• Policy
    • FAQ JLUdocs
    • FAQ JLUdata
    • Publishing in JLUdocs
    • Publishing in JLUdata
    • Publishing Contract
    • English
    • Deutsch
View Item 
  •   JLUpub Home
  • JLUdocs
  • Publikationen im Open Access gefördert durch die UB
  • View Item
  •   JLUpub Home
  • JLUdocs
  • Publikationen im Open Access gefördert durch die UB
  • View Item
  • Info
    • Policy
    • FAQ JLUdocs
    • FAQ JLUdata
    • Publishing in JLUdocs
    • Publishing in JLUdata
    • Publishing Contract
  • English 
    • English
    • Deutsch
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

C-Reactive Protein Stimulates Nicotinic Acetylcholine Receptors to Control ATP-Mediated Monocytic Inflammasome Activation

Thumbnail
Files in this item
10.3389_fimmu.2018.01604.pdf (2.571Mb)
Date
2018
Author
Richter, Katrin
Sagawe, Sabrina
Hecker, Andreas
Küllmar, Mira
Askevold, Ingolf
Damm, Jelena
Heldmann, Sarah
Pöhlmann, Michael
Ruhrmann, Sophie
Sander, Michael
Schlüter, Klaus-Dieter
Wilker, Sigrid
König, Inke R.
Kummer, Wolfgang
Padberg, Winfried
Hone, Arik J.
McIntosh, J. Michael
Zakrzewicz, Anna Teresa
Koch, Christian
Grau, Veronika
Metadata
Show full item record
BibTeX Export
Quotable link
http://dx.doi.org/10.22029/jlupub-8854
Abstract

Blood levels of the acute phase reactant C-reactive protein (CRP) are frequently measured as a clinical marker for inflammation, but the biological functions of CRP are still controversial. CRP is a phosphocholine (PC)-binding pentraxin, mainly produced in the liver in response to elevated levels of interleukin-1beta (IL-1beta) and of the ... IL-1beta-dependent cytokine IL-6. While both cytokines play important roles in host defense, excessive systemic IL-1beta levels can cause life-threatening diseases such as trauma-associated systemic inflammation. We hypothesized that CRP acts as a negative feed back regulator of monocytic IL-1beta maturation and secretion. Here, we demonstrate that CRP, in association with phosphocholine, efficiently reduces ATP-mediated inflammasome activation and IL-1β release from human peripheral blood mononuclear leukocytes and monocytic U937 cells. Effective concentrations are in the range of marginally pathologic CRP levels (IC50 = 4.9 µg/ml). CRP elicits metabotropic functions at nicotinic acetylcholine receptors (nAChR) containing subunits alpha7, alpha9 and alpha10 and suppresses the function of ATP-sensitive P2X7 receptors in monocytic cells. Of note, CRP does not induce ion currents at conventional nAChR, suggesting that CRP is a potent nicotinic agonist controlling innate immunity without entailing the risk of adverse effects in the nervous system. In a prospective study on multiple trauma patients, IL-1beta plasma concentrations negatively correlated with preceding CRP levels, whereas inflammasome-independent cytokines IL 6 and TNF-alpha positively correlated. In conclusion, phosphocholine-laden CRP is an unconventional nicotinic agonist that potently inhibits ATP-induced inflammasome activation and has the potential to protect against trauma-associated sterile inflammation.

URI of original publication
https://doi.org/10.3389/fimmu.2018.01604
Collections
  • Publikationen im Open Access gefördert durch die UB
Namensnennung 4.0 International
Namensnennung 4.0 International

Contact Us | Impressum | Privacy Policy | OAI-PMH
 

 

Browse

All of JLUpubCommunities & CollectionsOrganisational UnitDDC-ClassificationPublication TypeAuthorsBy Issue DateThis CollectionOrganisational UnitDDC-ClassificationPublication TypeAuthorsBy Issue Date

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us | Impressum | Privacy Policy | OAI-PMH