• Policy
    • FAQ JLUdocs
    • FAQ JLUdata
    • Publishing in JLUdocs
    • Publishing in JLUdata
    • Publishing Contract
    • English
    • Deutsch
View Item 
  •   JLUpub Home
  • JLUdata
  • Forschungsdaten
  • View Item
  •   JLUpub Home
  • JLUdata
  • Forschungsdaten
  • View Item
  • Info
    • Policy
    • FAQ JLUdocs
    • FAQ JLUdata
    • Publishing in JLUdocs
    • Publishing in JLUdata
    • Publishing Contract
  • English 
    • English
    • Deutsch
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data and Code for "A Machine Learning Approach for Bridging the Gap between Density Functional Theory and Coupled Cluster Energies"

Thumbnail
Files in this item
DLPNO_Monomers_SI.csv (2.035Mb)
DLPNO_Dimers_SI.csv (2.482Mb)
CCSDt_SI.csv (804.2Kb)
DFT_CCSDt_01.pt (91.04Mb)
DFT_CCSDt_02.pt (91.04Mb)
gen_predictions_CCSDt.py (6.238Kb)
gen_predictions_DLPNO.py (6.277Kb)
graph_preprocessing_ccsdt.py (10.07Kb)
graph_preprocessing.py (10.08Kb)
models.py (16.82Kb)
data_preprocessing.py (9.020Kb)
data_preprocessing_ccsdt.py (9.125Kb)
config.py (1.708Kb)
DFT_CCSDt_03.pt (91.04Mb)
DFT_CCSDt_05.pt (91.04Mb)
DFT_CCSDt_04.pt (91.04Mb)
DFT_CCSDt_06.pt (91.04Mb)
DFT_CCSDt_07.pt (91.04Mb)
DFT_CCSDt_08.pt (91.04Mb)
DFT_CCSDt_09.pt (91.04Mb)
DFT_CCSDt_10.pt (91.04Mb)
DFT_DLPNO_Monomers_01.pt (91.04Mb)
DFT_DLPNO_Monomers_02.pt (91.04Mb)
DFT_DLPNO_Monomers_03.pt (91.04Mb)
DFT_DLPNO_Monomers_04.pt (91.04Mb)
DFT_DLPNO_Monomers_05.pt (91.04Mb)
DFT_DLPNO_Monomers_06.pt (91.04Mb)
DFT_DLPNO_Monomers_07.pt (91.04Mb)
DFT_DLPNO_Monomers_08.pt (91.04Mb)
DFT_DLPNO_Monomers_09.pt (91.04Mb)
DFT_DLPNO_Monomers_10.pt (91.04Mb)
DFT_DLPNO_Dimers_01.pt (91.04Mb)
DFT_DLPNO_Dimers_02.pt (91.04Mb)
DFT_DLPNO_Dimers_03.pt (91.04Mb)
DFT_DLPNO_Dimers_04.pt (91.04Mb)
DFT_DLPNO_Dimers_05.pt (91.04Mb)
DFT_DLPNO_Dimers_06.pt (91.04Mb)
DFT_DLPNO_Dimers_07.pt (91.04Mb)
DFT_DLPNO_Dimers_08.pt (91.04Mb)
DFT_DLPNO_Dimers_09.pt (91.04Mb)
DFT_DLPNO_Dimers_10.pt (91.04Mb)
DFT_CCSDt_full.pt (91.04Mb)
DLPNO_S22_SI.csv (10.25Kb)
DLPNO_Isomers_SI.csv (9.868Kb)
DLPNO_Conjugated_SI.csv (9.480Kb)
DLPNO_Atmos_SI.csv (6.629Kb)
CCSDt_Isomers_SI.csv (9.867Kb)
CCSDt_Atmos_SI.csv (6.636Kb)
CCSDt_Conjugated_SI.csv (9.477Kb)
Date
2023-02-02
Author
Ruth, Marcel
Further Contributors
Institute of Organic Chemistry
Gerbig, Dennis
Schreiner, Peter Richard
Metadata
Show full item record
BibTeX Export
Quotable link
http://dx.doi.org/10.22029/jlupub-9418
Abstract

The datasets, models, and scripts were created to achieve an accurate prediction of the increment of single-point energies between density functional theory (DFT) and wavefunction-based methods, which led to our submitted article: 'A Machine Learning Approach for Bridging the Gap between Density Functional Theory and Coupled Cluster ... Energies'. We used the ORCA quantum chemical package to compute the geometries of each species at the B3LYP-D3(BJ)/cc-pVTZ level of theory. The optimized structure was subsequently employed for single-point (SP) computations at the DLPNO-CCSD(T)/cc-pVTZ and CCSD(T)/cc-pVTZ levels of theory. All data were extracted from the calculations and compiled in the provided .csv files. With the datasets and prediction scripts, it is possible to forecast the differences in single-point (SP) energies between the B3LYP-D3(BJ)/cc-pVTZ and DLPNO-CCSD(T)/cc-pVTZ (for monomers and dimers) levels of theory, as well as to the CCSD(T)/cc-pVTZ level of theory for monomers. The datasets can be opened and read with any text editor. The Pytorch models can be loaded and manipulated as usual (https://pytorch.org/tutorials/beginner/saving_loading_models.html). The prediction can be made by installing a suitable Python environment and setting the code line: test_database = f'TestDatabase_{mode}.csv' to the desired dataset for prediction. The format and column names of the file should match the uploaded dataset files. Once the line is modified, a prediction can be generated using the following command, for example, “python gen_predictions_CCSDt.py”.

Collections
  • Forschungsdaten
CC0 1.0 Universal
CC0 1.0 Universal

Contact Us | Impressum | Privacy Policy | OAI-PMH
 

 

Browse

All of JLUpubCommunities & CollectionsOrganisational UnitDDC-ClassificationPublication TypeAuthorsBy Issue DateThis CollectionOrganisational UnitDDC-ClassificationPublication TypeAuthorsBy Issue Date

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us | Impressum | Privacy Policy | OAI-PMH