Dear users, we have given JLUpub a major update, unfortunately there are currently still some minor problems. If you encounter any errors, we ask for your understanding and are grateful for any hints at https://jlupub.ub.uni-giessen.de/info/feedback.
 

Improving irrigation efficiency will be insufficient to meet future water demand in the Nile Basin

Datum

2017

Betreuer/Gutachter

Weitere Beteiligte

Herausgeber

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Zusammenfassung

The Nile River Basin covers an area of approximately 3.2 million km2 and is shared by 11 countries. Rapid population growth is expected in the region. The irrigation requirements of Nile riparian countries of existing (6.4 million ha) and additional planned (3.8 million ha, 2050) irrigation schemes were calculated, and the likely water savings through improved irrigation efficiency were evaluated. We applied SPARE:WATER to calculate irrigation demands on the basis of the well-known FAO56 Crop Irrigation Guidelines. Egypt (67 km3 yr-1) and Sudan (19 km3 yr-1) consume the highest share of the 84 km3 yr-1 total (2011). Assuming today s poor irrigation infrastructure, the total consumption was predicted to increase to 123 km3 yr-1 (2050), an amount far exceeding the total annual yield of the Nile Basin. Therefore, a key challenge for water resources management in the Nile Basin is balancing the increasing irrigation water demand basin-wide with the available water supply. We found that water savings from improved irrigation technology will not be able to meet the additional needs of planned areas. Under a theoretical scenario of maximum possible efficiency, the deficit would still be 5 km3 yr-1. For more likely efficiency improvement scenarios, the deficit ranged between 23 and 29 km3 yr-1. Our results suggest that that improving irrigation efficiency may substantially contribute to decreasing water stress on the Nile system but would not completely meet the demand. Study Region: The Nile River Basin covers an area of approximately 3.2 million km2 and is shared by 11 countries. Rapid population growth is expected in the region. Study Focus: Record population growth is expected for the study region. Therefore, the irrigation requirements of Nile riparian countries of existing (6.4 million ha) and additional planned (3.8 million ha, 2050) irrigation schemes were calculated, and likely water savings through improved irrigation efficiency were evaluated. We applied a spatial decision support system (SPARE:WATER) to calculate the irrigation demands on the basis of the well-known FAO56 Crop Irrigation Guidelines. New Hydrological Insights for the Region: Egypt (67 km3yr-1) and Sudan (19 km3yr-1) consume the highest share of 84 km3yr-1 (2011). Assuming today s poor irrigation infrastructure, the total demand were predicted to increase to 123 km3yr-1 (2050), an amount far exceeding the total annual yield of the Nile Basin. Therefore, a key challenge for water resources management in the Nile Basin is balancing the increasing irrigation water demand and available water supply. We found that water savings from improved irrigation technology will not be able to meet the additional needs of planned areas. Under a theoretical scenario of maximum possible efficiency, the deficit would still be 5 km3yr-1. For more likely efficiency improvement scenarios, the deficit ranges between 23 and 29 km3yr-1. Our results suggest that improving irrigation efficiency may substantially contribute to decreasing water stress on the Nile system but would not completely meet the demand.

Beschreibung

Inhaltsverzeichnis

Anmerkungen

Erstpublikation in

undefined (2017)

Sammelband

Forschungsdaten

Schriftenreihe

Erstpublikation in

Journal of Hydrology: Regional Studies 12:315-330

Zitierform