Martingale Transformations of Jump Processes
dc.contributor.advisor | Overbeck, Ludger | |
dc.contributor.advisor | Kruse, Thomas | |
dc.contributor.author | Scheld, Marius | |
dc.date.accessioned | 2022-07-25T11:03:31Z | |
dc.date.available | 2022-07-25T11:03:31Z | |
dc.date.issued | 2022-04 | |
dc.description.abstract | We provide a large class of functions and their respective parameters to transform a jump-process into a martingale w.r.t. its natural filtration. The proofs are based on a discrete Doob-decomposition and a limiting procedure to continuous time, in turn resulting in a time-continuous Doob-Meyer decomposition. Martingale transformations are then determined by solving the Doob-Meyer decomposition for functions that elim inate the compensator. We discuss several related results and single jump filtrations. The results are provided for single-jump processes and are systematically generalized to the multi-jump case, highlighting the necessity of dependencies between current jumps and the processes paths. Eventually we apply the result to branching random walks as an instructive example. | de_DE |
dc.description.sponsorship | Sonstige Drittmittelgeber/-innen | de_DE |
dc.identifier.uri | https://jlupub.ub.uni-giessen.de//handle/jlupub/3336 | |
dc.identifier.uri | http://dx.doi.org/10.22029/jlupub-3029 | |
dc.language.iso | en | de_DE |
dc.rights | In Copyright | * |
dc.rights.uri | http://rightsstatements.org/page/InC/1.0/ | * |
dc.subject | Stochastic Processes | de_DE |
dc.subject | Jump Processes | de_DE |
dc.subject | Doob-Meyer decomposition | de_DE |
dc.subject | Martingale | de_DE |
dc.subject | Branching Random Walk | de_DE |
dc.subject.ddc | ddc:510 | de_DE |
dc.title | Martingale Transformations of Jump Processes | de_DE |
dc.type | doctoralThesis | de_DE |
dcterms.dateAccepted | 2022-06-23 | |
local.affiliation | FB 07 - Mathematik und Informatik, Physik, Geographie | de_DE |
thesis.level | thesis.doctoral | de_DE |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- ScheldMarius-2022-06-23.pdf
- Größe:
- 922.35 KB
- Format:
- Adobe Portable Document Format
- Beschreibung:
Lizenzbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
- Name:
- license.txt
- Größe:
- 7.58 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: