On the descriptional complexity of operations on semilinear sets

Datum

2017

Betreuer/Gutachter

Weitere Beteiligte

Herausgeber

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Zusammenfassung

We investigate the descriptional complexity of operations on semilinear sets. Roughly speaking, a semilinear set is the finite union of linear sets, which are built by constant and period vectors. The interesting parameters of a semilinear set are: (i) the maximal value that appears in the vectors of periods and constants and (ii) the number of such sets of periods and constants necessary to describe the semilinear set under consideration. More precisely, we prove upper bounds on the union, intersection, complementation, and inverse homomorphism. In particular, our result on the complementation upper bound answers an open problem from [G. J. Lavado, G. Pighizzini, S. Seki: Operational State Complexity of Parikh Equivalence, 2014].

Beschreibung

Inhaltsverzeichnis

Anmerkungen

Erstpublikation in

Sammelband

URI der Erstpublikation

Forschungsdaten

Schriftenreihe

IFIG Research Report; 1701

Erstpublikation in

Zitierform