementation. In order to turn this observation in a

characterization, we first give evidence that self-verifying

iterative arrays are in fact a generalization of deterministic

e
d

g
f

i
h

push c
e
d
c

g
f

i
h

push b
d
c
b

g
f
e

i
h

c
b

f
e
d

i
h
g

push a
c
b
a

e
d

h
g
f i

pop
b

e
d
c

g
f

i
h

c
b d

g
f
e

i
h

pop
c

e
d f

i
h
g

pop
d e

g
f h i

e
d f g

i
h

e
d

g
f h i

e
d

g
f

i
h

Fig. 2 Principle of a pushdown

store simulation. Subfigures are

in row-major order

s0 s+ s−

s1 s2 s3

start
�,⊥
top

x,⊥
push(x)

x, y
push(x)

x, y
top

x, y
push(x)

x, x
pop

�,⊥
top

x, x̄
pop

x, y
pop

�,⊥
top

Fig. 3 Transition diagram of the communication cell of an SVIA

accepting the language fw 2 fa; bg� j w ¼ wR g. Edges correspond-

ing to transitions dndðx; ðs; yÞ; Þ are labeled x, y in the first line, and

by the corresponding operation on the pushdown store in the second

line. Here, x 2 fa; bg and x; �x means a, b or b, a

Iterative arrays with self-verifying communication cell 43

123

iterative arrays. The proof of a corresponding result for

cellular automata (Kutrib and Worsch 2020) applies here

almost literally.

Lemma 2 Any deterministic iterative array with a time-

computable time complexity t can effectively be converted

into an equivalent self-verifying iterative array with the

same time complexity t.

The proper inclusion LrtðIAÞ � LrtðNIAÞ is well

known (Buchholz et al. 2003). So, nondeterminism

strengthens the computational capacity of iterative arrays.

On the other hand, it is an open problem whether the family

LrtðNIAÞ is closed under complementation. Therefore, the

question whether the family LrtðSVIAÞ is properly inclu-

ded in LrtðNIAÞ, or whether both families coincide, is of

natural interest. Next we turn to relate it to the open

complementation closure of LrtðNIAÞ.

Proposition 3 Let t be a time-computable time complexity.

The family of languages L 2 LtðNIAÞ, such that the

complement L belongs to LtðNIAÞ as well, coincides with
the family LtðSVIAÞ.

Proof Given a t-time SVIA M, it is straightforward to

construct an NIA that accepts the complement

of L(M) with the same time complexity t.

Conversely, let M1 be an NIA accepting L and M2 be an

NIA accepting L with time complexity t. Now a t-time self-

verifying iterative array M simulates M1 and M2 on

different tracks, that is, it uses the same two channel

technique of Dyer (1980) and Smith (1972).

Then it remains to define the set of accepting states as

Fþ ¼ f ðs; s0Þ j s 2 F1 g and the set of rejecting states as

F� ¼ f ðs; s0Þ j s0 2 F2 g, where F1 is the set of accepting

states of M1 and F2 is the set of accepting states of M2. h

Proposition 3 implies that LrtðSVIAÞ is properly

included in LrtðNIAÞ if and only if LrtðNIAÞ is not closed
under complementation; otherwise both families coincide.

While iterative arrays fetch their input sequentially

through the communication cell, so-called cellular auto-

mata obey a parallel input mode. In a preinitial step their

cells fetch an input symbol. That is, there are as many cells

as input symbols. So, a deterministic two-way cellular

automaton (CA) is a linear array of identical deterministic

finite automata which are numbered 1; 2; . . .; n. Except for
border cells the state transition depends on the current state

of a cell itself and those of its both nearest neighbors.

Border cells receive a boundary symbol # on their free

input lines. In a one-way cellular automaton (OCA) the

next state of each cell only depends on the state of the cell

itself and the state of its immediate neighbor to the right.

An input w is accepted by a cellular automaton if at some

time step during some computation the leftmost cell enters

an accepting state. For cellular automata, realtime is

defined to be tðnÞ ¼ n. Cellular automata whose first state

transitions are nondeterministic and whose further transi-

tions are deterministic (NCA, NOCA) are studied in

Buchholz et al. (2002). Cellular automata that have the

self-verifying property (SVCA, SVOCA) are considered in

Kutrib and Worsch (2020).

It is well known that deterministic (one-way) cellular

automata and deterministic iterative arrays can be sped-up

from ðnþ tðnÞÞ-time to ðnþ tðnÞ
k Þ-time, for any integer

k[0 (Bucher and Čulik 1984; Ibarra and Jiang 1987;

Ibarra et al. 1985; Ibarra and Palis 1985). Thus, lineartime

is close to realtime. However, for deterministic one-way

cellular automata and iterative arrays, lineartime is strictly

more powerful than realtime. The problem is still open for

deterministic two-way cellular automata. Concerning

nondeterministic cellular automata, the results in Buchholz

et al. (2002) show that, in fact, one-way or two-way

information flow and realtime or lineartime do not make a

difference, that is, the family of languages accepted by

realtime NOCAs coincides with the family of languages

accepted by lineartime NCAs. However, to our knowledge,

these properties and relations are not known for iterative

arrays. In order to study them, next, we turn to strong

speed-up results for self-verifying iterative arrays.

Theorem 4 Let k� 1 be a constant and t be a time com-

plexity. Then the families Lk�tðSVIAÞ and LtðSVIAÞ
coincide.

Proof A given ðk � tÞ-time SVIA M is simulated by a t-

time SVIA M0 as follows. Basically, M0 performs two tasks

in parallel on different tracks.

For the first task, assume that the input is fed to the

communication cell of M0 in k-symbol blocks, that is, k

input symbols in each step. Then each k cells of M0 are
grouped together into one cell. In this well-known way the

iterative array M0 can simulate k steps of M in one step.

That is, this task of M0 has time complexity t and the self-

verifying property, since M has time complexity k � t and
the self-verifying property.

The second task of M0 is to make the assumption for the

first task true. To this end, it simulates a ring store whose

front (and end) is the communication cell. Now the

communication cell starts to guess k input symbols in

every step. These symbols are fed to the first task.

Additionally, the communication step guesses when the

end-of-input symbol appears. From that time step on no

further input symbols are guessed. In order to verify that

the guesses are correct, the k symbols are entered at the end

of the ring store respectively. In each step, the symbol at

the front of the ring is removed and compared with the

actual input symbol. If both match, the guessed symbol is

44 M. Kutrib

123

correct, otherwise it is not. In case of a mismatch or a

wrongly guessed number of input symbols the second task

remains in a neutral state. If it has guessed the input

correctly, it enters a positive state.

Finally,M0 accepts if and only if the second task guesses
the input correctly and the first task accepts. That is, if the

actual input is accepted byM. The iterative array M0 rejects
if and only if the second task guesses the input correctly

and the first task rejects. That is, if the actual input is

rejected by M. So, M0 has the self-verifying property. h

In particular, we conclude:

Corollary 5 The families LrtðSVIAÞ and LltðSVIAÞ
coincide.

4 Computational capacity

The first question in connection with the computational

capacity of realtime SVIA is the impact of the (restricted)

nondeterminism. Does it increase the capacity? More pre-

cisely, we are interested in the question whether the com-

puting power of realtime SVIA is strictly stronger than that

of realtime IA.

Example 1 shows that the mirror language is accepted

by a realtime SVIA. However, by using a completely dif-

ferent algorithm the language is accepted by some deter-

ministic realtime IA as well (Cole 1969). So, it cannot be

used as a witness for the strictness of the inclusion

LrtðIAÞ � LrtðSVIAÞ. Nevertheless, the strictness follows
from a more general result below and is stated in

Proposition 11.

The context-free languages form another important

language family. The possibility to simulate a pushdown

store whose top is simulated by the self-verifying com-

munication cell suggests to compare the family LrtðSVIAÞ
with the family of context-free languages. In Fernau et al.

(2017) self-verifying pushdown automata are considered

which accept a strict sub-family of the context-free lan-

guages. The simulation of a self-verifying pushdown

automaton by a realtime SVIA is straightforward. On the

other hand, even deterministic realtime iterative arrays

accept non-context-free languages, for example the ‘‘copy

language’’ fww j w 2 fa; bg� g (Cole 1969).

Corollary 6 The family of languages accepted by self-

verifying pushdown automata is strictly included in the

family LrtðSVIAÞ.

In order to discuss further comparisons we now turn to

results that show the strong computational capacity of

realtime SVIAs. First, we turn to nondeterministic devices

and show that sequential or parallel input mode induce the

same computational capacity as long as the time com-

plexity is linearly bounded.

Lemma 7 The family LltðNIAÞ is included in LltðNCAÞ.

Proof Let M be some lineartime NIA with state set S and

set of input symbols R. By the known speed-up results we

can safely assume that M accepts in 2n-time. Now we

construct an equivalent 2n-time NCA M0 as follows (see

Fig. 4).

Since M works in 2n-time, no more than 2n cells of the

array are used (n denotes the length of the input). So, each

of the n cells of M0 simulates two cells of M. In particular,

the leftmost cell of M0 simulates the communication cell of

M together with the first deterministic cell of M. Cell

2
 i
 n of M0 simulates cells 2ði� 1Þ and 2ði� 1Þ þ 1 of

M (which are initially quiescent).

