An Optimized Approach to Perform Bone Histomorphometry

dc.contributor.authorMalhan, Deeksha
dc.contributor.authorMuelke, Matthias
dc.contributor.authorRosch, Sebastian
dc.contributor.authorSchaefer, Annemarie B.
dc.contributor.authorMerboth, Felix
dc.contributor.authorWeisweiler, David
dc.contributor.authorHeiss, Christian
dc.contributor.authorArganda-Carreras, Ignacio
dc.contributor.authorEl Khassawna, Thaqif
dc.date.accessioned2022-11-18T09:55:14Z
dc.date.available2020-08-05T09:34:29Z
dc.date.available2022-11-18T09:55:14Z
dc.date.issued2018
dc.description.abstractBone histomorphometry allows quantitative evaluation of bone micro-architecture, bone formation, and bone remodeling by providing an insight to cellular changes. Histomorphometry plays an important role in monitoring changes in bone properties because of systemic skeletal diseases like osteoporosis and osteomalacia. Besides, quantitative evaluation plays an important role in fracture healing studies to explore the effect of biomaterial or drug treatment. However, until today, to our knowledge, bone histomorphometry remain time-consuming and expensive. This incited us to set up an open-source freely available semi-automated solution to measure parameters like trabecular area, osteoid area, trabecular thickness, and osteoclast activity. Here in this study, the authors present the adaptation of Trainable Weka Segmentation plugin of ImageJ to allow fast evaluation of bone parameters (trabecular area, osteoid area) to diagnose bone related diseases. Also, ImageJ toolbox and plugins (BoneJ) were adapted to measure osteoclast activity, trabecular thickness, and trabecular separation. The optimized two different scripts are based on ImageJ, by providing simple user-interface and easy accessibility for biologists and clinicians. The scripts developed for bone histomorphometry can be optimized globally for other histological samples. The showed scripts will benefit the scientific community in histological evaluation.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:hebis:26-opus-153767
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/9562
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-8950
dc.language.isoende_DE
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectbone histomorphometryen
dc.subjectopen sourceen
dc.subjectimageJen
dc.subjectTrainable Weka Segmentationen
dc.subjectBoneJen
dc.subject.ddcddc:610de_DE
dc.titleAn Optimized Approach to Perform Bone Histomorphometryen
dc.typearticlede_DE
local.affiliationFB 11 - Medizinde_DE
local.opus.fachgebietMedizinde_DE
local.opus.id15376
local.opus.instituteExperimentelle Unfallchirurgiede_DE
local.source.freetextFrontiers in Endocrinology 9:666de_DE
local.source.urihttps://doi.org/10.3389/fendo.2018.00666

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
10.3389_fendo.2018.00666.pdf
Größe:
1.83 MB
Format:
Adobe Portable Document Format