Functional gene polymorphisms in the serotonin system and traumatic life events modulate the neural basis of fear acquisition and extinction

dc.contributor.authorHermann, Andrea
dc.contributor.authorKüpper, Yvonne
dc.contributor.authorSchmitz, Anja
dc.contributor.authorWalter, Bertram
dc.contributor.authorVaitl, Dieter
dc.contributor.authorHennig, Jürgen
dc.contributor.authorStark, Rudolf
dc.contributor.authorTabbert, Katharina
dc.date.accessioned2022-11-18T09:56:47Z
dc.date.available2012-09-18T09:11:39Z
dc.date.available2022-11-18T09:56:47Z
dc.date.issued2012
dc.description.abstractFear acquisition and extinction are crucial mechanisms in the etiology and maintenance of anxiety disorders. Moreover, they might play a pivotal role in conveying the influence of genetic and environmental factors on the development of a (more or less) stronger proneness for, or resilience against psychopathology. There are only few insights in the neurobiology of genetically and environmentally based individual differences in fear learning and extinction. In this functional magnetic resonance imaging study, 74 healthy subjects were investigated. These were invited according to 5-HTTLPR/rs25531 (S+ vs. LALA; triallelic classification) and TPH2 (G(-703)T) (T+ vs. T-) genotype. The aim was to investigate the influence of genetic factors and traumatic life events on skin conductance responses (SCRs) and neural responses (amygdala, insula, dorsal anterior cingulate cortex (dACC) and ventromedial prefrontal cortex (vmPFC)) during acquisition and extinction learning in a differential fear conditioning paradigm. Fear acquisition was characterized by stronger late conditioned and unconditioned responses in the right insula in 5-HTTLPR S-allele carriers. During extinction traumatic life events were associated with reduced amygdala activation in S-allele carriers vs. non-carriers. Beyond that, T-allele carriers of the TPH2 (G(-703)T) polymorphism with a higher number of traumatic life events showed enhanced responsiveness in the amygdala during acquisition and in the vmPFC during extinction learning compared with non-carriers. Finally, a combined effect of the two polymorphisms with higher responses in S- and T-allele carriers was found in the dACC during extinction. The results indicate an increased expression of conditioned, but also unconditioned fear responses in the insula in 5-HTTLPR S-allele carriers. A combined effect of the two polymorphisms on dACC activation during extinction might be associated with prolonged fear expression. Gene-by-environment interactions in amygdala and vmPFC activation may reflect a neural endophenotype translating genetic and adverse environmental influences into vulnerability for or resilience against developing affective psychopathology.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:hebis:26-opus-90026
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/9655
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-9043
dc.language.isoende_DE
dc.rightsNamensnennung 3.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/*
dc.subjectfear acquisitionen
dc.subjectfear extinctionen
dc.subjectfunctional gene polymorphismen
dc.subjectfunctional magnetic resonance imaging fMRI studyen
dc.subject.ddcddc:150de_DE
dc.titleFunctional gene polymorphisms in the serotonin system and traumatic life events modulate the neural basis of fear acquisition and extinctionen
dc.typearticlede_DE
local.affiliationFB 06 - Psychologie und Sportwissenschaftde_DE
local.opus.fachgebietPsychologiede_DE
local.opus.id9002
local.opus.instituteDepartment of Psychotherapy and Systems Neurosciencede_DE
local.source.freetextPLoS ONE, 7(9), e44352, 1-11de_DE
local.source.urihttps://doi.org/10.1371/journal.pone.0044352

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
journal.pone.0044352.pdf
Größe:
1017.21 KB
Format:
Adobe Portable Document Format