Show simple item record

dc.contributor.authorLenske, Horst
dc.date.accessioned2023-12-07T15:06:19Z
dc.date.available2023-12-07T15:06:19Z
dc.date.issued2023
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/18791
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-18155
dc.description.abstractIn-medium interactions of ω-mesons in infinite nuclear matter and finite nuclei are investigated in a microscopic approach, focused on the particle-hole excitations of the medium involving nucleonic NN−1 and N∗N−1 modes, where N∗ denotes a nucleon resonance. The nuclear polarization tensors include relativistic mean-field dynamics by self– consistent scalar and vector fields. The resulting self-energies are transmitted to finite nuclei in local density approximation. Real and imaginary parts of longitudinal and transversal selfenergies are discussed. The relation of the present approach to meson cloud models is addressed and an ambiguity is pointed out. Applications to recent data on the in–medium width of ω mesons scattered on a Niobium target serve to determine unknown N∗Nω in-medium coupling constants. The data are well described by N∗N−1 self–energies containing S–wave and P-wave N∗ resonances. Exploratory investigations, however, showthat the spectroscopic composition of self-energies depends crucially on the near-threshold properties of the width which at present is known only within large error bars. The calculations predict the prevalence of transversal self–energies, implying that vector current conservation is still maintained in the nuclear medium by slightly more than 90%. Schrödinger-equivalent potentials are derived and scattering lengths and effective range parameters are extracted for the longitudinal and transversal channel. Longitudinal and transversal spectral distributions are discussed and the dependencies on momentum and nuclear density are investigated. Schrödinger-type ω + 93Nb optical potentials are constructed. Low-energy parameters are determined, are used to study the pole structure of the S-matrix at threshold. The effective range expansion of the omeganucleus K-matrix led to a ω+93Nb bound states with binding energy Re(εB) = −448 keV but of width ΓB = 4445 keV.
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG); ROR-ID:018mejw64
dc.language.isoen
dc.rightsNamensnennung 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddcddc:530
dc.titleInteractions of omega-mesons in nuclear matter and with nuclei
dc.typearticle
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographie
local.projectLe439/16
local.source.journaltitleThe European physical journal. A, Hadrons and nuclei
local.source.volume59
local.source.articlenumber222
local.source.urihttps://doi.org/10.1140/epja/s10050-023-01129-x


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record