Basically, M0 uses three tracks after the first time step.

On the first track the input is successively shifted to the left

to feed the simulated communication cell of M, where #

symbols are appended at the right. On the third track, the

cells of M are simulated, that is, each cell of M0 provides
two registers on the third track. Also on the second track

each cell of M0 is split into two registers. During the first

time step, all cells on the second track nondeterministically

compute two mappings from the finite set of mappings

ðR [fCgÞ � S� S ! S and store them into their two

registers. These are the first 2n guesses of the communi-

cation cell of M. The leftmost cell of M0 additionally

applies the first of its guessed mappings to its actual input

symbol and the states s0 and s0 in order to determine the

new state of the communication cell of M.

In subsequent transitions, the guessed mappings are

successively shifted to the left, register by register. The

leftmost cell of M0 deterministically simulates the nonde-

terministic behavior of the communication cell of M by

applying the next mapping to the current local configura-

tion. When the leftmost cell received the border symbol #

in the nth step it simulates further steps of the communi-

cation cell of M on the end-of-input symbol C. In all but

the left register of the leftmost cell M0 simulates the

deterministic transitions of M.

In this way, M0 accepts if and only if M accepts. h

Lemma 7 gives an upper bound for languages accepted

by lineartime NIAs. It shows that a sequential input mode

and one nondeterministic cell can be traded for parallel

input mode and all cells nondeterministic once only. In

fact, it will turn out that the upper bound is sharp.

Lemma 8 The family LltðNCAÞ is included in LrtðNIAÞ.

Proof The possibility to speed-up NCAs by a constant

factor is shown in Buchholz et al. (2002). That is,

LltðNCAÞ ¼ LrtðNCAÞ. So, given some realtime NCA M

Iterative arrays with self-verifying communication cell 45

123

with state set S and set of input symbols R, we construct an
equivalent realtime NIA M0 as follows. Basically, M0

works in three phases. First it guesses and generates a

configuration that represents the fourfold packed initial

configuration of M. Then this packed part is synchronized.

Finally, the synchronized cells simulate M whereby four

steps are simulated in one step. The phases are depicted in

Fig. 5. In parallel, the guesses are verified.

Phase 1 Let n denote the length of the input. In the

following we assume that nþ 1 is a multiple of four. The

generalization of the simulation to the other cases is a

straightforward adaption.

t

n

a1a2a3a4�

s0 s0 s0 s0 s0 s0 s0 s0
a1 a2 a3 a4

a2a3a4�

11 s0 s0 s0 s0 s0 s0 s0
#

a2 a3 a4 #

f2 f3 f4 f5 f6 f7 f8

11 =
f1(a1, s0, s0)

s0 s0 s0 s0 s0 s0 s0

#

a3a4�

12 21 s0 s0 s0 s0 s0 s0
#

a3 a4 # #

f3 f4 f5 f6 f7 f8

12 =
f2(a2, 11, s0)

21 s0 s0 s0 s0 s0 s0

#

a4�

13 22 31 s0 s0 s0 s0 s0
#

a4 # # #

f4 f5 f6 f7 f8

13 =
f3(a3, 12, 21)

22 31 s0 s0 s0 s0 s0

#

�

14 23 32 41 s0 s0 s0 s0
#

#

f5 f6 f7 f8

14 =
f4(a4, 13, 22)

23 32 41 s0 s0 s0 s0

#

�

15 24 33 42 51 s0 s0 s0
#

#

f6 f7 f8

15 =
f5(�, 14, 23)

24 33 42 51 s0 s0 s0

#

�

16 25 34 43 52 61 s0 s0
#

#

f7 f8

16 =
f6(�, 15, 24)

25 34 43 52 61 s0 s0

#

�

17 26 35 44 53 62 71 s0
#

#

f8

17 =
f7(�, 16, 25)

26 35 44 53 62 71 s0

#

�

18 27 36 45 54 63 72 81
#

#

18 =
f8(�, 17, 26)

27 36 45 54 63 72 81
#

Fig. 4 Simulation of a

lineartime (2n-time) NIA (left)

by a lineartime (2n-time) NCA

(right)

46 M. Kutrib

123

So, during the first nþ1
4

time steps the communication

cell of M0 guesses four input symbols in every step.

Additionally, the communication cell guesses a mapping

ðR [f#gÞ � fag � ðR [f#gÞ ! S for each (guessed)

input symbol a 2 R. These mappings are used for the

simulation of the nondeterministic first transitions of the

cells of M. The blocks of four input symbols together with

the corresponding mappings are shifted to the right such

that each of the leftmost nþ1
4

cells gets one block of

symbols and mappings. When the communication cell

guesses the end-of-input symbol the first phase ends.

