• Policy
    • FAQ JLUdocs
    • FAQ JLUdata
    • Publishing in JLUdocs
    • Publishing in JLUdata
    • Publishing Contract
    • English
    • Deutsch
View Item 
  •   JLUpub Home
  • JLUdocs
  • Publikationen im Open Access gefördert durch die UB
  • View Item
  •   JLUpub Home
  • JLUdocs
  • Publikationen im Open Access gefördert durch die UB
  • View Item
  • Info
    • Policy
    • FAQ JLUdocs
    • FAQ JLUdata
    • Publishing in JLUdocs
    • Publishing in JLUdata
    • Publishing Contract
  • English 
    • English
    • Deutsch
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of Metabolic Adaptation by Voluntary Running Wheel Activity and Aldosterone Inhibition on Renal Function in Female Spontaneously Hypertensive Rats

Thumbnail
Files in this item
10.3390_cells11243954.pdf (3.055Mb)
Date
2022
Author
Atmanspacher, Felix
Schreckenberg, Rolf
Wolf, Annemarie
Grgic, Ivica
Schlüter, Klaus-Dieter
Metadata
Show full item record
BibTeX Export
Quotable link
http://dx.doi.org/10.22029/jlupub-9403
Abstract

Metabolic effects of physical activity may be reno-protective in the context of hypertension, although exercise stresses kidneys. Aldosterone participates in renal disease in hypertension, but exercise affects the plasma concentration of aldosterone. This study was designed to evaluate whether physical activity and pharmacological treatment by ... aldosterone have additive effects on renal protection in hypertensive rats. Female spontaneously hypertensive rats (SHR) or normotensiveWistar rats performed voluntary running wheel activity alone or in combination with aldosterone blockade (spironolactone). The following groups were studied: young and pre-hypertensive SHR (n = 5 sedentary; n = 10 running wheels, mean body weight 129 g), 10-month-oldWistar rats (n = 6 sedentary; n = 6 running wheels,mean body weight 263 g), 10-month-old SHRs (n = 18 sedentary,mean body weight 224 g; n = 6 running wheels,mean body weight 272 g; n = 6 aldosterone, mean body weight 219 g; n = 6 aldosterone and running wheels, mean body weight 265 g). Another group of SHRs had free access to running wheels for 6months and kept sedentary for the last 3 months (n = 6, mean body weight 240 g). Aldosterone was given for the last 4 months. SHRs from the running groups had free access to running wheels beginning at the age of 6 weeks. Renal function was analyzed by microalbuminuria (Alb/Cre), urinary secretion of kidney injurymolecule-1 (uKim-1), and plasma blood urea nitrogen (BUN) concentration. Molecular adaptation of the kidney to hypertension and its modification by spironolactone and/or exercise were analyzed by real-time PCR, immunoblots, and histology. After six months of hypertension, rats had increased Alb/Cre and BUN but normal uKim-1. Voluntary free running activity normalized BUN but not Alb/Cre, whereas spironolactone reduced Alb/Cre but not BUN. Exercise constitutively increased renal expression of proprotein convertase subtilisin/kexin type 9 (PCSK9; mRNA and protein) and arginase-2 (mRNA). Spironolactone reduced these effects. uKim-1 increased in rats performing voluntary running wheel activity exercise irrespectively of blood pressure and aldosterone blockade. We observed independent but no additive effects of aldosterone blockade and physical activity on renal function and onmolecules potentially affecting renal lipidmetabolism.

Original publication in

Cells 11 (2022), 1-16, 3954

URI of original publication
https://doi.org/10.3390/cells11243954
Collections
  • Publikationen im Open Access gefördert durch die UB
Namensnennung 4.0 International
Namensnennung 4.0 International

Contact Us | Impressum | Privacy Policy | OAI-PMH
 

 

Browse

All of JLUpubCommunities & CollectionsOrganisational UnitDDC-ClassificationPublication TypeAuthorsBy Issue DateThis CollectionOrganisational UnitDDC-ClassificationPublication TypeAuthorsBy Issue Date

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us | Impressum | Privacy Policy | OAI-PMH