Development of a deep neural network-based pulse shape discrimination for organic scintillators using GEANT4 generated pulses

dc.contributor.advisorScheidenberger, Christoph
dc.contributor.advisorLange, Jens Sören
dc.contributor.authorUhlemann, Frederik Vincent
dc.date.accessioned2025-06-02T16:06:45Z
dc.date.available2025-06-02T16:06:45Z
dc.date.issued2024-09-08
dc.description.abstractSince nuclear fission is a very complex and not fully understood physical process, it is an interesting field for theoretical and experimental investigation. This study analyses the method of pulse shape discrimination for a measurement related to nuclear fission. Organic scintillators are often used to measure prompt neutrons and gammas from nuclear fission. It is investigated how the neutrons and gammas can be distinguished from their different pulse shapes. A deep neural network is used for this purpose. This network is trained with pulse shapes generated by Geant4 and later tested with experimental data. This work shows that simulated Geant4 data can be successfully used to train a deep neural network that is able to distinguish experimental pulse shapes. This offers a promising approach for future measurements in nuclear fission studies.
dc.identifier.urihttps://jlupub.ub.uni-giessen.de/handle/jlupub/20580
dc.identifier.urihttps://doi.org/10.22029/jlupub-19929
dc.language.isoen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcddc:530
dc.titleDevelopment of a deep neural network-based pulse shape discrimination for organic scintillators using GEANT4 generated pulses
dc.typebachelorThesis
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographie
thesis.levelbachelor

Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Bachelorarbeit_UhlemannFrederik-2024.pdf
Größe:
6.55 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
7.58 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: