Descriptional complexity of pushdown store languages
Datum
Betreuer/Gutachter
Weitere Beteiligte
Herausgeber
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Lizenz
Zitierlink
Zusammenfassung
It is well known that the pushdown store language P(M) of a pushdown automaton (PDA) M i.e., the language consisting of words occurring on the pushdownalong accepting computations of M is a regular language. Here, we design succinct nondeterministic finite automata (NFA) accepting P(M). In detail, an upper bound on the size of an NFA for P(M) is obtained, which is quadratic in the number of states and linear in the number of pushdown symbols of M. Moreover, this upper bound is shown to be asymptotically optimal. Then, several restricted variants of PDA are considered, leading to improved constructions. In all cases, we prove the asymptotical optimality of the size of the resulting NFA. Finally, we apply our results to decidability questions related to PDA, and obtain solutions in deterministic polynomial time.