Low Assumptions, High Dimensions

Files in this item
Date
2011Author
Wasserman, Larry
Quotable link
http://dx.doi.org/10.22029/jlupub-381Abstract
These days, statisticians often deal with complex, high dimensional datasets. Researchers in statistics and machine learning have responded by creating many new methods for analyzing high dimensional data. However, many of these new methods depend on strong assumptions. The challenge of bringing low assumption inference to high dimensional ... settings requires new ways to think about the foundations of statistics. Traditional foundational concerns, such as the Bayesian versus frequentist debate, have become less important.
Original publication in
Rationality, markets, and morals: RMM 2 (2011), 201-209