Show simple item record

dc.contributor.authorRößler, Nina
dc.contributor.authorJungenitz, Tassilo
dc.contributor.authorSigler, Albrecht
dc.contributor.authorBird, Alexander
dc.contributor.authorMittag, Martin
dc.contributor.authorRhee, Jeong Seop
dc.contributor.authorDeller, Thomas
dc.contributor.authorCuntz, Hermann
dc.contributor.authorBrose, Nils
dc.contributor.authorSchwarzacher, Stephan W.
dc.contributor.authorJedlicka, Peter
dc.date.accessioned2024-02-08T06:50:23Z
dc.date.available2024-02-08T06:50:23Z
dc.date.issued2023
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/19004
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-18365
dc.description.abstractDendritic spines are crucial for excitatory synaptic transmission as the size of a spine head correlates with the strength of its synapse. The distribution of spine head sizes follows a lognormal-like distribution with more small spines than large ones. We analysed the impact of synaptic activity and plasticity on the spine size distribution in adult-born hippocampal granule cells from rats with induced homo- and heterosynaptic long-term plasticity in vivo and CA1 pyramidal cells from Munc13–1/Munc13–2 knockout mice with completely blocked synaptic transmission. Neither the induction of extrinsic synaptic plasticity nor the blockage of presynaptic activity degrades the lognormal-like distribution but changes its mean, variance and skewness. The skewed distribution develops early in the life of the neuron. Our findings and their computational modelling support the idea that intrinsic synaptic plasticity is sufficient for the generation, while a combination of intrinsic and extrinsic synaptic plasticity maintains lognormal-like distribution of spines.
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG); ROR-ID:018mejw64
dc.language.isoen
dc.rightsNamensnennung 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddcddc:610
dc.titleSkewed distribution of spines is independent of presynaptic transmitter release and synaptic plasticity, and emerges early during adult neurogenesis
dc.typearticle
local.affiliationFB 11 - Medizin
local.projectgrant nos. 467764793, JE 528/10–1 (to P.J.), CRC1080 (to T.D.) and SCHW 534/6–1 (to S.W.S.), DFG German Israeli Project Cooperation (ZI 1039/1-1 | RU 900/5-1 to N.B.)
local.source.spage1
local.source.epage16
local.source.journaltitleOpen biology
local.source.volume13
local.source.articlenumber230063
local.source.urihttps://doi.org/10.1098/rsob.230063


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record