A scalar curvature flow in low dimensions
dc.contributor.author | Mayer, Martin | |
dc.date.accessioned | 2023-02-09T15:33:41Z | |
dc.date.available | 2015-09-11T07:58:21Z | |
dc.date.available | 2023-02-09T15:33:41Z | |
dc.date.issued | 2015 | |
dc.description.abstract | Let (Mn, g0) be a n=3,4,5 dimensional, closed Riemannian manifold of positive Yamabe invariant.For a smooth function K > 0 on M we consider a scalar curvature flow, that tends to prescribe K as the scalar curvature of a metric g conformal to g0.We show global existence and in case M is not conformally equivalent to the standard sphere smooth flow convergence and solubility of the prescribed scalar curvature problem under suitable conditions on K. | en |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:hebis:26-opus-116912 | |
dc.identifier.uri | https://jlupub.ub.uni-giessen.de//handle/jlupub/10321 | |
dc.identifier.uri | http://dx.doi.org/10.22029/jlupub-9705 | |
dc.language.iso | en | de_DE |
dc.rights | In Copyright | * |
dc.rights.uri | http://rightsstatements.org/page/InC/1.0/ | * |
dc.subject.ddc | ddc:510 | de_DE |
dc.title | A scalar curvature flow in low dimensions | en |
dc.title.alternative | Ein Skalarkrümmungsfluß in niedrigen Dimensionen | de_DE |
dc.type | doctoralThesis | de_DE |
dcterms.dateAccepted | 2015-08-05 | |
local.affiliation | FB 07 - Mathematik und Informatik, Physik, Geographie | de_DE |
local.opus.fachgebiet | Mathematik | de_DE |
local.opus.id | 11691 | |
local.opus.institute | JLU Gießen | de_DE |
thesis.level | thesis.doctoral | de_DE |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- MartinMayer_2015_08_05.pdf
- Größe:
- 486.72 KB
- Format:
- Adobe Portable Document Format