Finding invisible quantitative trait loci with missing data

dc.contributor.authorGabur, Iulian
dc.contributor.authorChawla, Harmeet S.
dc.contributor.authorLiu, Xiwei
dc.contributor.authorKumar, Vinod
dc.contributor.authorFaure, Sebastien
dc.contributor.authorvon Tiedemann, Andreas
dc.contributor.authorJestin, Christophe
dc.contributor.authorDryzska, Emmanuelle
dc.contributor.authorVolkmann, Susann
dc.contributor.authorBreuer, Frank
dc.contributor.authorDelourme, Regine
dc.contributor.authorSnowdon, Rod
dc.contributor.authorObermeier, Christian
dc.date.accessioned2022-11-18T09:53:12Z
dc.date.available2019-05-20T06:57:33Z
dc.date.available2022-11-18T09:53:12Z
dc.date.issued2018
dc.description.abstractSummary Evolutionary processes during plant polyploidization and speciation have led to extensive presence-absence variation (PAV) in crop genomes, and there is increasing evidence that PAV associates with important traits. Today, high-resolution genetic analysis in major crops frequently implements simple, cost-effective, high-throughput genotyping from single nucleotide polymorphism (SNP) hybridization arrays; however, these are normally not designed to distinguish PAV from failed SNP calls caused by hybridization artefacts. Here, we describe a strategy to recover valuable information from single nucleotide absence polymorphisms (SNaPs) by population-based quality filtering of SNP hybridization data to distinguish patterns associated with genuine deletions from those caused by technical failures. We reveal that including SNaPs in genetic analyses elucidate segregation of small to large-scale structural variants in nested association mapping populations of oilseed rape (Brassica napus), a recent polyploid crop with widespread structural variation. Including SNaP markers in genomewide association studies identified numerous quantitative trait loci, invisible using SNP markers alone, for resistance to two major fungal diseases of oilseed rape, Sclerotinia stem rot and blackleg disease. Our results indicate that PAV has a strong influence on quantitative disease resistance in B. napus and that SNaP analysis using cost-effective SNP array data can provide extensive added value from missing data. This strategy might also be applicable for improving the precision of genetic mapping in many important crop species.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:hebis:26-opus-145796
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/9416
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-8804
dc.language.isoende_DE
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectBrassica napusen
dc.subjectquantitative resistanceen
dc.subjectpresenceabsence variationen
dc.subjectsingle nucleotide absence polymorphismen
dc.subjectSNaPen
dc.subject.ddcddc:630de_DE
dc.titleFinding invisible quantitative trait loci with missing dataen
dc.typearticlede_DE
local.affiliationFB 09 - Agrarwissenschaften, Ökotrophologie und Umweltmanagementde_DE
local.opus.fachgebietAgrarwissenschaften und Umweltmanagementde_DE
local.opus.id14579
local.opus.instituteDepartment of Plant Breedingde_DE
local.source.freetextPlant Biotechnology Journal 16(12):2102-2112de_DE
local.source.urihttps://doi.org/10.1111/pbi.12942

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
10.1111_pbi.12942.pdf
Größe:
1.28 MB
Format:
Adobe Portable Document Format