In order to verify that the guesses are correct, the four

symbols are entered at the end of a ring store respectively.

In each step, the symbol at the front of the ring is removed

and compared with the actual input symbol. If both match,

the guessed symbol is correct, otherwise it is not. In case of

a mismatch or a wrongly guessed number of input symbols

the computation blocks in a neutral state.

Phase 2 At time step nþ1
4

þ 1 the communication cell

initiates an FSSP synchronization of the leftmost n
4
cells.

The blocks of four input symbols together with the

corresponding mappings arrive at their destination cells

0
 i
 nþ1
4

� 1 at time 2iþ 1. The initial signal for the

FSSP arrives at cell i at time nþ1
4

þ 1þ i[2iþ 1. So, each

cell starts Phase 2 after finishing Phase 1. Altogether,

Phase 2 is finished when all cells are synchronized at time
nþ1
4

þ 1þ 2 � nþ1
4

� 2 ¼ 3 � nþ1
4

� 1.

Phase 3 Due to the compressed representation, M0 can
simulate M with fourfold speed. In order to simulate the

nondeterministic transitions which the cells of M perform

during the first time step, the cells of M0 apply the

nondeterministically guessed mappings to their local

configurations. Thus, M0 simulates the nth step of M at

time step 3 � nþ1
4

� 1þ nþ1
4

¼ n.

Since the verification of the guessed input takes nþ 1

time steps, we conclude that the total time complexity of

M0 is tðnÞ ¼ nþ 1, that is realtime.

Finally, M0 accepts if and only if the input has been

guessed correctly and M accepts. So, we have

LðM0Þ ¼ LðMÞ. h

Lemmas 7 and 8 reveal LltðNIAÞ � LltðNCAÞ
� LrtðNIAÞ. Together with the trivial inclusion

LrtðNIAÞ � LltðNIAÞ and the results in Buchholz et al.

(2002), we obtain the equality of the next theorem.

Theorem 9 LrtðNIAÞ ¼ LltðNIAÞ ¼ LltðNCAÞ ¼
LrtðNCAÞ ¼ LrtðNOCAÞ ¼ LltðNOCAÞ.

Since the linear functions tðnÞ� n are time com-

putable by one-way cellular automata as well as by itera-

tive arrays, Proposition 3 and a similar proposition for

cellular automata from Kutrib and Worsch (2020) can be

used to build the bridge from nondeterministic to self-

verifying devices.

Theorem 10 LrtðSVIAÞ ¼ LltðSVIAÞ ¼ LltðSVCAÞ ¼
LrtðSVCAÞ ¼ LrtðSVOCAÞ ¼ LltðSVOCAÞ.

Proof By Theorem 9, all language families LrtðNIAÞ,
LltðNIAÞ, LltðNCAÞ, LrtðNCAÞ, LrtðNOCAÞ, and

LltðNOCAÞ coincide. So, all families consisting of the

complements of the languages from the original families

coincide as well. Now Proposition 3 and a similar propo-

sition for cellular automata from Kutrib and Worsch (2020)

imply that all language families LrtðSVIAÞ, LltðSVIAÞ,
LltðSVCAÞ, LrtðSVCAÞ, LrtðSVOCAÞ, and LltðSVOCAÞ
are identical. h

In particular, now we can deduce that even the restricted

nondeterminism gained in considering a self-verifying

communication cell strictly increases the computational

capacity of realtime iterative arrays. That is, the inclusion

LrtðIAÞ � LrtðSVIAÞ is strict.

0

n+1
4 − 1

t = 0 t = n+1
4 t = 3n+1

4 − 1 t = n+ 1

fir
in
g

guessing synchronization simulation

packing

verification

Fig. 5 Simulation phases

Iterative arrays with self-verifying communication cell 47

123

Proposition 11 The family LrtðIAÞ is strictly included in

LrtðSVIAÞ.

Proof The relations LrtðIAÞ � LltðIAÞ ¼ LltðCAÞ are

known (see, for example, Kutrib 2009). Since LltðIAÞ �
LltðSVIAÞ ¼ LrtðSVIAÞ the assertion follows. h

Theorem 10 shows that a sequential input mode and one

nondeterministic cell can be traded for parallel input mode

and all cells nondeterministic once only, and vice versa. To

this end, it does not matter whether the computations are in

realtime or lineartime. But what about the world beyond

lineartime? Are self-verifying arrays stronger than deter-

ministic ones? Or weaker than nondeterministic ones? The

open question of the strictness of one of the inclusions

LltðIAÞ¼LltðCAÞ�LrtðSVCAÞ�LðSVCAÞ�LðNCAÞ

is strongly related to famous open problems in complexity

theory (see Kutrib 2015). Note that at the top of this

hierarchy are devices that may have an exponential time

complexity (due to the space bound).

5 Closure of the realtime self-verifying
language family under concatenation

The closure properties of the family LrtðSVOCAÞ have

been investigated in Kutrib and Worsch (2020). By Theo-

rem 10 we know that these are the closure properties of the

identical language family LrtðSVIAÞ. It is known that the

family is closed under the Boolean operations and reversal.

In particular, the closure under reversal is of crucial

importance. It is an open problem for LrtðCAÞ and,

equivalently, for LltðOCAÞ. Moreover, it is linked with the

open closure property under concatenation for the same

family and, hence, with the question whether lineartime

CAs are more powerful than realtime CAs. It is known that

the family LrtðIAÞ is not closed under reversal, while the

family LltðIAÞ is closed.
Concerning the operations homomorphism and inverse

homomorphism, the closure of LrtðSVIAÞ under inverse

homomorphism and the non-closure under homomor-

phisms is known.

The question whether the family LrtðSVOCAÞ is closed
under concatenation is stated as an open problem in Kutrib

and Worsch (2020). Here we can solve the problem in

terms of self-verifying iterative arrays.

Proposition 12 The family of languages accepted by

realtime SVIA is closed under concatenation.

Proof Let L1; L2 2 LrtðSVIAÞ. If the empty word belongs

to L1 then language L2 belongs to the concatenation and

vice versa. Since the family of languages accepted by

realtime SVIA is closed under union, it remains to consider

languages L1; L2 2 LrtðSVIAÞ that do not contain the

empty word. Let M1 and M2 be realtime SVIA that accept

L1 and L2. Since the family LrtðSVIAÞ is closed under

reversal, there is a realtime SVIA MR
2 that accepts the

reversal LR2 of L2.

A realtime SVIA M that accepts the concatenation L1 �
L2 works as follows. First we describe two tasks that are

performed by M in parallel.

Basically, the first task is to read the input and to

simulate M1. In addition, the input is stored into a ring

whose front is the communication cell. Moreover, in any

simulation step, M tests whether it would accept or reject

the input prefix read so far by checking if it would accept

or reject when the next input symbol were the end-of-input

symbol C. If the current input prefix is accepted or

rejected, the input symbol stored into the ring is marked

suitably.

The second task is to guess the reversal of the input

symbol by symbol. The guessed reversal is stored into a

pushdown store whose top is the communication cell.

Additionally, the realtime SVIA MR
2 is simulated on the

guessed input. Similarly as for the first task, if the current

prefix of the guessed input would be accepted or rejected,

the guessed input symbol stored into the pushdown store is

marked suitably.

Let x1x2 � � � xn be the actual input. It is stored in the ring

when the end-of-input symbol appears. At that time, let

y1y2 � � � yn be the content of the pushdown store (from top

to bottom). Clearly, M has guessed the reversal of the input

correctly if and only if x1x2 � � � xn ¼ y1y2 � � � yn. So, after
having read the end-of-input symbol, the SVIA M verifies

the guessed reversal of the input by successively removing

symbols from the ring and pushdown store and testing

whether they match. If M detects any mismatch it blocks in

a neutral state.

Now, assume that the reversal of the input has been

guessed correctly.

Additionally, while verifying the guesses by succes-

sively scanning the ring and the pushdown store, the

SVIA M tests whether for some 1
 i
 n� 1 input symbol

xi is marked by the simulation of M1 and symbol yiþ1 is

marked by the simulation of MR
2 .

Case 1 x1 � � � xn 2 L1L2, say x1 � � � xi 2 L1. Then there

are computations by M1 accepting x1 � � � xi and by MR
2

accepting

ynyn�1 � � � yiþ1 ¼ xnxn�1 � � � xiþ1 ¼ ðxiþ1 � � � xnÞR:

Having M accept an input if and only if xi is marked by M1

and symbol yiþ1 is marked by MR
2 makes M accept all

words in L1L2. In detail, if input symbol xi is marked

accepting by the simulation of M1 the word x1x2 � � � xi

48 M. Kutrib

123

belongs to the language L1. If input symbol yiþ1 is marked

accepting by the simulation of MR
2 , the word

ynyn�1 � � � yiþ1 ¼ xnxn�1 � � � xiþ1 belongs to the language LR2
and, thus, xiþ1xiþ2 � � � xn belongs to the language L2. So, the

input x1x2 � � � xn belongs to the concatenation L1 � L2. In this
way, M can accept any input from L1 � L2 and only inputs

from the concatenation L1 � L2.
Case 2 x1 � � � xn 62 L1L2. In this case for each i either

x1 � � � xi 62 L1 or xn � � � xiþ1 62 LR2 or both. That means that

for each i there are computations by M1 and MR
2 for the

respective inputs such that at least one of both rejects.

Hence, there will be a computation of M which correctly

explicitly rejects an input, if for any two adjacent cells

always at least one of them is marked rejecting. In detail, if

the test finds neither two adjacent cells marked accepting,

nor two adjacent cells that are marked accepting and

unmarked, nor two adjacent cells unmarked the commu-

nication cell enters a rejecting state. In this case, no matter

between which two adjacent symbols one assumes the cut

between first and second factor, M has explicitly rejected at

least one of them. Clearly, in this case the input cannot

belong to the concatenation. On the other hand, if some

input does not belong to the concatenation, then there is

always a computation of M that results in such a marking.

So, M rejects any input that does not belong to L1 � L2 and
only inputs that do not belong to L1 � L2. In any other case,

the leftmost cell remains in a neutral state.

For the computation on input of length n the SVIA M

takes nþ 1 steps to read (and guess) the input for the tasks,

and further nþ 1 steps to verify the guesses and test the

markings. So, M works in lineartime which can be sped-up

to realtime. h

The closure properties of LrtðSVIAÞ with respect to

iteration (Kleene star) and non-erasing homomorphisms are

still open problems. They are settled for nondeterministic

devices since, basically, for iteration it is sufficient to guess

the positions in the input at which words are concatenated,

and for non-erasing homomorphism it is sufficient to guess

the pre-image of the input. However, self-verifying devices

have to reject explicitly if the input does not belong to the

language. Intuitively, this means that they have to ‘know’

that all possible guesses either do not lead to accepting

computations or are ‘wrong.’ The closure properties are

summarized in Table 1.

6 Decidability questions

First we note that the membership problem is obviously

decidable for SVIAs obeying a time-computable time

complexity.

On the other hand, in Kutrib (2009) it is observed that

for any language family that effectively contains LrtðIAÞ,
the problems emptiness, universality, finiteness, infinite-

ness, regularity, and context-freeness are not semidecid-

able. Since we know

LrtðIAÞ � LltðIAÞ � LltðSVIAÞ ¼ LrtðSVIAÞ

we derive the next corollary.

Corollary 13 The problems emptiness, universality, finite-

ness, infiniteness, inclusion, equivalence, regularity, and

context-freeness are not semidecidable for realtime IAs

and thus for realtime SVIAs.

In Kutrib and Worsch (2020) it is shown that the

problem to decide whether a given realtime one-way cel-

lular automaton is self-verifying or not is undecidable.

Unfortunately, the result has no direct implications for the

same question for iterative arrays. However, the undecid-

ability for cellular automata is shown by a reduction of the

emptiness problem. We turn to prove the undecidability for

iterative arrays as well. Moreover, we use a reduction of

the emptiness and universality problem, but the reduction

itself is different. Since general iterative arrays do not have

neutral or rejecting states (only accepting and non-ac-

cepting states), there is no partitioning of the state set. So,

the decidability can be asked for a given fixed partitioning

or for the existence of a partitioning. We first consider the

latter question.

Theorem 14 Given a realtime (non)deterministic iterative

array M with state set S and accepting states Fþ, it is not
semidecidable whether there exists F� � ðS n FþÞ such

that M is an SVIA with respect to the sets Fþ and F�.

Table 1 Closure properties of

the language family

LrtðSVIAÞ ¼ LltðSVCAÞ in
comparison with the families

LrtðIAÞ, LltðIAÞ ¼ LltðCAÞ,
and LrtðOCAÞ, where hk
denotes k-free homomorphisms

Family [\ R � � hk h h�1

LrtðSVIAÞ ¼ LltðSVCAÞ 4 4 4 4 4 ? ? 7 4

LrtðIAÞ 4 4 4 7 7 7 7 7 4

LltðIAÞ ¼ LltðCAÞ 4 4 4 4 ? ? ? 7 4

LrtðOCAÞ 4 4 4 4 7 7 7 7 4

Iterative arrays with self-verifying communication cell 49

123

Proof Let M0 ¼ hS;R;Fþ; s0;C; dnd; ddi be an arbitrary

realtime IA. We safely may assume that a cell which has

left the quiescent state will never enter the quiescent state

again. This behavior can be implemented by adding a new

state that plays the role of the quiescent state. If necessary,

the new state can be entered instead of s0.

We modify M0 to M1 ¼ hS0;R0;F0
þ; s0;C; d0nd; d

0
di by

adding a new input symbol $ and two new states pþ and

p0. So, we set S0 ¼ S [fpþ; p0g, R0 ¼ R [f$g, and

F0
þ ¼ Fþ [fpþg. The intention is that a $ in the input

causes the IA to simulate a step on the end-of-input symbol

C (in restricted form) and to reinitialize the computation by

letting the cells enter the quiescent state again (which is

impossible in M0). Therefore, the transition function d0nd is

basically dnd extended by transitions for the input symbol $

and the states pþ and p0. When a $ appears in the input, the

communication cell enters state pþ if it could enter an

accepting state on the end-of-input symbol C. For all

s1; s2 2 S,

d0ndð$; s1; s2Þ ¼ fpþg if dndðC; s1; s2Þ \ Fþ 6¼ ;:

Otherwise, it enters state p0: d0ndð$; s1; s2Þ ¼
fp0g if dndðC; s1; s2Þ \ Fþ ¼ ;: In state pþ or p0 the

computation continues as it would from the very beginning.

For p 2 fpþ; p0g, all a 2 R0 [fCg, and all s 2 S0,

d0ndða; p; sÞ ¼ d0ndða; s0; s0Þ: In order to implement the

reinitialization of the other cells, recall that dd drives no

non-quiescent cell into the quiescent state. So, we can

utilize the quiescent state as a signal sent by the commu-

nication cell. The signal causes the reinitialization of the

cells passed through. So, the transition function d0d is

basically dd extended as follows. For p 2 fpþ; p0g and all

s1; s2 2 S,

d0dðp;s1;s2Þ¼ s0; d0dðs0;s1;s2Þ¼ s0; d0dðs1;s0;s2Þ¼dðs1;s0;s0Þ:

Therefore, LðM1Þ consists of all concatenations of $ sep-

arated words ui such that at least one ui is in LðM0Þ. In
particular LðM1Þ \ R� ¼ LðM0Þ.

We claim that there exists F0
� � ðS0 n F0

þÞ such that the

iterative array M2 ¼ hS0;R0;F0
þ;F

0
�; s0;C; d0nd; d

0
di is self-

verifying if and only if LðM0Þ is empty or coincides with

R�. Observe that LðM2Þ ¼ LðM1Þ because both have the

same set of accepting states.

If LðM0Þ is empty then LðM1Þ is empty. Therefore, the

communication cell will never enter an accepting state

from F0
þ. So, we safely may set F0

� ¼ ðS0 n F0
þÞ and obtain

that M2 is self-verifying. Similarly, if LðM0Þ ¼ R� then

LðM1Þ ¼ R0�, and we safely may set F0
� ¼ ; to obtain a

self-verifying IA.

Now assume that LðM0Þ and, thus, LðM2Þ neither be

empty nor contain all words over the input alphabet. Then

there exists some u 2 LðM0Þ and some v 62 LðM0Þ. We

consider the computation of M2 on input u$v. Since M0

accepts u, the IA M2 enters an accepting state while

processing the input prefix u$ (its computation is a

simulation of M0 on uC). Then the computation of M2 is

reinitialized and continues with a simulation ofM0 on input

v. Since v 62 LðM0Þ, in this phase, M2 cannot accept v.

However, since it already was in an accepting state and its

overall answer is already yes, M2 cannot enter a contra-

dictory rejecting state in this phase. This implies that the

communication cell of M2 on input v will only assume

neutral states and, thus, neither accept nor reject v. That is,

M2 is not self-verifying and the claim follows.

From the construction of M2 and the claim we conclude

that the semidecidability of the problem in question implies

the semidecidability of the emptiness or universality

problem for realtime IAs contradicting Corollary 13. h

What about the undecidability if we provide a parti-

tioning of its state set? Can we test if this partitioning

makes the IA self-verifying? The answer is no, since for a

given realtime iterative array with accepting state set Fþ
there are only finitely many partitions induced by setting

F� � ðS n FþÞ. All these could be tested in parallel. Now

the problem in question can be semidecided if the test is

successful for at least one partitioning.

Corollary 15 Given a realtime (non)deterministic iterative

array M with state set S and partitioning S ¼ Fþ _[F� _[F0,

it is not semidecidable whether M is an SVIA with respect

to the partitioning.

By Lemma 2, any deterministic iterative with a time-

computable time complexity can effectively be made self-

verifying. But it is non-semidecidable whether it already is

self-verifying. This non-semi-decidability carries immedi-

ately over to nondeterministic iterative arrays. However, it

is an open problem whether any nondeterministic iterative

with a time-computable time complexity can effectively be

made self-verifying. In fact, it is an open problem whether

the family of languages accepted by realtime nondeter-

ministic iterative arrays is closed under complementation

or not.

Acknowledgements We would like to thank Thomas Worsch. He

participated in the discussions and his ideas were significant contri-

butions to this paper. We consider him truly a co-author, but he

insisted not to put his name on the author list.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

50 M. Kutrib

123

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Funding Open Access funding enabled and organized by Projekt

DEAL.

References

Bucher W, Čulik K II (1984) On real time and linear time cellular

automata. RAIRO Inform. Théor. 18:307–325

Buchholz T, Kutrib M (1997) Some relations between massively

parallel arrays. Parallel Comput. 23:1643–1662

Buchholz T, Klein A, Kutrib M (2002) On interacting automata with

limited nondeterminism. Fund. Inform. 52:15–38

Buchholz T, Klein A, Kutrib M (2003) Iterative arrays with limited

nondeterministic communication cell. In: Words, languages and

combinatorics III. World Scientific Publishing, pp 73–87

Cole SN (1969) Real-time computation by n-dimensional iterative

arrays of finite-state machines. IEEE Trans. Comput. C–

18:349–365

Čulik K II, Yu S (1984) Iterative tree automata. Theor. Comput. Sci.

32:227–247

Duris P, Hromkovic J, Rolim JDP , Schnitger G (1997) Las vegas

versus determinism for one-way communication complexity,

finite automata, and polynomial-time computations. In: Theo-

retical aspects of computer science (STACS 1997), LNCS, vol.

1200. Springer, pp 117–128

Dyer CR (1980) One-way bounded cellular automata. Inform. Control

44:261–281

Fernau H, Kutrib M, Wendlandt M (2017) Self-verifying pushdown

automata. In: Non-classical models of automata and applications

(NCMA 2017), books@ocg.at, vol 329. Austrian Computer

Society, Vienna, pp 103–117

Fischer PC, Kintala CMR (1979) Real-time computations with

restricted nondeterminism. Math. Syst. Theory 12:219–231

Hromkovic J, Schnitger G (2001) On the power of las vegas for one-

way communication complexity, OBDDs, and finite automata.

Inf. Comput. 169:284–296

Hromkovic J, Schnitger G (2003) Nondeterministic communication

with a limited number of advice bits. SIAM J. Comput. 33:43–68

Ibarra OH, Jiang T (1987) On one-way cellular arrays. SIAM J.

Comput. 16:1135–1154

Ibarra OH, Palis MA (1985) Some results concerning linear iterative

(systolic) arrays. J. Parallel Distrib. Comput. 2:182–218

Ibarra OH, Kim SM, Moran S (1985) Sequential machine character-

izations of trellis and cellular automata and applications. SIAM

J. Comput. 14:426–447

Ilie L, Păun G, Rozenberg G, Salomaa A (2000) On strongly context-

free languages. Discrete Appl. Math. 103:158–165

Jirásková G (2005) State complexity of some operations on binary

regular languages. Theor. Comput. Sci. 330(2):287–298

Jirásková G, Pighizzini G (2011) Optimal simulation of self-verifying

automata by deterministic automata. Inf. Comput. 209:528–535

Kintala CMR (1977) Computations with a restricted number of

nondeterministic steps. Ph.D. thesis, Pennsylvania State

University

Kutrib M (2008) Cellular automata—a computational point of view.

In: Bel-Enguix G, Jiménez-López MD, Martı́n-Vide C (eds)

New developments in formal languages and applications, chap.

6. Springer, Berlin, pp 183–227

Kutrib M (2009) Cellular automata and language theory. In:

Encyclopedia of complexity and system science. Springer,

pp 800–823

Kutrib M (2015) Complexity of one-way cellular automata. In:

Cellular automata and discrete complex systems (AUTOMATA

2014), LNCS, vol 8996. Springer, pp 3–18

Kutrib M, Worsch T (2019) Iterative arrays with self-verifying

communication cell. In: Cellular automata and discrete complex

systems (AUTOMATA 2019), LNCS, vol 11525. Springer,

pp 77–90

Kutrib M, Worsch T (2020) Self-verifying cellular automata. J. Cell.

Autom. 15:223–242

Mazoyer J, Terrier V (1999) Signals in one-dimensional cellular

automata. Theor. Comput. Sci. 217:53–80

Smith AR III (1972) Real-time language recognition by one-

dimensional cellular automata. J. Comput. System Sci.

6:233–253

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Iterative arrays with self-verifying communication cell 51

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Iterative arrays with self-verifying communication cell
	Abstract
	Introduction
	Preliminaries and definitions
	Structural properties and speed-up
	Computational capacity
	Closure of the realtime self-verifying language family under concatenation
	Decidability questions
	Acknowledgements
	Funding
	References

