Does genetic structure reflect differences in non-breeding movements? A case study in small, highly mobile seabirds

dc.contributor.authorQuillfeldt, Petra
dc.contributor.authorMoodley, Yoshan
dc.contributor.authorWeimerskirch, Henri
dc.contributor.authorCherel, Yves
dc.contributor.authorDelord, Karine
dc.contributor.authorPhillips, Richard A.
dc.contributor.authorNavarro, Joan
dc.contributor.authorCalderón, Luciano
dc.contributor.authorMasello, Juan F.
dc.date.accessioned2022-11-18T09:52:27Z
dc.date.available2018-11-06T14:16:50Z
dc.date.available2022-11-18T09:52:27Z
dc.date.issued2017
dc.description.abstractBackground: In seabirds, the extent of population genetic and phylogeographic structure varies extensively among species. Genetic structure is lacking in some species, but present in others despite the absence of obvious physical barriers (landmarks), suggesting that other mechanisms restrict gene flow. It has been proposed that the extent of genetic structure in seabirds is best explained by relative overlap in non-breeding distributions of birds from different populations. We used results from the analysis of microsatellite DNA variation and geolocation (tracking) data to test this hypothesis. We studied three small (130 200 g), very abundant, zooplanktivorous petrels (Procellariiformes, Aves), each sampled at two breeding populations that were widely separated (Atlantic and Indian Ocean sectors of the Southern Ocean) but differed in the degree of overlap in non-breeding distributions; the wintering areas of the two Antarctic prion (Pachyptila desolata) populations are separated by over 5000 km, whereas those of the blue petrels (Halobaena caerulea) and thin-billed prions (P. belcheri) show considerable overlap. Therefore, we expected the breeding populations of blue petrels and thin-billed prions to show high connectivity despite their geographical distance, and those of Antarctic prions to be genetically differentiated. Results: Microsatellite (at 18 loci) and cytochrome b sequence data suggested a lack of genetic structure in all three species. We thus found no relationship between genetic and spatial structure (relative overlap in non-breeding distributions) in these pelagic seabirds. Conclusions: In line with other Southern Ocean taxa, geographic distance did not lead to genetic differences between widely spaced populations of Southern Ocean petrel species.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:hebis:26-opus-138164
dc.identifier.urihttps://jlupub.ub.uni-giessen.de//handle/jlupub/9350
dc.identifier.urihttp://dx.doi.org/10.22029/jlupub-8738
dc.language.isoende_DE
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectFalkland / Malvinas Islandsen
dc.subjectgenetic structureen
dc.subjectKerguelen Islandsen
dc.subjectnon-breeding distributionen
dc.subjectphylogeographyen
dc.subject.ddcddc:570de_DE
dc.titleDoes genetic structure reflect differences in non-breeding movements? A case study in small, highly mobile seabirdsen
dc.typearticlede_DE
local.affiliationFB 08 - Biologie und Chemiede_DE
local.opus.fachgebietBiologiede_DE
local.opus.id13816
local.opus.institute1Department of Animal Ecology and Systematicsde_DE
local.source.freetextBMC Evolutionary Biology 17:160de_DE
local.source.urihttps://doi.org/10.1186/s12862-017-1008-x

Dateien

Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
10.1186_s12862_017_1008_x.pdf
Größe:
1.32 MB
Format:
Adobe Portable Document Format