Two nonlinear systems from mathematical physics

dc.contributor.authorSacchet, Matteo
dc.date.accessioned2023-02-09T15:34:28Z
dc.date.available2018-09-11T07:35:51Z
dc.date.available2023-02-09T15:34:28Z
dc.date.issued2017
dc.description.abstractThe dissertation is divided into two chapters.In the first one, we consider the 2-Vortex problem for two point vortices in a complex domain. The Hamiltonian of the system contains the regular part of a hydrodynamic Green s function, the Robin function h and two coefficinets which are the strengths of the point vortices. We prove the existence of infinitely many periodic solutions with minimal period T which are a superposition of a slow motion of the center of vorticity along a level line of h and of a fast rotation of the two vortices around their center of vorticity. These vortices move in a prescribed subset of the domain that has to satisfy a geometric condition. The minimal period can be any T in a certain interval. Subsets to which our results apply can be found in any generic bounded domain. The proofs are based on a recent higher dimensional version of the Poincaré-Birkhoff theorem due to Fonda and Ureña.In the second part, we study bifurcations of a multi-component Schrödinger system. We construct a solution branch synchronized to a positive solution of a simpler system. From this branch, we find a sequence of local bifurcation values in the one dimensional case and also in the general case provided that the positive solution is nondegenerate.de_DE
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:hebis:26-opus-136900
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/10398
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-9782
dc.language.isoende_DE
dc.rightsIn Copyright*
dc.rights.urihttp://rightsstatements.org/page/InC/1.0/*
dc.subject.ddcddc:510de_DE
dc.titleTwo nonlinear systems from mathematical physicsen
dc.typedoctoralThesisde_DE
dcterms.dateAccepted2017-03-27
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographiede_DE
local.opus.fachgebietMathematikde_DE
local.opus.id13690
local.opus.instituteMathematisches Institutde_DE
thesis.levelthesis.doctoralde_DE

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
SacchetMatteo_2017_03_27.pdf
Größe:
489.21 KB
Format:
Adobe Portable Document Format