Development of a pipeline for spatial transcriptome analysis of samples from Hodgkin's lymphoma patients
Lade...
Datum
Autor:innen
Betreuer/Gutachter
Weitere Beteiligte
Herausgeber
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Zitierlink
Zusammenfassung
OVERVIEW Automated pipeline for spatial transcriptomics analysis of classical Hodgkin lymphoma samples using 10x Genomics Visium low-density platform. Includes preprocessing (Space Ranger), quality control, batch correction (Harmony, scVI), and downstream analysis.
Master's thesis, Justus Liebig University Giessen (2026).
CONTENTS
- Bash script for automated Space Ranger preprocessing
- JupyterLab notebooks for quality control, batch correction, and downstream analysis
- PDF reports documenting all analysis steps and results
- HTML tables with QC metrics, correlation matrices, and differential expression results
- Figures and visualizations from all analyses
- Test dataset for pipeline validation (mouse spleen, GEO: GSE254652)
TECHNICAL REQUIREMENTS
- Ubuntu 24.04.2 LTS, Space Ranger v3.1.3, Python 3.12.10
- Python packages: Scanpy (v1.10.4), Squidpy (v1.6.5), harmonypy (v0.0.10), scVI (v1.3.1.post1)
- Hardware: Minimum 40 GB RAM, 4 CPU cores recommended
- Reference files: refdata-gex-GRCh38-2020-A, Visium_Human_Transcriptome_Probe_Set_v2.0_GRCh38-2020-A
USAGE
- Prepare input files (SampleSheet.csv, Aggregation.csv)
- Configure paths in script.sh and collect_output.py
- Run preprocessing: bash script.sh
- Generate metadata: python collect_output.py
- Update base paths in JupyterLab notebooks
- Execute JupyterLab notebooks sequentially
For detailed documentation, see README.pdf