SPOTting model parameters using a ready-made python package

dc.contributor.authorHouska, Tobias
dc.contributor.authorKraft, Philipp
dc.contributor.authorChamorro-Chavez, Alejandro
dc.contributor.authorBreuer, Lutz
dc.date.accessioned2022-11-18T09:50:52Z
dc.date.available2016-01-29T10:35:36Z
dc.date.available2022-11-18T09:50:52Z
dc.date.issued2015
dc.description.abstractThe choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:hebis:26-opus-119077
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/9150
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-8538
dc.language.isoende_DE
dc.rightsNamensnennung 3.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/*
dc.subject.ddcddc:550de_DE
dc.titleSPOTting model parameters using a ready-made python packageen
dc.typearticlede_DE
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographiede_DE
local.opus.fachgebietGeographiede_DE
local.opus.id11907
local.opus.instituteInstitute for Landscape Ecology and Resources Management, Research Centre for BioSystems, Land Use and Nutrition (IFZ)de_DE
local.source.freetextPLoS ONE 10(12):e0145180de_DE
local.source.urihttps://doi.org/10.1371/journal.pone.0145180

Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
10.1371_journal.pone.0145180.pdf
Größe:
4.36 MB
Format:
Adobe Portable Document Format