Nanostructured mesoporous materials via electrospinning : principle concepts in the preparation of oxide nanofibers from different building blocks
Datum
Autor:innen
Betreuer/Gutachter
Weitere Beteiligte
Herausgeber
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Lizenz
Zitierlink
Zusammenfassung
Over the last decade electrospinning has gained considerable scientific interest as a method for the preparation of nanostructured inorganic materials. Electrospun metal oxide fiber mats are under investigation for applications as e. g. electrode materials in electrochemical devices, as heterogeneous catalysts or as active material in sensing devices. The efficiency of such devices is strongly influenced and controlled by the material´s porosity and pore structure.While the preparation of metal oxide fibers from sol-gel precursors is already widely used for oxides of numerous elements, the synthesis of such fibers using preformed, dispersed nanoparticles is less exploited and understood. Simultaneously, it was observed, that titania fibers prepared from preformed nanoparticles feature improved porosities compared to sol-gel-based fibers.[1]This thesis investigates the fundamentals of the preparation of oxide nanofibers from different building blocks, namely sol-gel precursors, preformed nanoparticles or a combination of both in order to establish a basic concept concerning electrospinning of inorganic materials. This concept focuses on the origin of mesoporosity which is frequently observed, when electrospun fibers are prepared from preformed nanoparticles, but which has not been understood so far.Nitrogen physisorption as a straightforward method to characterize mesoporosity was investigated concerning its applicability to electrospun fibers and the assessment of pore sizes and pore volumes in such fibers. Therefore, electrospun silica model materials were prepared from commercial Ludox nanoparticle dispersions and analyzed by nitrogen physisorption in detail. By means of these basic investigations a specific density functional theory (DFT) analysis method was selected as a standard method to analyze electrospun fibers and afterwards applied to fibers of several metal oxides. Using this methodology it was possible to compare the mesoporosity of electrospun fibers of several metal oxides for the first time.
Elektrospinnen als Methode zur Herstellung nanostrukturierter anorganischer Materialien hat im letzten Jahrzehnt starkes wissenschaftliches Interesse hervorgerufen. Elektrogesponnene Metalloxid Fasermatten werden derzeit u. a. im Hinblick auf Anwendungen auf den Gebieten der heterogenen Katalyse oder Sensorik oder als Elektrodenmaterial in elektrochemischen Zellen untersucht. Die Effektivität der Materialien in derartigen Anwendungen wird maßgeblich durch deren Porosität und Porenstruktur beeinflusst und gesteuert.Während die Herstellung von elektrogesponnenen Fasern aus Sol-Gel-Vorläuferverbindungen für Metalloxide bereits weit verbreitet ist und für Oxide zahlreicher Elemente angewandt wird, ist die Synthese von solchen Fasern ausgehend von vorgeformten, dispergierten Nanopartikeln deutlich weniger erforscht und verstanden. Gleichzeitig wurde festgestellt, dass aus vorgeformten Nanopartikel hergestellte Titandioxid-Fasern über eine erhöhte Porosität im Vergleich zum Sol-Gel-Fasern verfügen.[1]Diese Dissertation untersucht die Synthese von Oxidnanofasern ausgehend von verschiedenen Bausteinen, nämlich Sol-Gel-Vorläuferverbindungen, vorgeformten Nanopartikeln oder einer Kombination aus beiden, um ein grundlegendes Konzept zur Synthese elektrogesponnener anorganischer Materialien zu entwickeln. Dieses Konzept konzentriert sich auf die Analyse und Erklärung von Strukturbildungsprozessen, die zu Mesoporosität führen, welche häufig beobachtet wird, wenn elektrogesponnene Fasern aus vorgeformten Nanopartikel hergestellt werden.Um die auftretende Mesoporosität in elektrogesponnenen Oxidfasern einfach und schnell charakterisieren zu können, wurde die Stickstoffphysisorption als Analysemethode grundlegend hinsichtlich ihrer Anwendbarkeit auf elektrogesponnene Fasern und der Bewertung derer Porengrößen und Porenvolumina untersucht. Für diese methodischen Studien wurden elektrogesponnene Siliziumdioxid Modellmaterialien aus kommerziellen Ludox Nanopartikel-Dispersionen hergestellt und analysiert. Durch diese Grundlagenuntersuchungen wurde ein spezifisches Dichtefunktionaltheorie (DFT)-Analyseverfahren als Standardmethode ausgewählt, um elektrogesponnene Fasern zu analysieren und anschließend auf unterschiedliche Fasermaterialien angewendet. Mit dieser Methodik war es erstmals möglich, die Mesoporosität von elektrogesponnenen Fasern mehrerer Metalloxide zu vergleichen.