Trans-saccadic integration of peripheral and foveal feature information is close to optimal

Datum

2015

Betreuer/Gutachter

Weitere Beteiligte

Herausgeber

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Zusammenfassung

Due to the inhomogenous visual representation across the visual field, humans use peripheral vision to select objects of interest and foveate them by saccadic eye movements for further scrutiny. Thus, there is usually peripheral information available before and foveal information after a saccade. In this study we investigated the integration of information across saccades. We measured reliabilities i.e., the inverse of variance separately in a presaccadic peripheral and a postsaccadic foveal orientation-discrimination task. From this, we predicted trans-saccadic performance and compared it to observed values. We show that the integration of incongruent peripheral and foveal information is biased according to their relative reliabilities and that the reliability of the trans-saccadic information equals the sum of the peripheral and foveal reliabilities. Both results are consistent with and indistinguishable from statistically optimal integration according to the maximum-likelihood principle. Additionally, we tracked the gathering of information around the time of the saccade with high temporal precision by using a reverse correlation method. Information gathering starts to decline between 100 and 50 ms before saccade onset and recovers immediately after saccade offset. Altogether, these findings show that the human visual system can effectively use peripheral and foveal information about object features and that visual perception does not simply correspond to disconnected snapshots during each fixation.

Beschreibung

Inhaltsverzeichnis

Anmerkungen

Erstpublikation in

undefined (2015)

Sammelband

URI der Erstpublikation

Forschungsdaten

Schriftenreihe

Erstpublikation in

Journal of Vision 15(16):1

Zitierform