On Pumping Preserving Homomorphisms and the Complexity of the Pumping Problem

dc.contributor.authorGruber, Hermann
dc.contributor.authorHolzer, Markus
dc.contributor.authorRauch, Christian
dc.date.accessioned2024-07-10T09:51:12Z
dc.date.available2024-07-10T09:51:12Z
dc.date.issued2024-06-27
dc.description.abstractThis paper complements a recent inapproximability result for the minimal pumping constant w.r.t. a fixed regular pumping lemma for nondeterministic finite automata [H. Gruber and M. Holzer and C. Rauch. The Pumping Lemma for Regular Languages is Hard. CIAA 2023, pp. 128-140.], by showing the inapproximability of this problem even for deterministic finite automata, and at the same time proving stronger lower bound on the attainable approximation ratio, assuming the Exponential Time Hypothesis (ETH). To that end, we describe those homomorphisms that, in a precise sense, preserve the respective pumping arguments used in two different pumping lemmata. We show that, perhaps surprisingly, this concept coincides with the classic notion of star height preserving homomorphisms as studied by McNaughton, and by Hashiguchi and Honda in the 1970s. Also, we gain a complete understanding of the minimal pumping constant for bideterministic finite automata, which may be of independent interest.
dc.identifier.urihttps://jlupub.ub.uni-giessen.de/handle/jlupub/19307
dc.identifier.urihttps://doi.org/10.22029/jlupub-18668
dc.language.isoen
dc.relation.ispartofseriesIFIG Research Report; 2401
dc.rightsIn Copyright*
dc.rights.urihttp://rightsstatements.org/page/InC/1.0/*
dc.subjectFinite Automata
dc.subjectPumping Lemmata
dc.subjectStar Height Preserving Homomorphism
dc.subjectPumping Preserving Homomorphism
dc.subjectPumping Problem
dc.subjectDecision Problem
dc.subjectComputational Complexity
dc.subjectApproximiation
dc.subjectExponential Time Hypothesis
dc.subject.ddcddc:004
dc.titleOn Pumping Preserving Homomorphisms and the Complexity of the Pumping Problem
dc.typeworkingPaper
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographie

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
IFIG-Report2401.pdf
Größe:
1.01 MB
Format:
Adobe Portable Document Format
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
license.txt
Größe:
7.58 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: