A first-order representation of stable models

dc.contributor.authorEiter, Thomas
dc.contributor.authorLu, James
dc.contributor.authorSubrahmanian, V.S
dc.date.accessioned2022-09-12T09:38:46Z
dc.date.available1998-07-14T22:00:00Z
dc.date.available2022-09-12T09:38:46Z
dc.date.issued1998
dc.description.abstractTuri (1991) introduced the important notion of a constrained atom: an atom with associated equality and disequality constraints on its arguments. A set of constrained atoms is a constrained interpretation. We investigate how non­ground representations of both the stable model semantics and the well­founded semantics may be obtained through Turi's approach. The practical implication of this is that the well­founded model (or the set of stable models) may be partially pre­computed at compile­time, resulting in the association of each predicate symbol in the program to a constrained atom. Algorithms to create such models are presented, both for the well founded case, and the case of stable models. Query processing reduces to checking whether each atom in the query is true in a stable model (resp. well­founded model). This amounts to showing the atom is an instance of one of some constrained atom whose associated constraint is solvable. Various related complexity results are explored, and the impacts of these results are discussed from the point of view of implementing systems that incorporate the stable and well­founded semantics.de_DE
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:hebis:26-opus-306
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/7568
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-7002
dc.language.isoende_DE
dc.relation.ispartofseriesIFIG Research Report; 9805 / 1998
dc.rightsIn Copyright*
dc.rights.urihttp://rightsstatements.org/page/InC/1.0/*
dc.subject.ddcddc:004de_DE
dc.titleA first-order representation of stable modelsde_DE
dc.typeworkingPaperde_DE
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographiede_DE
local.opus.fachgebietInformatikde_DE
local.opus.id30
local.opus.instituteInstitut für Informatikde_DE

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
IfigReport9805.pdf
Größe:
361.5 KB
Format:
Adobe Portable Document Format