Leveraging Unstructured Data to Address Societal Challenges in the Digital Age

dc.contributor.advisorPröllochs, Nicolas
dc.contributor.advisorPfeiffer, Jella
dc.contributor.authorSolovev, Kirill
dc.date.accessioned2024-10-24T07:36:59Z
dc.date.available2024-10-24T07:36:59Z
dc.date.issued2024
dc.description.abstractThis dissertation is a culmination of four years of research focusing on leveraging unstructured data to address societal challenges in the digital age. This work applies and, when necessary, develops data science methods to address pressing societal challenges, including hate speech, the propagation of misinformation, and real estate price appraisals. Additionally, it demonstrates the untapped potential of user-generated online data and imparts effective strategies to harness this resource. The scope of this dissertation covers four papers, each published in renowned scientific conferences and journals, addressing discrete aspects of applying unstructured data to address a pertinent societal issue. Each of the included papers leverages state-of-the-art methods in their respective domains, including dictionary- and machine-learning approaches, successfully addressing the highlighted issues and underlining the untapped potential of user-generated unstructured data available online.
dc.identifier.urihttps://jlupub.ub.uni-giessen.de/handle/jlupub/19677
dc.identifier.urihttps://doi.org/10.22029/jlupub-19035
dc.language.isoen
dc.relation.hasparthttps://doi.org/10.1145/3442381.3449967
dc.relation.hasparthttps://doi.org/10.1093/pnasnexus/pgac281
dc.relation.hasparthttps://doi.org/10.1145/3485447.3512261
dc.relation.hasparthttps://doi.org/10.1145/3485447.3512266
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectcomputational social science
dc.subjectmachine learning
dc.subjectsocial media analysis
dc.subjectNLP
dc.subjectcomputer vision
dc.subject.ddcddc:300
dc.titleLeveraging Unstructured Data to Address Societal Challenges in the Digital Age
dcterms.dateAccepted2024-09-23
local.affiliationFB 02 - Wirtschaftswissenschaften
thesis.levelthesis.doctoral

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
SolovevKirill-2024-09-23.pdf
Größe:
7.19 MB
Format:
Adobe Portable Document Format
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
license.txt
Größe:
7.58 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: