The Different Types of Noise and How They Effect Data Analysis
Datum
Autor:innen
Betreuer/Gutachter
Weitere Beteiligte
Herausgeber
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Zitierlink
Zusammenfassung
Random (noisy) processes can be characterized by the way consecutive data are correlated. The data can be uncorrelated (white noise), short-range correlated (often called red noise), or long-range correlated (sometimes called pink noise). Here we describe the properties and applications of these different kinds of noise. We discuss, how they influence (i) the diffusion process, (ii) the occurrence of rare extreme events and (iii) the detection of an external trend that is superimposed on the noise; (ii) and (iii) are particularly relevant in the context of detecting anthropogenic global warming by data analysis.
Beschreibung
Inhaltsverzeichnis
Anmerkungen
Erstpublikation in
Chemie - Ingenieur - Technik 95, 11 (2023), 1758 - 1767