Maximal cocliques and the chromatic number of the Kneser graph on chambers of PG(3,q)

dc.contributor.authorHeering, Philipp
dc.contributor.authorMetsch, Klaus
dc.date.accessioned2024-11-27T08:33:44Z
dc.date.available2024-11-27T08:33:44Z
dc.date.issued2024
dc.description.abstractLet Gamma be the graph whose vertices are the chambers of the finite projective 3-space PG(3,q), with two vertices being adjacent if and only if the corresponding chambers are in general position. We show that a maximal independent set of vertices of Gamma contains q(4)+3q(3)+4q(2)+3q+1, or 3q(3)+5q(2)+3q+1, or at most 3q(3)+4q(2)+3q+2 elements. For q >= 4 the structure of the largest maximal independent sets is described. For q >= 7 the structure of the maximal independent sets of the three largest cardinalities is described. Using the cardinality of the second largest maximal independent sets, we show that the chromatic number of Gamma is q(2)+q.en
dc.identifier.urihttps://jlupub.ub.uni-giessen.de/handle/jlupub/19932
dc.identifier.urihttps://doi.org/10.22029/jlupub-19287
dc.language.isoen
dc.rightsNamensnennung 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddcddc:510
dc.subject.ddcddc:004
dc.titleMaximal cocliques and the chromatic number of the Kneser graph on chambers of PG(3,q)
dc.typearticle
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographie
local.source.epage409
local.source.journaltitleJournal of combinatorial designs
local.source.spage388
local.source.urihttps://doi.org/10.1002/jcd.21940
local.source.volume32

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
10.1002_jcd.21940.pdf
Größe:
802.73 KB
Format:
Adobe Portable Document Format