Chiral and deconfinement phase transitions in Nf=2 and Nf=2+1 quantum chromodynamics

Lade...
Vorschaubild

Datum

Autor:innen

Betreuer/Gutachter

Weitere Beteiligte

Beteiligte Institutionen

Herausgeber

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Zusammenfassung

In this thesis, we investigate the phase structure of quantum chromodynamics (QCD) in the framework of Dyson-Schwinger equations (DSEs). The aim is to study the chiral and deconfinement phase transitions at finite chemical potential. To this end, we employ and test a novel truncation scheme for the quark and gluon Dyson-Schwinger equations. We develop our truncation in three steps. To begin with, we use a quenched gluon propagator from lattice Yang-Mills theory. To account for unquenching, we then add the quark loop in the gluon DSE, firstly with bare quarks and in the final version of our truncation with fully dressed quarks. In the last step it is also possible to take into account the coupling of light and strange quarks.In effective models, fermionic fluctuations have been shown to move the critical end-point to large densities. We confirm this finding within our truncation for the unquenched gluon. However, this effect is suppressed once the full non-perturbative quark in the quark loop is taken into account.For the confinement/deconfinement transition we investigate three order parameters that are accessible from the quark and gluon propagators. These are the dressed Polyakov loop, the Polyakov-loop potential and positivity violations in the quark propagator. From both Polyakov-loop related order parameters, we find that the deconfinement transition can always be found in vicinity of the chiral transition. Especially at the critical end-point the phase transitions coincide. We also find that signals of positivity violations in the quark propagator vanish at the chiral transition for the two-flavour case. However, with 2+1 flavours, we find a region at large density where chiral symmetry is restored but positivity is violated. This requires further investigations.Finally, we improve our truncation by considering the back-reaction of pions in a model that has been developed in previous work. Within this model we find only a small impact on the phase structure.

Verknüpfung zu Publikationen oder weiteren Datensätzen

Beschreibung

Anmerkungen

Erstpublikation in

Erstpublikation in

Sammelband

URI der Erstpublikation

Forschungsdaten

Schriftenreihe

Zitierform