A scalar curvature flow in low dimensions

dc.contributor.authorMayer, Martin
dc.date.accessioned2023-02-09T15:33:41Z
dc.date.available2015-09-11T07:58:21Z
dc.date.available2023-02-09T15:33:41Z
dc.date.issued2015
dc.description.abstractLet (Mn, g0) be a n=3,4,5 dimensional, closed Riemannian manifold of positive Yamabe invariant.For a smooth function K > 0 on M we consider a scalar curvature flow, that tends to prescribe K as the scalar curvature of a metric g conformal to g0.We show global existence and in case M is not conformally equivalent to the standard sphere smooth flow convergence and solubility of the prescribed scalar curvature problem under suitable conditions on K.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:hebis:26-opus-116912
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/10321
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-9705
dc.language.isoende_DE
dc.rightsIn Copyright*
dc.rights.urihttp://rightsstatements.org/page/InC/1.0/*
dc.subject.ddcddc:510de_DE
dc.titleA scalar curvature flow in low dimensionsen
dc.title.alternativeEin Skalarkrümmungsfluß in niedrigen Dimensionende_DE
dc.typedoctoralThesisde_DE
dcterms.dateAccepted2015-08-05
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographiede_DE
local.opus.fachgebietMathematikde_DE
local.opus.id11691
local.opus.instituteJLU Gießende_DE
thesis.levelthesis.doctoralde_DE

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
MartinMayer_2015_08_05.pdf
Größe:
486.72 KB
Format:
Adobe Portable Document Format