Blow-up Solutions for Mean Field Equations and Toda Systems on Riemann Surfaces

dc.contributor.advisorBartsch, Thomas
dc.contributor.advisorAhmedou, Mohameden
dc.contributor.advisorWitzel, Stefan
dc.contributor.advisorKonstantis, Panagiotis
dc.contributor.authorHu, Zhengni
dc.date.accessioned2024-11-12T06:52:48Z
dc.date.available2024-11-12T06:52:48Z
dc.date.issued2024
dc.description.abstractThis dissertation studies mean field type equations and the SU(3) Toda system, significant topics both in mathematical physics and differential geometry, with wide-ranging applications. Its primary focus lies in the construction of mixed boundary–interior bubbling solutions on Riemann surfaces with boundary, which exhibit blow-up at prescribed numbers of points in the interior and on the boundary as the parameters approach critical values. For mean field type equations and partial blow-up solutions of Toda systems, variational methods and Lyapunov-Schmidt reduction are employed to construct the solutions. However, for asymmetric blow-up solutions of Toda systems, due to the intricate limit profiles, the Lyapunov-Schmidt reduction cannot be applied directly. Herein, we introduce the “k-symmetric” condition for the surface and utilize singular perturbation methods to construct a family of bubbling solutions that blows up at “k-symmetric centers” of the surface. The dissertation is organized into two parts: one exploring blow-up solutions for mean field type equations and the other for the SU(3) Toda system. Each part delves into the construction of blow-up solutions under various scenarios.
dc.identifier.urihttps://jlupub.ub.uni-giessen.de/handle/jlupub/19770
dc.identifier.urihttps://doi.org/10.22029/jlupub-19127
dc.language.isoen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectToda System
dc.subjectLyapunov-Schmidt reduction
dc.subjectMean field equations
dc.subjectBlow-up solutions
dc.subject.ddcddc:510
dc.titleBlow-up Solutions for Mean Field Equations and Toda Systems on Riemann Surfaces
dc.typedoctoralThesis
dcterms.dateAccepted2024-11-05
local.affiliationFB 07 - Mathematik und Informatik, Physik, Geographie
thesis.levelthesis.doctoral

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
HuZhengni-2024-11-05.pdf
Größe:
851 KB
Format:
Adobe Portable Document Format
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
license.txt
Größe:
7.58 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: