Eine wichtige Modalität, die inhomogene Populationen pseudounipolarer sensibler Neurone über Adelta- und C-Fasern in das Hinterhorn des Rückenmarks übermitteln, ist die Schmerzwahrnehmung. Hierbei sind in der Zellmembran freier, peripherer Nervenendigungen lokalisierte Liganden-gesteuerte, nicht-selektive Kationenkanäle involviert. Ein geeigneter Kandidat sind auf Capsaicin-sensitiven Neuronen und in IB4-bindenden präsynaptischen Fasern im Hinterhorn des Rückenmarks nachgewiesene neuronale nAChR. Injektionen des NOS-Inhibitors L-NAME lindern Schmerzreaktionen bei arthritiskranken Tieren. DRG-Neurone enthalten NOS, so dass sie Ca2+-vermittelt NO produzieren können. Es ergibt sich aus dieser Gesamtschau die Hypothese, dass nAChR Ca2+-vermittelt eine intrazelluläre Erhöhung des second messengers NO in DRG-Neuronen aktivieren. Hier erfolgte die funktionelle Charakterisierung nAChR und erster Schritte ihrer Signaltransduktionskette an thorakalen und lumbalen isolierten, primärkultivierten DRG-Neuronen adulter Ratten. Mit Hilfe des spezifischen Fluoreszenzindikators DAF-2DA wurde hierzu die endogene NO-Generierung an vitalen Einzelneuronen in Echtzeit detektiert. Subpopulationen thorakaler und lumbaler DRG-Neurone besitzen nAChR, deren Aktivierung rasch zu einer neuronalen NO-Generierung führt. Das nAChR-aktivierte NO-Signal ist transient und lässt sich ohne Langzeiteffekte auswaschen. Der aufgedeckte nAChR-/NO-Signalweg in DRG-Neuronen kommt quantitativ in thorakalen Zellen stärker als in lumbalen vor. Die nAChR alpha7-, alpha9/alpha10-Subtypen sind partiell bei thorakalen gleichermassen wie lumbalen DRG-Neuronen involviert. Das nAChR-aktivierte NO-Signal ist nur bei einer kleinen thorakalen Neuronensubpopulation partiell über einen Ca2+-Einstrom vermittelt. In einer kleinen Subpopulation thorakaler DRG-Neurone wird das NO-Signal über einen Ca2+-Einstrom jeweils partiell von alpha7-, alpha9/alpha10-nAChR und VOCCs des L-Typs getragen. Die nAChR-stimulierte NO-Bildung basiert in thorakalen Zellen nur partiell auf unmittelbarer Produktion durch die NOS. Die erhobenen Befunde führen zu der Schlussfolgerung, dass die NO-Generierung in DRG-Neuronen in die nAChR-Signalkaskade integriert ist. Darüber kann auf mechano-/thermozeptive sowie nozizeptive Transduktions- und Transformationsprozesse Einfluss genommen werden. Die Ergebnisse der vorliegenden Arbeit zeigen nAChR, VOCCs vom L-Typ und NOS als relevante periphere Zielmoleküle zur Pharmakotherapie von Schmerzen sowie zur Anästhesie auf.
Verknüpfung zu Publikationen oder weiteren Datensätzen