On the descriptional complexity of operations on semilinear sets
Lade...
Dateien
Datum
Autor:innen
Betreuer/Gutachter
Weitere Beteiligte
Beteiligte Institutionen
Herausgeber
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Lizenz
Zitierlink
Zusammenfassung
We investigate the descriptional complexity of operations on semilinear sets. Roughly speaking, a semilinear set is the finite union of linear sets, which are built by constant and period vectors. The interesting parameters of a semilinear set are: (i) the maximal value that appears in the vectors of periods and constants and (ii) the number of such sets of periods and constants necessary to describe the semilinear set under consideration. More precisely, we prove upper bounds on the union, intersection, complementation, and inverse homomorphism. In particular, our result on the complementation upper bound answers an open problem from [G. J. Lavado, G. Pighizzini, S. Seki: Operational State Complexity of Parikh Equivalence, 2014].Verknüpfung zu Publikationen oder weiteren Datensätzen
Beschreibung
Anmerkungen
Erstpublikation in
Erstpublikation in
Sammelband
Sammlungen
URI der Erstpublikation
Forschungsdaten
Schriftenreihe
IFIG Research Report; 1701
