Aufgrund von Wartungsarbeiten steht JLUpub am 09.02.2026 von 8:00 Uhr bis vorraussichtlich 16:00 Uhr nicht zur Verfügung.
------------------------------------
Due to maintenance work, JLUpub will be unavailable on February 9, 2026, from 8:00 a.m. until approximately 4:00 p.m.

Exploring the categorical nature of colour perception : insights from artificial networks

dc.contributor.authorAkbarinia, Arash
dc.date.accessioned2026-02-05T11:29:36Z
dc.date.available2026-02-05T11:29:36Z
dc.date.issued2025
dc.description.abstractThe electromagnetic spectrum of light from a rainbow is a continuous signal, yet we perceive it vividly in several distinct colour categories. The origins and underlying mechanisms of this phenomenon remain partly unexplained. We investigate categorical colour perception in artificial neural networks (ANNs) using the odd-one-out paradigm. In the first experiment, we compared unimodal vision networks (e.g., ImageNet object recognition) to multimodal vision-language models (e.g., CLIP text-image matching). Our results show that vision networks predict a significant portion of human data (approximately 80%), while vision-language models account for the remaining unexplained data, even in non-linguistic experiments. These findings suggest that categorical colour perception is a language-independent representation, though it is partly shaped by linguistic colour terms during its development. In the second experiment, we explored how the visual task influences the colour categories of an ANN by examining twenty-four Taskonomy networks. Our results indicate that human-like colour categories are task-dependent, predominantly emerging in semantic and 3D tasks, with a notable absence in low-level tasks. To explain this difference, we analysed kernel responses before the winner-takes-all stage, observing that networks with mismatching colour categories may still align in underlying continuous representations. Our findings quantify the dual influence of visual signals and linguistic factors in categorical colour perception and demonstrate the task-dependent nature of this phenomenon, suggesting that categorical colour perception emerges to facilitate certain visual tasks.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG); ROR-ID:018mejw64
dc.identifier.urihttps://jlupub.ub.uni-giessen.de/handle/jlupub/21297
dc.identifier.urihttps://doi.org/10.22029/jlupub-20642
dc.language.isoen
dc.rightsNamensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcddc:150
dc.titleExploring the categorical nature of colour perception : insights from artificial networks
dc.typearticle
local.affiliationFB 06 - Psychologie und Sportwissenschaft
local.projectSFB/TRR 135 (grant number 222641018) TP S
local.source.articlenumber106758
local.source.journaltitleNeural networks
local.source.urihttps://doi.org/10.1016/j.neunet.2024.106758
local.source.volume181

Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
1-s2.0-S0893608024006828-main.pdf
Größe:
3.35 MB
Format:
Adobe Portable Document Format