Dobutamine, epinephrine, and milrinone accelerate particle transport velocity in murine tracheal epithelium via Ca2+ release from caffeine-sensitive internal stores

Lade...
Vorschaubild

Datum

Autor:innen

Schmidt, Götz
Borchers, Frederic
Müller, Sabrina
Ali Akbari, Amir
Edinger, Fabian
Sander, Michael
Koch, Christian
Henrich, Michael

Betreuer/Gutachter

Weitere Beteiligte

Herausgeber

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Zusammenfassung

Mucociliary clearance, the ability of the respiratory tract to protect the integrity of the airways through the mechanical removal of potentially harmful substances, is of enormous importance during intensive care treatment. The present study aimed to evaluate the influence of clinically relevant inotropic agents on mucociliary clearance. The particle transport velocity (PTV) of isolated murine tracheae was measured as a surrogate for mucociliary clearance in the presence of dobutamine, epinephrine, and milrinone. Inhibitory substances were applied to elucidate the signal transduction cascades and the value and origin of calcium ions which provoke alterations in mucociliary clearance function. Dobutamine, epinephrine, and milrinone increased the PTV in a dose-dependent manner with half maximal effective concentrations of 75.7 nM, 87.0 nM, and 13.7 µM, respectively. After the depletion of intracellular calcium stores, no increase in PTV was observed after administering any of the three inotropic agents. While dobutamine and epinephrine activated β-adrenergic receptors, epinephrine used both the phospholipase C (PLC) and protein kinase A (PKA) pathway to promote the release of intracellular Ca2+. However, dobutamine primarily acted on the PKA pathway, having only a minor influence on the PLC pathway. The induced changes in PTV following milrinone administration required both the PKA and PLC pathway, although the PKA pathway was responsible for most of the induced changes. In conclusion, the common inotropic agents dobutamine, epinephrine, and milrinone increase murine PTV in a concentration-dependent manner and ultimately release Ca2+ from intracellular calcium stores, suggesting the function of changes in mucociliary clearance in the respiratory tract.

Beschreibung

Inhaltsverzeichnis

Anmerkungen

Erstpublikation in

Cells 14, 3 (2025), 228

Sammelband

Forschungsdaten

Schriftenreihe

Erstpublikation in

Zitierform