Zur Theorie von Anpassungstests auf K-verteilte Marginalien von zweidimensionalen Zufallsfeldern mit Anwendung auf Radardaten

Lade...
Vorschaubild

Datum

Autor:innen

Betreuer/Gutachter

Weitere Beteiligte

Beteiligte Institutionen

Herausgeber

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Zusammenfassung

Von Radaren mit synthetischer Apertur stammende Abbildungen von Ausschnitten der Erdoberfläche enthalten häufig verschiedene Arten von Clutter, also flächige Darstellungen natürlichen Untergrundes wie beispielsweise Wiese, Wald oder See. Bei der statistischen Analyse des Clutters sind die Marginalverteilungen von großem Interesse. Um die zwischen den Bildpixeln bestehenden Abhängigkeiten zu berücksichtigen, werden in dieser Arbeit homogene Cluttergebiete als zweidimensionale, stationäre, (m1,m2)-abhängige Zufallsfelder modelliert.Es werden Anpassungstests für die Marginalverteilungen (m1,m2)-abhängiger Zufallsfelder auf eine parametrische Verteilungsklasse mit Bootstrap-Quantilen konzipiert und die Verteilungskonvergenz des empirischen Prozesses mit geschätztem Parametervektor auf Datenebene bewiesen. Das dafür entwickelte parametrische Bootstrap-Verfahren basiert auf unabhängigen und identisch verteilten Blöcken. Diese Blöcke werden für die Modellierung der lokalen Abhängigkeiten innerhalb des (m1,m2)-abhängigen Zufallsfeldes benötigt, welche mithilfe von Copulas abgebildet werden. Dieser "Independent-Blocks-Bootstrap" bietet den Vorteil, dass annähernd der volle Datensatz verwendet wird, indem unabhängige Blöcke aus dem (m1,m2)-abhängigen Zufallsfeld extrahiert werden. Neben dem funktionalen Grenzwertsatz für den empirischen Prozess mit geschätztem Parametervektor für unabhängige Blöcke wird auch der entsprechende funktionale Grenzwertsatz für α-mischende Zufallsfelder bewiesen.Bei der Analyse von Radarbildern ist die parametrische Klasse der K-Verteilungen weit verbreitet, in der übrigen statistischen Literatur wird diese aber eher selten behandelt. Daher wird eine systematische Untersuchung dieser Klasse durchgeführt, in welcher neben der Herleitung von auf Momenten basierenden Punktschätzern für die Parameter der K-Verteilung auch deren asymptotische Normalität und Konsistenz gezeigt werden. Desweiteren werden die Regularitätsvoraussetzungen der beiden funktionalen Grenzwertsätze für die Klasse der K-Verteilungen nachgewiesen.Im Anschluss werden die entwickelten Anpassungstests mit Bootstrap-Quantilen auf K-verteilte Marginalien auf (1,1)-abhängige Datenmatrizen angewendet. Bei den Datenmatrizen handelt es sich zum einen um simulierte Zufallsfelder, zum anderen um Daten eines Radars mit synthetischer Apertur.

Verknüpfung zu Publikationen oder weiteren Datensätzen

Beschreibung

Anmerkungen

Erstpublikation in

Erstpublikation in

Sammelband

URI der Erstpublikation

Forschungsdaten

Schriftenreihe

Zitierform