• Policy
    • FAQ JLUdocs
    • FAQ JLUdata
    • Publishing in JLUdocs
    • Publishing in JLUdata
    • Publishing Contract
    • English
    • Deutsch
View Item 
  •   JLUpub Home
  • JLUdocs
  • Publikationen im Open Access gefördert durch die UB
  • View Item
  •   JLUpub Home
  • JLUdocs
  • Publikationen im Open Access gefördert durch die UB
  • View Item
  • Info
    • Policy
    • FAQ JLUdocs
    • FAQ JLUdata
    • Publishing in JLUdocs
    • Publishing in JLUdata
    • Publishing Contract
  • English 
    • English
    • Deutsch
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Local confinement of disease-related microbiome facilitates recovery of gorgonian sea fans from necrotic-patch disease

Thumbnail
Files in this item
10.1038_s41598_018_33007_8.pdf (1.889Mb)
Date
2018
Author
Quintanilla, Elena
Ramirez-Portilla, Catalina
Adu-Oppong, Boahemaa
Walljasper, Gretchen
Glaeser, Stefanie P.
Wilke, Thomas
Munoz, Alejandro Reyes
Sa¡nchez, Juan A.
Metadata
Show full item record
BibTeX Export
Quotable link
http://dx.doi.org/10.22029/jlupub-8799
Abstract

Microbiome disruptions triggering disease outbreaks are increasingly threatening corals worldwide. In the Tropical Eastern Pacific, a necrotic-patch disease affecting gorgonian corals (sea fans, Pacifigorgia spp.) has been observed in recent years. However, the composition of the microbiome and its disease-related disruptions remain unknown in ... these gorgonian corals. Therefore, we analysed 16S rRNA gene amplicons from tissues of healthy colonies (n=19) and from symptomatic-asymptomatic tissues of diseased colonies (n=19) of Pacifigorgia cairnsi (Gorgoniidae: Octocorallia) in order to test for disease-related changes in the bacterial microbiome. We found that potential endosymbionts (mostly Endozoicomonas spp.) dominate the core microbiome in healthy colonies. Moreover, healthy tissues differed in community composition and functional profile from those of the symptomatic tissues but did not show differences to asymptomatic tissues of the diseased colonies. A more diverse set of bacteria was observed in symptomatic tissues, together with the decline in abundance of the potential endosymbionts from the healthy core microbiome. Furthermore, according to a comparative taxonomy-based functional profiling, these symptomatic tissues were characterized by the increase in heterotrophic, ammonia oxidizer and dehalogenating bacteria and by the depletion of nitrite and sulphate reducers. Overall, our results suggest that the bacterial microbiome associated with the disease behaves opportunistically and is likely in a state of microbial dysbiosis. We also conclude that the confinement of the disease-related consortium to symptomatic tissues may facilitate colony recovery.

URI of original publication
https://doi.org/10.1038/s41598-018-33007-8
Collections
  • Publikationen im Open Access gefördert durch die UB
Namensnennung 4.0 International
Namensnennung 4.0 International

Contact Us | Impressum | Privacy Policy | OAI-PMH
 

 

Browse

All of JLUpubCommunities & CollectionsOrganisational UnitDDC-ClassificationPublication TypeAuthorsBy Issue DateThis CollectionOrganisational UnitDDC-ClassificationPublication TypeAuthorsBy Issue Date

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us | Impressum | Privacy Policy | OAI-PMH