Zur Kurzanzeige

dc.contributor.authorKeller, Janine
dc.contributor.authorRingseis, Robert
dc.contributor.authorEder, Klaus
dc.date.accessioned2022-11-18T09:50:27Z
dc.date.available2014-07-03T11:36:54Z
dc.date.available2022-11-18T09:50:27Z
dc.date.issued2014
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:hebis:26-opus-109583
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/9054
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-8442
dc.description.abstractBACKGROUND: In the past, numerous studies revealed that supplementation with carnitine has multiple effects on performance characteristics and gene expression in livestock and model animals. The molecular mechanisms underlying these observations are still largely unknown. Increasing evidence suggests that microRNAs (miRNAs), a class of small non-coding RNA molecules, play an important role in post-transcriptional regulation of gene expression and thereby influencing several physiological and pathological processes. Based on these findings, the aim of the present study was to investigate the influence of carnitine supplementation on the miRNA expression profile in skeletal muscle of obese Zucker rats using miRNA microarray analysis. RESULTS: Obese Zucker rats supplemented with carnitine had higher concentrations of total carnitine in plasma and muscle than obese control rats (P<0.05). miRNA expression profiling in skeletal muscle revealed a subset of 152 miRNAs out of the total number of miRNAs analysed (259) were identified to be differentially regulated (adjusted P-value<0.05) by carnitine supplementation. Compared to the obese control group, 111 miRNAs were up-regulated and 41 down-regulated by carnitine supplementation (adjusted P-value<0.05). 14 of these miRNAs showed a log2 ratio[greater than or equal to]0.5 and 7 miRNAs showed a log2 ratio[less than or equal to]0.5 (adjusted P-value<0.05). After confirmation by qRT-PCR, 11 miRNAs were found to be up-regulated and 6 miRNAs were down-regulated by carnitine supplementation (P<0.05). Furthermore, a total of 1,446 target genes within the validated miRNAs were revealed using combined three bioinformatic algorithms. Analysis of Gene Ontology (GO) categories and KEGG pathways of the predicted targets revealed that carnitine supplementation regulates miRNAs that target a large set of genes involved in protein-localization and -transport, regulation of transcription and RNA metabolic processes, as well as genes involved in several signal transduction pathways, like ubiquitin-mediated proteolysis and longterm depression, are targeted by the miRNAs regulated by carnitine supplementation. CONCLUSION: The present study shows for the first time that supplementation of carnitine affects a large set of miRNAs in skeletal muscle of obese Zucker rats suggesting a novel mechanism through which carnitine exerts its multiple effects on gene expression, which were observed during the past.en
dc.language.isoende_DE
dc.rightsNamensnennung 3.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/*
dc.subjectCarnitineen
dc.subjectmicroRNA expression profileen
dc.subjectMicroarrayen
dc.subjectSkeletal muscleen
dc.subjectObese Zucker raten
dc.subject.ddcddc:630de_DE
dc.titleSupplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker ratsen
dc.typearticlede_DE
local.affiliationFB 09 - Agrarwissenschaften, Ökotrophologie und Umweltmanagementde_DE
local.opus.id10958
local.opus.instituteInstitut für Tierernährung und Ernährungsphysiologiede_DE
local.opus.fachgebietAgrarwissenschaften, Ökotrophologie und Umweltmanagement fachübergreifendde_DE
local.source.urihttps://doi.org/10.1186/1471-2164-15-512
local.source.freetextBMC Genomics 15(1):512de_DE


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige