Kinetics and Pore Formation of the Sodium Metal Anode on NASICON-Type Na3.4Zr2Si2.4P0.6O12 for Sodium Solid-State Batteries

dc.contributor.authorOrtmann, Till
dc.contributor.authorBurkhardt, Simon
dc.contributor.authorEckhardt, Janis Kevin
dc.contributor.authorFuchs, Till
dc.contributor.authorDing, Ziming
dc.contributor.authorSann, Joachim
dc.contributor.authorRohnke, Marcus
dc.contributor.authorMa, Qianli
dc.contributor.authorTietz, Frank
dc.contributor.authorFattakhova-Rohlfing, Dina
dc.contributor.authorKübel, Christian
dc.contributor.authorGuillon, Olivier
dc.contributor.authorHeiliger, Christian
dc.contributor.authorJanek, Jürgen
dc.date.accessioned2023-12-07T14:30:03Z
dc.date.available2023-12-07T14:30:03Z
dc.date.issued2023
dc.description.abstractIn recent years, many efforts have been made to introduce reversible alkali metal anodes using solid electrolytes in order to increase the energy density of next-generation batteries. In this respect, Na3.4Zr2Si2.4P0.6O12 is a promising solid electrolyte for solid-state sodium batteries, due to its high ionic conductivity and apparent stability versus sodium metal. The formation of a kinetically stable interphase in contact with sodium metal is revealed by time-resolved impedance analysis, in situ X-ray photoelectron spectroscopy, and transmission electron microscopy. Based on pressure- and temperature-dependent impedance analyses, it is concluded that the Na|Na3.4Zr2Si2.4P0.6O12 interface kinetics is dominated by current constriction rather than by charge transfer. Cross-sections of the interface after anodic dissolution at various mechanical loads visualize the formed pore structure due to the accumulation of vacancies near the interface. The temporal evolution of the pore morphology after anodic dissolution is monitored by time-resolved impedance analysis. Equilibration of the interface is observed even under extremely low external mechanical load, which is attributed to fast vacancy diffusion in sodium metal, while equilibration is faster and mainly caused by creep at increased external load. The presented information provides useful insights into a more profound evaluation of the sodium metal anode in solid-state batteries.
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG); ROR-ID:018mejw64
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/18786
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-18150
dc.language.isoen
dc.rightsNamensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcddc:540
dc.titleKinetics and Pore Formation of the Sodium Metal Anode on NASICON-Type Na3.4Zr2Si2.4P0.6O12 for Sodium Solid-State Batteries
dc.typearticle
local.affiliationFB 08 - Biologie und Chemie
local.projectProject ID 390874152 (POLiS Cluster of Excellence); GRK (Research Training Group) 2204 “Substitute Materials for sustainable Energy Technologies”
local.source.articlenumber2202712
local.source.journaltitleAdvanced energy materials
local.source.urihttps://doi.org/10.1002/aenm.202202712
local.source.volume13

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
10.1002_aenm.202202712.pdf
Größe:
2.84 MB
Format:
Adobe Portable Document Format
Beschreibung: