Resolving colistin resistance and heteroresistance in Enterobacter species

dc.contributor.authorDoijad, Swapnil Prakash
dc.contributor.authorGisch, Nicolas
dc.contributor.authorFrantz, Renate
dc.contributor.authorKumbhar, Bajarang Vasant
dc.contributor.authorFalgenhauer, Jane
dc.contributor.authorImirzalioglu, Can
dc.contributor.authorFalgenhauer, Linda
dc.contributor.authorMischnik, Alexander
dc.contributor.authorRupp, Jan
dc.contributor.authorBehnke, Michael
dc.contributor.authorBuhl, Michael
dc.contributor.authorEisenbeis, Simone
dc.contributor.authorGastmeier, Petra
dc.contributor.authorGölz, Hanna
dc.contributor.authorHäcker, Georg Alexander
dc.contributor.authorKäding, Nadja
dc.contributor.authorKern, Winfried V.
dc.contributor.authorKola, Axel
dc.contributor.authorKramme, Evelyn
dc.contributor.authorPeter, Silke
dc.contributor.authorRohde, Anna M.
dc.contributor.authorSeifert, Harald
dc.contributor.authorTacconelli, Evelina
dc.contributor.authorVehreschild, Maria J. G. T.
dc.contributor.authorWalker, Sarah V.
dc.contributor.authorZweigner, Janine
dc.contributor.authorSchwudke, Dominik
dc.contributor.authorDiaz, L. A. Peña
dc.contributor.authorPilarski, G.
dc.contributor.authorThoma, N.
dc.contributor.authorWeber, A.
dc.contributor.authorVavra, M.
dc.contributor.authorSchuster, S.
dc.contributor.authorPeyerl-Hoffmann, G.
dc.contributor.authorHamprecht, A.
dc.contributor.authorProske, S.
dc.contributor.authorStelzer, Y.
dc.contributor.authorWille, J.
dc.contributor.authorLenke, D.
dc.contributor.authorBader, B.
dc.contributor.authorDinkelacker, A.
dc.contributor.authorHölzl, F.
dc.contributor.authorKunstle, L.
dc.contributor.authorChakraborty, Trinad
dc.date.accessioned2023-09-25T12:18:07Z
dc.date.available2023-09-25T12:18:07Z
dc.date.issued2023
dc.description.abstractSpecies within the Enterobacter cloacae complex (ECC) include globally important nosocomial pathogens. A three-year study of ECC in Germany identified Enterobacter xiangfangensis as the most common species (65.5%) detected, a result replicated by examining a global pool of 3246 isolates. Antibiotic resistance profiling revealed widespread resistance and heteroresistance to the antibiotic colistin and detected the mobile colistin resistance (mcr)−9 gene in 19.2% of all isolates. We show that resistance and heteroresistance properties depend on the chromosomal arnBCADTEF gene cassette whose products catalyze transfer of L-Ara4N to lipid A. Using comparative genomics, mutational analysis, and quantitative lipid A profiling we demonstrate that intrinsic lipid A modification levels are genospecies-dependent and governed by allelic variations in phoPQ and mgrB, that encode a two-component sensor-activator system and specific inhibitor peptide. By generating phoPQ chimeras and combining them with mgrB alleles, we show that interactions at the pH-sensing interface of the sensory histidine kinase phoQ dictate arnBCADTEF expression levels. To minimize therapeutic failures, we developed an assay that accurately detects colistin resistance levels for any ECC isolate.
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/18528
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-17892
dc.language.isoen
dc.rightsNamensnennung 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddcddc:610
dc.titleResolving colistin resistance and heteroresistance in Enterobacter species
dc.typearticle
local.affiliationFB 11 - Medizin
local.source.articlenumber140
local.source.epage16
local.source.journaltitleNature Communications
local.source.spage1
local.source.urihttps://doi.org/10.1038/s41467-022-35717-0
local.source.volume14

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
10.1038_s41467-022-35717-0.pdf
Größe:
2.88 MB
Format:
Adobe Portable Document Format