Probalistic and truth-functional many-valued logic programming

dc.contributor.authorLukasiewicz, Thomas
dc.date.accessioned2022-09-12T09:38:42Z
dc.date.available1999-03-04T23:00:00Z
dc.date.available2022-09-12T09:38:42Z
dc.date.issued1998
dc.description.abstractWe introduce probabilistic many­valued logic programs in which the implication connective is interpreted as material implication. We show that probabilistic many-valued logic programming is computationally more complex than classical logic programming. More precisely, some deduction problems that are P­complete for classical logic programs are shown to be co­NP­complete for probabilistic many­valued logic programs. We then focus on many­valued logic programming in Pr*n as an approximation of probabilistic many­valued logic programming. Surprisingly, many­valued logic programs in Pr*n have both a probabilistic semantics in probabilities over a set of possible worlds and a truth­functional semantics in the finite­valued Lukasiewicz logics Ln. Moreover, many­valued logic programming in Pr*n has a model and fixpoint characterization, a proof theory, and computational properties that are very similar to those of classical logic programming. We especially introduce the proof theory of many­valued logic programming in Pr*n and show its soundness and completeness.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:hebis:26-opus-1409
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/7556
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-6990
dc.language.isoende_DE
dc.relation.ispartofseriesIFIG Research Report; 9809 / 1998
dc.rightsIn Copyright*
dc.rights.urihttp://rightsstatements.org/page/InC/1.0/*
dc.subject.ddcddc:004de_DE
dc.titleProbalistic and truth-functional many-valued logic programmingen
dc.typeworkingPaperde_DE
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographiede_DE
local.comment(Anm.: Die Zeichendarstellung in diesem Abstract entspricht nicht der Vorlage)
local.opus.fachgebietInformatikde_DE
local.opus.id140
local.opus.instituteInstitut für Informatikde_DE

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
IfigReport9809.pdf
Größe:
273.51 KB
Format:
Adobe Portable Document Format