Correlation of metal-to-insulator transition and strain state of VO2 thin films on TiO2 (110) substrates

dc.contributor.authorLu, Hao
dc.contributor.authorLi, Lei
dc.contributor.authorTang, Zhiwu
dc.contributor.authorXu, Maji
dc.contributor.authorZheng, Yonghui
dc.contributor.authorBecker, Martin
dc.contributor.authorLu, Yinmei
dc.contributor.authorLi, Mingkai
dc.contributor.authorLi, Pai
dc.contributor.authorZhang, Zaoli
dc.contributor.authorKlar, Peter J.
dc.contributor.authorHe, Yunbin
dc.date.accessioned2024-09-27T08:13:43Z
dc.date.available2024-09-27T08:13:43Z
dc.date.issued2023
dc.description.abstractWe explore the possibility of tuning the metal-to-insulator transition (MIT) of crystalline VO2 thin films by strain engineering. We deposit high-quality VO2 epitaxial films of different thicknesses on TiO2 (110) substrates by pulsed laser deposition. The strain state of the deposited film varies with its thickness. This allows us to correlate the MIT characteristics with the strain state of the VO2 film by a careful characterization of the structural and electrical properties. Thin VO2 films on TiO2 (110) substrates are almost fully strained up to thicknesses of about 20 nm and exhibit tensile strain along the c axis of the (high-temperature) metallic rutile phase leading to an increase in the MIT temperature by as much as 30 °C in comparison to the almost fully relaxed 300 nm-thick VO2 film. The strain gradient within the thicker samples leads to a continuous serial switching of layered regions of the VO2 film from the insulating to the metallic state with increasing temperature.
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG); ROR-ID:018mejw64
dc.identifier.urihttps://jlupub.ub.uni-giessen.de/handle/jlupub/19470
dc.identifier.urihttps://doi.org/10.22029/jlupub-18828
dc.language.isoen
dc.rightsNamensnennung 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddcddc:530
dc.titleCorrelation of metal-to-insulator transition and strain state of VO2 thin films on TiO2 (110) substrates
dc.typearticle
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographie
local.projectResearch Grant 510965362
local.source.articlenumber042103
local.source.epage6
local.source.journaltitleApplied physics letters
local.source.number4
local.source.spage1
local.source.urihttps://doi.org/10.1063/5.0152809
local.source.volume123

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
10.1063_5.0152809.pdf
Größe:
2.56 MB
Format:
Adobe Portable Document Format