• Policy
    • FAQ JLUdocs
    • FAQ JLUdata
    • Publishing in JLUdocs
    • Publishing in JLUdata
    • Publishing Contract
    • English
    • Deutsch
View Item 
  •   JLUpub Home
  • JLUdocs
  • Publikationen im Open Access gefördert durch die UB
  • View Item
  •   JLUpub Home
  • JLUdocs
  • Publikationen im Open Access gefördert durch die UB
  • View Item
  • Info
    • Policy
    • FAQ JLUdocs
    • FAQ JLUdata
    • Publishing in JLUdocs
    • Publishing in JLUdata
    • Publishing Contract
  • English 
    • English
    • Deutsch
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ab initio description of disorder effects in layered cathode active materials by the coherent potential approximation

Thumbnail
Files in this item
10.1088_1361-648X_ac7502.pdf (717.8Kb)
Date
2022
Author
Eckhardt, Janis K
Risius, Philipp E
Czerner, Michael
Heiliger, Christian
Metadata
Show full item record
BibTeX Export
Quotable link
http://dx.doi.org/10.22029/jlupub-15643
Abstract

Disorder effects in alloys are usually modeled by averaging various supercell calculations considering different positions of the alloy atoms. This approach, however, is only possible as long as the portion of the individual components of the alloy is sufficiently large. Herein, we present an ab initio study considering the lithium insertion ... material Li1−x[Ni0.33Co0.33Mn0.33]O2 as model system to demonstrate the power of the coherent potential approximation within the Korringa–Kohn–Rostoker Green's function method. This approach enables the description of disorder effects within alloy systems of any composition. It is applied in this study to describe the (de-)intercalation of arbitrary amounts of lithium from the cathode active material. Moreover, we highlight that using either fully optimized structures or experimental lattice parameters and atomic positions both lead to comparable results. Our findings suggest that this approach is also suitable for modeling the electronic structure of state-of-the-art materials such as high-nickel alloys.

Original publication in

Journal of physics: Condensed matter 34 (2022), 1-10, 325501

URI of original publication
https://doi.org/10.1088/1361-648X/ac7502
Collections
  • Publikationen im Open Access gefördert durch die UB
Namensnennung 4.0 International
Namensnennung 4.0 International

Contact Us | Impressum | Privacy Policy | OAI-PMH
 

 

Browse

All of JLUpubCommunities & CollectionsOrganisational UnitDDC-ClassificationPublication TypeAuthorsBy Issue DateThis CollectionOrganisational UnitDDC-ClassificationPublication TypeAuthorsBy Issue Date

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us | Impressum | Privacy Policy | OAI-PMH